

Supplementary Figures and Tables

Supplementary Figure 1. Correlation between ChIP-seq replicates. (a) Cluster analysis of H3K27ac. (b) H3K4me1. (c) BRD4 ChIP-seq. Rat genome was divided into 566848 nonoverlapping 5-kb windows. For each sample including both ChIP and input samples, coverage was calculated on each window and scaled to total number of reads across all the samples. Log2(ChIP/input) was then calculated for each window. The windows with enrichment levels (log2(ChIP/Input) < 2 in more than 2 samples were excluded. The dissimilarities, defined as 1cor, from the resulting data were finally calculated across the 4 samples (2 AngII and 2 controls) which were subjected to cluster analyses and shown as dendrograms. (d-i) Scatterplots of read counts (log2 counts) on identified peak regions for each replicate of H3K27ac, H3K4me1 and BRD4 ChIP-seq data for Control and AngII samples as indicated. Data shows very good correlation between the replicates (Pearson correlation coefficient (r)=0.0882-0.996).

Supplementary Figure 2. Genomic distribution of enhancer marks in VSMC. Venn diagrams depicting (a) Distribution of H3K27ac and (b) H3K4me1 in the indicated genomic regions.

Supplementary Figure 3. Strategy for enhancer identification. Briefly, H3K27ac enriched regions were identified and filtered based on co-occupancy of H3K4me1. H3K27ac and H3K4me1 co-occupied regions were used to filter out exonic and promoter sequences of RefSeq and UCSC genes followed by removal of H3K4me3 enriched regions.

Supplementary Figure 4. Motif discovery from AngII-downregulated enhancers. (a-b) Enrichment of CDX2 and FOXL1 motifs in AngII-downregulated enhancers.

Supplementary Figure 5. Enrichment of TF motifs on *de novo* gained and lost enhancers. (a) Schematic represents formation of *de novo* H3K27ac gained enhancers by AngII. (b) Schematic represents loss of H3K27ac enhancers by AngII. (c-d) Representative motifs of AP1 and FOXC1 are statistically enriched in H3K27ac-gained enhancers (where AngII treated H3K27ac ChIP enrichment signals are more than log2(1.5) and Control H3K27ac ChIP enrichment signals are less than log2(1.1)) and shown as in % of enhancers with individual motif. (e-g) Representative motifs of CDX2, FOXL1 and LIN54 enriched in H3K27ac lost enhancers (where AngII treated H3K27ac ChIP enrichment signals are less than log2(1.1) and control H3K27ac lost enhancers (where AngII treated H3K27ac ChIP enrichment signals are less than log2(1.1) and control H3K27ac ChIP enrichment signals are less than log2(1.1) and control H3K27ac ChIP enrichment signals are more than log2(1.5)) and shown as % of enhancers with individual motif. E is Bonferroni adjusted *P* value.

Supplementary Figure 6. Correlation between differentially enriched enhancers and differentially regulated genes. Scatter plot showing the log2 fold change in expression of genes associated with differentially enriched H3K27ac enhancers ($-1.5 > \log 2FC > 1.5$). Genes associated with upregulated enhancers are colored in shades of red and those associated with downregulated enhancers are colored in shades of green.

Supplementary Figure 7. Enhancer-associated neighboring gene expression. (a-f)

Expression of the indicated genes were validated in RVSMCs treated \pm AngII for 1-6 hrs *in vitro*. Mean+SEM; **P*<0.05; ****P*<0.001; *****P*<0.0001; vs. Ctrl; *n*=3, using one-way ANOVA, Dunnett's multiple comparisons test.

Upregulated enhancers **GO Biological Process** -log 10(Bionomial p Value) 18.26 Cell proliferation Protein kinase activity 18.11 17.78 Regulation of growth Protein phosphorylation 17.38 Regulation of cell growth Phosphate metabolic process 17.31 16.27 Protein catabolic process 15.84 Angiogenesi 14 20 13.61 Regulation of cell death Protein modification process 13.55 12.63 Response to drug Protein metabolic process Regulation of MAP kinase activity 12.34 12 30

b Upregulated enhancers

а

Disease Ontology -log 10(Bionomial p Value)

