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Supplementary Note 1: Polarization States of Waves in Anisotropic Media 

The wave equation in a homogeneous non-magnetic anisotropic medium is1 

  2 2
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where   is the relative dielectric tensor. In the coordinate system aligned to the optic axis of a 

uniaxial anisotropic crystal,   can be expressed as 
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where   is the relative dielectric constant perpendicular to the optic axis, and   is the relative 

dielectric constant parallel to the optic axis. 

Supplementary Equation (1) actually contains three equations, one for each dimension. 

Explicitly, these equations can be expressed in the matrix form as 
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where  , ,x y zk k kk  is the wavevector and  , ,x y zE E EE  is the electric field. For a 

homogeneous wave in the Y direction, we have 0yk  , then Supplementary Equation (3) can be 

reduced to 
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For Supplementary Equation (4) to have a non-trivial solution (i.e. non-zero electric field), the 

determinant of the matrix must be zero: 
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Solving Supplementary Equation (5) we get two sets of solutions: 
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corresponding to the transverse electric (TE) polarized ordinary wave, and 
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corresponding to the transverse magnetic (TM) polarized extraordinary wave. 

Supplementary Note 2: Eigenequations for Anisotropic Planar Waveguide 

A three layer planar waveguide composed of an isotropic semi-infinite superstrate ( 1 ), an 

anisotropic guiding layer (  ) with the thickness d, and an isotropic semi-infinite substrate ( 2 ) 

is shown in Supplementary Fig. 1. The optic axis of the guiding layer is parallel to the Z axis. 

 

Supplementary Figure 1 | Schematic of a three-layer planar waveguide. The superstrate and 

substrate are both semi-infinite and optically isotropic. The optic axis of the anisotropic guiding 

layer is perpendicular to the basal plane. 
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For a waveguide mode (ordinary or extraordinary) propagating in the X direction in the three-

layer planar waveguide shown in Supplementary Fig. 1, the electric field can be expressed as 
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where xk   is the propagation constant of the waveguide mode (not to be confused with the 

angle in Figure 1 in the main text), g zk  . 

For the electric fields in the isotropic superstrate and substrate, Supplementary Equation (1) can 

be reduced to 
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Substituting 1E  and 2E  into Supplementary Equation (9), we get 
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Imposing Gauss’s law  1,2 0 E  on 1E  and 2E , we get 
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Imposing the Gauss’s law   0 E  on gE , we get 
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Using the Faraday’s law 0i E H , we can get magnetic fields from Supplementary Equation 

(11) and (12) 
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For a TE polarized ordinary waveguide mode, there are three field components ( , ,x y zH E H ). 

Imposing the interface conditions on xH  and yE  at the two interfaces ( 0,  -z z d  ), we get 
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which can be reformulated into 
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Substituting 1  2  and g  into Supplementary Equation (15) and let o  , we can get the 

eigenvalue equation for TE polarized ordinary waveguide modes 
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Similarly, for the TM polarized extraordinary waveguide mode ( , ,x y zE H E ), we have 
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where e  . In Supplementary Equation (16) and (17) m  and n  are non-negative integers. 
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Supplementary Note 3: Mode Profiles Normalization and Coupling Factors Calculation 

According to Poynting's theorem, the power density in the X direction carried by the ordinary 

(TE) and extraordinary (TM) waveguide modes can be expressed as 
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respectively. Thus, the ordinary and extraordinary mode profiles can be normalized as 
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respectively. Of course, Supplementary Equation (20) and (21) can be further normalized by 

dividing the maximum of ( )yE z  and ( )zE z —  max ( ), ( )y zE z E z . 

If we take the interval 0 nm 100 nmz   to be the efficient coupling region of the waveguide 

modes and the s-SNOM tip-induced hot spot, the coupling factors can be defined as 
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for the ordinary and extraordinary modes, respectively.  
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Supplementary Figure 2 | AFM images and height profiles for MoS2 samples of different 

thicknesses. (a) d=81 nm; (b) d=103 nm; (c) d=170 nm; (d) d=198 nm. 
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Supplementary Figure 3 | The schematic diagram of using a window function to suppress the 

edge effect in Fourier transform. (a) Subtract the average value of the whole profile from the 

original data to suppress the DC component in the momentum-space spectra, the shadowed areas 

indicate where the edge effect exists, widths of the shadows are 3 m; (b) The Parzen window 

function used to suppress the edge effect; (c) The windowed optical profile obtained by 

multiplying a with b, the shadowed areas indicate that the edge effect has been effectively 

suppressed; (d) The Fourier transform of c, reflecting mainly the spatial frequencies in the center 

areas of the near-field images. 
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Supplementary Figure 4 | Thickness dispersions of MoS2 waveguide with different degrees 

of symmetry. (a) and (b) Thickness dispersions of the TE0 and TM0 mode with increasing 

superstrate dielectric constant, respectively; (c) and (d) Thickness dispersions of the TE0 and TM0 

mode with decreasing substrate dielectric constant, respectively. The cut-off thickness decreases 

with the increasing degree of symmetry. 
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Supplementary Figure 5 | Electric field profiles of the fundamental and the first order TE 

waveguide modes. The high order modes possess smaller in-plane wavevectors compared with 

the fundamental modes, thus their evanescent fields extend much further out of the sample surface, 

leading to high excitation efficiencies of these high order waveguide modes and the enhanced 

interference visibilities in the s-SNOM images. 
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Supplementary Figure 6 | Experimental verification of enhanced interference visibility of 

TE1 mode. We used a 250-nm-thick MoS2 sample supporting the first order TE mode to verify 

our explanation of the varying interference visibilities in Supplementary Fig 5 and main text. (a) 

AFM image and height profile for a 250-nm-thick MoS2 sample; (b) Near-field image and optical 

profile of the 250-nm-thick MoS2 sample; (c) Spatial frequency domain spectrum of the optical 

profile in b. Note that the frequency difference between TE1 and TM0 is expected to be 0.177k0, 

too small to be resolved in c. 
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Supplementary Figure 7 | Thickness dispersions of air-MoS2-SiO2 waveguide. The MoS2 

thickness range from 0 to 1000 nm. There are five TE modes (m=0~4) and five TM modes (n=0~4) 

for a waveguide of a 1000-nm-thick MoS2 guide layer. 
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Supplementary Figure 8 | AFM images and height profiles for h-BN samples of different 

thicknesses. (a) d=75 nm; (b) d=230 nm. 
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Supplementary Figure 9 | Large-area near-field images and real-space fringe profiles of h-

BN samples. (a) d=75 nm; (b) d=230 nm. 
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