	0 4	5	10	15	20	25	
Heart disease							28.82
Liver and intrahepatic biliary tract carcinoma							28.64
Lung carcinoma							28.63
Arthritis						27	.01
Respiratory system disease						26.	66
Bone inflammation disease						26.3	4
Malignant glioma						25.52	
Neuroendocrine tumor						25.36	
Lymphoma						24.80	
Malignant neoplasm of nervous system						24.70	
Llung disease						24.41	
Non-small cell lung carcinoma					2	3.41	
Female genital cancer					2	3.04	
Mature B-cell lymphocytic neoplasm					22	.93	
Plasmacytoma					22	.88	
Lower respiratory tract disease					22	.72	
Melanocytic neoplasm					22	58	
Melanoma					22.	12	

c Downregulated enhancers

GO Biological Process -log 10(Bionomial p Value)

	0	2	4	6	8	10	12	14	16	18	20	22	24	
Skeletal system developmen	t	Ī	- i	Ī	Ī								-	25.60
Signal transduction	n 📕												23.70	
Vasculature developmen	t											20.45		
Heart developmen	t											20.25		
Muscle tissue developmen	t										18.9	8		
Blood vessel developmen	t										18.9	5		
Muscle tissue developmen	t										18.46			
Protein transpor	t									17	.53			
Protein phosphorylation	n									17.	38			
Regulation of phosphorylation	n									16.8	7			
Muscle structure developmen	t									16.69)			
Cardiac septum morphogenesi	s									16.45				
Muscle organ developmen	t								- I ·	16.27				
Protein modification proces	s								15	.55				
Cardiac right ventricle morphogenesis	s								15.	42				
outflow tract morphogenesi	s								15.1	5				
Wnt receptor signaling pathway	у								14.77	7				
Blood vessel morphogenesis	s 📕								14.76	3				

d Downregulated enhancers

Supplementary Figure 8. Functional annotation of differentially regulated enhancers. (a-d) Identification of GO biological processes and Disease Ontology using GREAT tool. Upregulated enhancers are shown in panels (a) and (b), whereas downregulated enhancers are shown in panels (c) and (d). Values represent -log10 (Binomial *P* value).

Supplementary Figure 9. CRISPR-Cas9 mediated deletion of candidate enhancers/SEs. (a) Genome browser tracks showing the relative position of the indicated enhancers (highlighted in orange) with respect to nearby indicated gene and the position of the sgRNAs (denoted by black lines) designed to delete the enhancer overlapping with lncRNA, *lnc-Ang383* using CRISPR-Cas9 editing in RVSMCs, and genotyping PCR result of lnc-Ang383 enhancer deletion. (b-e) Genotyping PCR results to confirm deletion of SEs for *Fgf2* (b), *Egr2* (c), *Tgif1* (d), and *Fst* (e). The expected band size for each PCR is indicated on the right side of each figure.

Supplementary Figure 10. Genomic organization of *Inc*-Ang362 overlapping enhancer and its regulation by AngII. (a) Tracks show profiles of H3K27ac and H3K4me1 signal on RVSMC specific enhancer associated with *Inc*-Ang362. Each data track shown is on the same scale for both Control (Ctrl) and AngII. (b) Bars represent fold change in expression of *Inc*-Ang362 upon treatment of RVSMCs with AngII for the indicated times. Mean+SEM; **P<0.01; vs. Ctrl; *n*=3, using one-way ANOVA, Dunnett's multiple comparisons test.

Supplementary Figure 11. Comparison of H3K27ac and BRD4 specific TEs and SEs. (a) Venn diagram showing the overlap between H3K27ac TEs and **(b)** SEs identified in Control and AngII conditions. **(c)** Overlap between BRD4 TEs and **(d)** SEs identified in Control and AngII conditions. **(e)** Overlap between H3K27ac and BRD4 SEs identified in Control (untreated) and **(f)** AngII treated RVSMCs.

Supplementary Figure 12. Characterization of AngII gained and lost SEs. (a) Boxplots show median enhancer length (kb), **(b)** signal (rpm), and **(c)** density (rpm/bp) in AngII-lost TEs and SEs. **(d)** Boxplot shows the absolute change in H3K27ac signal in response to AngII treatment measured at AngII gained TEs and SEs. For **(a-d)**, ****p<0.0001 using unpaired two-tailed t test. **(e)** Average profile and heatmaps of BRD4 enrichment over SEs gained and lost upon AngII treatment.

Supplementary Figure 13. AngII-induces co-ordinate changes in H3K27ac and BRD4 occupancy over SEs. (a) Boxplot of H3K27ac and (b) BRD4 signal density (rpm/bp) at AngII gained SEs. (c) Boxplot of H3K27ac and D. BRD4 signal density (rpm/bp) at AngII lost SEs. ****P<0.0001, using unpaired-two tailed t test.

Supplementary Figure 14. BRD4 enrichment mirrors H3K27ac enrichment on SE regions. (a) Average profile and heatmaps of BRD4 enrichment over promoters of AngII gained and (b) AngII lost SE-associated genes.

Supplementary Figure 15. Phenotypes associated with TEs. IPA Pathway analysis of genes associated with TEs.

Supplementary Figure 16. Expression of BET family proteins in VSMCs. (a-c) Brd4, Brd2 and Brd3 expression were quantified by RT-qPCRs in RVSMCs treated ±AngII for 3 hrs *in vitro*. Mean+SEM; *P<0.05; vs. Control; n=3, using unpaired-two tailed t test.

Supplementary Figure 17. JQ1 attenuates AngII-induced expression of *lncAng383* and *Ramp3*. (a-b) Bars represent the expression of SE-associated genes measured by RT-qPCR in RVSMCs pre-treated with vehicle (DMSO) or the BRD4 inhibitor JQ1 (250 and 500 nM) and then treated *in vitro* with AngII as indicated. Gene expression was normalized with *Ppia* and represented as relative fold change with respect to Vehicle. Mean+SEM; *P<0.05; ***P<0.001; ****P<0.0001; n=3, using one-way ANOVA, Tukey's multiple comparisons test.

Supplementary Figure 18. SEs regulate the first nearest AngII-regulated genes. (a-d) Bar graphs show the AngII-induced expression of indicated genes in WT and SE deleted (Δ SE) RVSMCs. Gene expression was normalized to *Ppia* and expressed as AngII response vs. respective Controls. Mean +SEM, *n*=3. Data is not significant, using unpaired two-tailed t tests. (e) Correlation heatmaps representing Spearman correlation co-efficients between log2 fold change in H3K27ac occupancy at SEs and (f) TEs and the expression changes of 1st, 2nd and 3rd nearest gene mapped within ± 500 kb from the enhancer centre. For (e-f), all differentially regulated enhancers (SEs/TEs) that had 1st, 2nd and 3rd nearest genes mapped within ± 500 kb from the enhancer the nearest genes were AngII-regulated or not.

qRT-PCR expression

Refers to Figure 1 G-J

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
Jun	agggttaagacaccgcttg	ggagaacctctgtcgctg
fos	ctccgtttctcttcctcttcag	tcettacggactecceae
Ets 1	ctctcaactggcaggaagatg	gctcgtcaggtaggatttcag
Ets2	acggatgggaattcaagctc	tgcccgatgtcttgtgaatg
Ppia	ccgctgtctcttttcgcc	gctgtctttggaactttgtctg

Refers to Figure 2

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
Esml	cttccccttcttccagtatgc	gttccggtctccaatctcttc
Spry2	atcagatcttggcggtgtg	tgtgtaccttgctgttggag
Agtrla	ggcagtcatcttggattcttttg	acacaaccctcccagaaag
mEsm1*	ggaagatgtctggactttccc	cgttcccttctccaatctcttc
mSpry2*	atcaggtcttggcagtgtg	agaggattcaagggagaggg
mAgtr1a*	gctggcattttgtctggataac	gcttttctgggttgagttgg
mPpia*	atggtcaaccccaccgtg	ttettgetgtetttggaactttgte

Refers to Figure 3

C		D D: (51.21)	
Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	
Fgf7	tgaatactatcttgccatgaacaaag	acgaacatttcccctccg	
Slc29a2	tggtgaaggtggatttgagc	tgaggaagagggtgctgtag	
Serpine l	cacaagcactacaaaaggtcaag	gccgaaccacaaagagaaag	
CD44	cttccagctctccaggtaatg	ctccagtcatagtacaacccttc	
Egr3	attacactcagatggctacagc	ctggaaagagcccgaataagag	19

Vcl	aggagaaacagaaaagagggc	ctgtaacttcctaaccttttcacatg
Clu	tettggcacttetcacactg	agetttacagttcccggatg
Foxpl	gttttgtgcgagtagagaacg	cattgagaggtgtgcagtagg

Refers to Supplementary Figure 7

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	
Rock2	cacaagaccacaaaagcacg	gagtaggttctccactttctgc	
Tnip	ctgatgagacccaccaactg	ggtatccctgcttgtatgctc	
Extl3	accccacaatgcgatcac	cttgccctggaatgagatagag	
Acan	aacettegetecaatgacte	ctcggtcaaagtccagtgtg	
Rgs17	Cccacaccaccacaaatg	gagaccaggacaagacttcatc	
Flt1	cctcagcctaccatcaagtg	gccctcgattctgtttcctatg	

ChIP Primers

Refers to Figure 3

Enhancer proximal to	Forward Primer (5'-3')	Reverse Primer (5'-3')
Neg Ctrl	agettaaagtgtetecagtcaa	atatcaggctcctttgtgaagt
Spry2	actttctgacagagctggttatt	tgaggtgtctcctggaatct
FGF7	tccttcttccattgggtgattt	ggtacagagacaggcagataga
Slc29a2	ggtcctcgacaagaacagaatag	taggaggaggaaggctcaaa
Serpine1	cttactggaagcgaggtgttag	gagacagcacttagaggaatgg
Sgk	ccagactacctgcctattaatctc	cctgagctgagtgtatgtaagg
CD44	gcagggatgacacatcagaa	gttggtcgtggtgtctcttta
Ezr	cctagtcaggttctgtctgtct	tgttctgtgttcccttgtcttac
Esm1A	acatacaggcactcacagaac	gcatggcaaactcagaatcac
Esm1B	agcaccaggtaaccaactattc	ctcttggagagtttcccttctaac
Esm1C	gaaccagaacatcagggaagtc	cagcgtctggcaagtagtaatc

Egr3	ctgtgtatctggcatacgatctg	ctccgtgtgtgagtatgtgtatag
Cebpg	ctgaagtggaaggactgaactg	gtggtgggcagaatgagaaa
Jun	tggatggatggcacagttac	agagagagagagagagagagagaga
Foxp en1	tgtctcttcagggcaacataac	aagctgttgggttccttctatc
Foxp en2	ctccttaccttccctttctgttt	ggtcccttggtcactgttatg
Ets2	cagtgagttctgcctacttctg	caaggtggagacagggttatg
Agtr1aUA	cgactggttgccttgtatct	ctagggacccagactgaataaac
Agtr1aUB	caggtgccactggatacaaa	accetcacctagatcagtaagt
Agtr1aDA	ctgacagactactctgcaatcc	ctgccttgggatctctcataaa
Agtr1aDB	caagtgcccatacctactactg	ggctaatccctcgtcttctatg
Ago2	tggcaggtccttattgctattc	gggtctcctagagatggacttac
Vcl	aacaggcaggagcaaaca	gtacgtgtaggtttccgtgtag
Clu	cttagetecattecetgacaaa	teteetteecagecetaaa
mEsm1A*	ttgccaccttgaggactattg	gcctgccttcctctgtaaat
mEsm1B*	cccgtgggtgaatgagatatt	agcgtagggtgagacaaatg

Luciferase Constructs

Refers to Figure 4

Construct gBLOCK sequence (5'-3')

Ccl2-Prom	ggaggcctaactggccggtacctagatctgctagcctcgaggatatcagcggccgctggcaaaatgtctgggagtcaccaaatgccggagtcaccaaatgcggagtcaccaaatgcggcggcgctggcaaaatgtctgggagtcaccaaatgcggcggagtcaccaaatgcggcgggagtcaccaaatgcgggagtcaccaaatgcgggagtcaccaaatgcgggagtcaccaaatgcgggagtcaccaaatgcgggagtcaccaaatgcgggagtcaccaaatgcgggggggg
	agagaatgccatattcaacaaagcctgataaccaaggactcagtggactaattggcagtcctatcccagatccaaggttccttgagcagtccatggagtccatggagtccatggagtccatggagtccatggagtccatggagtccatggagtccatggagtggagtcatggagtccatggagtccatggagtggagtcatggagga
	caggggcaagctaggatatgctcccaggtatcttctcccttaggactttaggtttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatatgctcccaggtatcttctcccttaggatatgctcccaggtatcttctcccttaggatatgctcccaggtatcttctcccttaggatatgctcccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggatccaggatccaggtatcttctcccttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggatccaggatccaggatctttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggatccaggatctttaggatttcttggccacttcctcttatttcagtgaaagcagatccaggatccaggatctaggatttcttggccacttcctcttatttcagtgaaagcagatccaggatctaggatttcttggccacttcctcttatttcagtgaaagcaggatccaggatctaggatggat
	cactccattgacacttgtggtcacagtctagcacgactgctcccttcctt
	getggaaaaaacaccaaattecaatccgcggtttetccettetaetteetggaaacatecaagggetcggcaettaeteagcagattea
	a act tc cact tc cat cat cg agg at gat g ct g c
	ggctgaggcagagccgctagaaatgcagagacacagacag
Spry2-enh	ggaggcctaactggccctgaagttagggtcagtcatgtccccaggtctgaactgtcttcccttgccagccttctttgccacacattaaa
	at gac agg cca cattee cct cat cct cct cag cg ccccct gt ag cag gg agg tct gct ta att agg ctt acag g cag act gac tg act gas tg act gac tg act gas tg act g
	ggtaattettggatettgagagaagtaetttgtattgta
	caaaaaaatcttaaaggccttgcctaatggaccttgaggcgaggggactagacacccaagaccttaagtagataatgttatcagtcttc

Enhancer	Forward Primer (5'-3')	Reverse Primer (5'-3')
Esm1B-enh	ggaggcctaactggcctacccttcctgaatctatg	ctagetagecatagtetecectagttee
Esm1C-enh	ggaggcctaactggccctaaaatccaagtggctttag	ctagctagcagagggtagcatgaaaacc
Egr3-enh	ggaggcctaactggccttcttcttgtccttgg	ctagctagccatctagttcagcaaagag

qRT-PCR expression Inc-Ang184 and

IncAng383 CRISPR Phenotype

Refers to Figure 5

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
Ccl2	gcagctcagcagaggtagttgg	cggtatagggtctgagaagattaccg
Serpine1	gcagetetetgtagcacaagee	cggcctctgttggattgtgccg

IL6	ggataccacccacaacagaccag	cgatgagttttctgacagtgcatcatc
lnc-Ang383	atgtccacactgtatgcctc	ctgctccacttctctcactatg
lnc-Ang184	cagacctagtggcagtttcc	cgcctatacctcaacacttcc
Ramp3	gcaccttctccctctgttg	tccagcattcctgtctcattg

Dicer-substrate short-interfering RNAs (DsiRNAs)

Refers to Figure 5H

Name	Sense (5'-3')	Anti-sense (5'-3')
Dsi-Inc-Ang383	gaacuaauagcuaaggcuuuccaaguu	cuuggaaagccuuagcuauuagutc

Refers to Supplementary Figure 10

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	
lnc-Ang362	gctcccattctgttccttttg	cacactcaccttcctattccc	

CRISPR-sgRNAS

Refers to Figure 5 (I-M) and 9 (A-D)

Enhancer sgRNA [#]	Forward Primer (5'-3')	Reverse Primer (5'-3')	
Inc-Ang383SG	caccgactgtttattcgttctctac	aaccgtagagaacgaataaacagtc	
Inc-Ang383ASG	caccgctttgattccagcaccgaag	aaccetteggtgetggaatcaaage	
Egr2SG	cacegegecetteeeggegtgtet	aaccagacacgccgggaagggcgc	
Egr2ASG	caccggagcgcatcggatgcgggc	aaccgcccgcatccgatgcgctcc	
Fgf2SG	caccgcggctctactgcaagaacgg	aaccccgttcttgcagtagagccgc	
Fgf2ASG	caccgtctgggtccataaggctacc	aaccggtagccttatggacccagac	
FstSG	caccgcgactgcactctccaagcta	aacctagcttggagagtgcagtcgc	
FstASG	caccgatgcgcccagaggttcggct	aaccagccgaacctctgggcgcatc	

Tgif1SG	cacegatgetttaateceateacte	aaccgagtgatgggattaaagcatc
Tgif1ASG	caccgttccataatacccgactgta	aacctacagtcgggtattatggaac

CRISPR Genotyping

Refers to Supplementary Figure 9

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
Fst	ggagcatctgctaagcgtaaa	ctccgacagataattgggaagg
Tgif1	gcattgatacatgccagcaaa	gtgcatgctatgttcgcataat
Inc-Ang383	tacagaagaagacagcacacac	agctaaggctttccaagtttaatg
Fgf2	agtccggctgcactagg	ggagggataatgctggagtttg
Egr2	ggtagagagaatggagcagaag	gtagcgtgggtcaagaaaga

qRT-PCR expression

Refers to Figure 8 A-N and Supplementary Figure 16 A-D and 18 A-D

SE associated Genes

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
Fst	gagtggaagagatagggaagc	agcgagtgtgccatgaag
Egr2	gaaggtctggtttctaggcg	aatggtgaactgggaggc
Tgifl	tgacgatgaaaggtccaagg	cgaaatgatttacacgagcagg
Fgf2	acccacacgtcaaactacag	ggcgttcaaagaagaaacactc
Flt1	cctcagcctaccatcaagtg	gccctcgattctgtttcctatg
Foxp1	gttttgtgcgagtagagaacg	cattgagaggtgtgcagtagg
Brd4	ttgatgcttgagttgtgtttgg	catgatagtccaggcaaaggg
Brd2	gaagcgggaactagagaagc	gaactagaagcactgagacgg
Brd3	tcctctttcgatttggctgc	cccagacgagattgagattgac
Nudt6	ggtgctaacatcaaatacggc	ctctgggcttctgcttcc

Spata5	ccagtgctccttaccagtttg	cagettteacacceacatte
Ado	gcctggacgatggatttactg	gcagtgacaaaaccaggaatc
Nrbf2	gggtctatggaagtgatggaag	tcagcttcatggcttcagag
Dlgap1	gccacactttgaatgctacac	agaccgaaggagaaaatgcc
Myom1	tgattacggctattcccatgg	accatgtagttgcctgacag
Ndufs4	gateccaggeatteategtag	aactacaggtacacttggcag
Mocs2	tgccaagaagctctcagtg	tgccatgggtagatatgcttc

ChIP

Refers to Figure 8 O-P

SE Regions	Forward Primer (5'-3')	Reverse Primer (5'-3')	
Tgifl	agtaaggttgagtcgggatttg	tgccctccacaaagtgaataa	
Fgf2	gcagcagtgttcttgtctttg	gtgaggtgggcttgtttact	
Foxp1	atgtggaacctctccactttac	ccacgtcctacagcattgat	

Supplementary Table 1. List of oligonucleotide sequences used in this study. * *m* denotes mouse genes. [#] SG denotes sense guide RNA and ASG denotes anti-sense guide RNA.

GWAS	GWAS ID	PubMed	Authors	Journal	Trait	Genes	hg19 co-	Rat enhancer
chromosome		ID					ordinates	co-ordinates
coordinates			(et al.)					
chr9_22115958	rs2383207	20622881	Gretarsdottir S	Nat	Abdominal	CKDN2B,	chr9_22114267	chr5_109036837
_22115959				Genet	aortic aneurysm	CDKN2A	_22116382	_109039175
1 5 20205121	1105000	20202146	TZ II A		<u> </u>	DAD2 CO	1 5 20207114	1.0.55707750
chr5_3939/131	rs1195992	20383146	Kottgen A	Nat	Chronic kidney	DAB2, C9	chr5_3939/114	chr2_55/0//58_
_39397132	8			Genet	disease		_39401158	55711091
chr1_15095147	rs267734	20383146	Kottgen A	Nat	Chronic kidney	SETDB1,	chr1_15094951	chr2_190219397
6_150951477				Genet	disease	LASS2,	5_150952124	_190221430
						ANXA9,		
						PRUNE,		
						FAM63A,		
						BNIPL		
chr21 3559382	rs2845106	26343387	Niknav M	Nat	Coronary artery	KCNE2	chr21 3559306	chr11 32159399
6 35593827	4	200 10007	Timpuy III	Genet	disease	IICT(E2	4 35594753	32162443
0_55575627				Genet	aisease		1_333371783	
chr9 2211528	rs9/1/797	21971053	Takeuchi F	Fur I	Coronary heart	CDKN2A	chr9 2211/267	chr5 109036837
22115286	137777/7/	219/1033		Hum	disease	CDKN2R,	7 22114207	100030175
22113200				110111	uiscase	CDK112D	/_22110302	_109039173

				Genet				
chr2_62713532 _62713533	rs6545946	22412388	Kenny EE	PLoS Genet	Crohn's disease	TMEM17, EHBP1, CPAMD8, AK3	chr2_62712712 _62716292	chr14_10319761 1_103200563
chr1_83220655 _83220656	rs1158260 9	26305897	Iyengar SK	PLoS Genet	Diabetic kidney disease	intergenic	chr1_83217751 _83221886	chr2_246266690 _246271012
chr20_1096599 7_10965998	rs1887320	25249183	Lu X	Hum Mol Genet	Diastolic blood pressure	JAG1	chr20_1095786 8_10966395	chr3_125541543 _125548196
chr9_22115104 _22115105	rs1096523 5	20601957	Uno S	Nat Genet	Endometriosis	CDKN2B AS	chr9_22114267 _22116382	chr5_109036837 _109039175
chr1_8150637 _8150638	rs7263425 8	26192919	Liu JZ	Nat Genet	Inflammatory bowel disease	NR	chr1_8149972_ 8152812	chr5_167965360 _167968601
chr9_22114468 _22114469	rs1073337 6	25256182	Foroud T	Stroke	Intracranial aneurysm	CDKN2B AS, ANRIL	chr9_22114267 _22116382	chr5_109036837 _109039175
chr21_3559382 6_35593827	rs2845106 4	26343387	Nikpay M	Nat Genet	Myocardial infarction	KCNE2	chr21_3559306 4_35594753	chr11_32159399 _32162443

	1			-		-		
chr13_1021455	rs1335587	23251661	Comuzzie AG	PLoS	Obesity-related	ITGBL1	chr13_1021231	chr15_10880352
59_102145560				One	traits		51_102146733	5_108814397
chr10_4445871	rs898549	23251661	Comuzzie AG	PLoS	Obesity-related	C10orf136	chr10_4445708	chr4_153840182
3_44458714				One	traits		1_44461770	153845918
chr14_9497224	rs1162707	23251661	Comuzzie AG	PLoS	Obesity-related	SERPINA	chr14_9497204	chr6_128102375
1_94972242	5			One	traits	12	9_94977481	_128105662
chr5_16913854	rs1761446	23251661	Comuzzie AG	PLoS	Obesity-related	MYO10	chr5_16901265	chr2_77201740_
_16913855	2			One	traits		_16914607	77210481
chr5_13143011	rs657075	24390342	Okada Y	Nature	Rheumatoid	CSF2 IL3	chr5 13142984	chr10_39641675
7 131430118					arthritis		2 131432784	39644527
/								
chr5 131/3011	rs657075	22///6963	Okada V	Nat	Rheumatoid	CSE2	chr5 131/298/	chr10_396/1675
7 131430118	13037075	22440705	Okada 1	Genet	arthritis	0512	2 131432784	39644527
/_131430110				Genet	artifitis		2_131+3276+	
	100016							
chr10_6378508	rs1082194	22446963	Okada Y	Nat	Rheumatoid	ARID5B	chr10_6378408	chr20_21238868
8_63785089	4			Genet	arthritis		2_63790216	_21245054
1					1		1	1

chr1_20550929 7_205509298	rs1815022 28	26606652	Alarcon- Riquelme ME	Arthritis Rheumat ol	Systemic lupus erythematosus	DSTYK	chr1_20550622 9_205515389	chr13_44982874 _44986847
chr20_1096599 7_10965998	rs1887320	25249183	Lu X	Hum Mol Genet	Systolic blood pressure	JAG1	chr20_1095786 8_10966395	chr3_125541543 _125548196
chr2_12640740 _12640741	rs1534422	19430480	Barrett JC	Nat Genet	Type 1 diabetes	intergenic	chr2_12629402 _12645547	chr6_39702585_ 39708724
chr22_3058172 1_30581722	rs5753037	19430480	Barrett JC	Nat Genet	Type 1 diabetes	intergenic	chr22_3058136 9_30583153	chr14_84958839 _84960817
chr10_7145228 4_71452285	rs2812533	24509480	Mahajan A	Nat Genet	Type 2 diabetes	C10orf35	chr10_7144747 6_71452665	chr20_29456788 _29457999

Supplementary Table 2: GWAS SNPs associated with AngII regulated enhancers. GWAS SNPs present in human sequences orthologous to rat enhancers were identified. Only diabetes and CVD associated SNPs are shown.