Supplementary Note 1: Polarization States of Waves in Anisotropic Media

The wave equation in a homogeneous non-magnetic anisotropic medium is'

V’E+k; |€|[E=V(V-E), (1)
where ”8” is the relative dielectric tensor. In the coordinate system aligned to the optic axis of a

uniaxial anisotropic crystal,
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where ¢, is the relative dielectric constant perpendicular to the optic axis, and ¢, is the relative

dielectric constant parallel to the optic axis.
Supplementary Equation (1) actually contains three equations, one for each dimension.

Explicitly, these equations can be expressed in the matrix form as

Ke+kZ-gk? kK, —kk, E,
Kk, KZkZ-gk? kK, E, |=0 3)
kK, kK, K2 +k2-k? | E,

where k:(k K k) is the wavevector and E=(EX,Ey,EZ) is the electric field. For a
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homogeneous wave in the Y direction, we have ky =0, then Supplementary Equation (3) can be

reduced to
kf - glkj 0 —k kK, E,
0 kZ+k?—g kZ 0 E, |=0. (4)
kK, 0 kf - g”k02 E,

For Supplementary Equation (4) to have a non-trivial solution (i.e. non-zero electric field), the

determinant of the matrix must be zero:
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Solving Supplementary Equation (5) we get two sets of solutions:
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corresponding to the transverse electric (TE) polarized ordinary wave, and
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corresponding to the transverse magnetic (TM) polarized extraordinary wave.

Supplementary Note 2: Eigenequations for Anisotropic Planar Waveguide

A three layer planar waveguide composed of an isotropic semi-infinite superstrate (&), an

anisotropic guiding layer (”8”) with the thickness d, and an isotropic semi-infinite substrate (&, )

is shown in Supplementary Fig. 1. The optic axis of the guiding layer is parallel to the Z axis.
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Supplementary Figure 1 | Schematic of a three-layer planar waveguide. The superstrate and
substrate are both semi-infinite and optically isotropic. The optic axis of the anisotropic guiding

layer is perpendicular to the basal plane.



For a waveguide mode (ordinary or extraordinary) propagating in the X direction in the three-

layer planar waveguide shown in Supplementary Fig. 1, the electric field can be expressed as

E,(r,t) = Ele e = (E],E], E},
_ o 1(fx-wt) _ 0 0 0 i(fx-mt)
E,(r,t) =, cos(a,z+¢p)e = (Eg By, By ) cOS(ay 2 + ) (8)
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where =K, is the propagation constant of the waveguide mode (not to be confused with the
angle in Figure 1 in the main text), a, =K, .

For the electric fields in the isotropic superstrate and substrate, Supplementary Equation (1) can

be reduced to
VE+kie ,E=0. (9)

Substituting E, and E, into Supplementary Equation (9), we get

af = f* —ki& (10)
a; = 7 —kje, .
Imposing Gauss’s law V-(glyzE):O on E, and E,, we get
_ (0 =0 iﬁ 0 \ n-Z ni(BX—at)
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Imposing the Gauss’s law V-(|l¢|E)=0 on E,, we get

&0, 8in(a 2+ @)
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E,(r,t) =E, cos(a,z+p)e = E, [cos(a,z+p)e .(12)

Using the Faraday’s law V xE =liayH , we can get magnetic fields from Supplementary Equation

(11) and (12)
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For a TE polarized ordinary waveguide mode, there are three field components (H,,E ,H,).
Imposing the interface conditions on H, and E, at the two interfaces (z=0, z=-d ), we get

o E =, singE,
; o _ 0
a,sin(-a,d +p)E, =-a,E,,

: (14)
E;, =cosgE,

cos(-a,d +)E,, =

which can be reformulated into
a,d =tan™ [%J+ tan™ (%} +mz (o, = Je k- p?). (15)
g g

Substituting &; @, and ¢, into Supplementary Equation (15) and let B, =/, we can get the

eigenvalue equation for TE polarized ordinary waveguide modes

2_k2 2_k2
Je ki - pd tan{%]+tanl(ﬂ°—°%]+ mr . (16)
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Similarly, for the TM polarized extraordinary waveguide mode (E,,H,, E,), we have

\/7/ ~p%d =tan™ VB -k, ke | (17)
\/7a,8||k2 ,Bgl \/74/8”k2 ﬂgz

where [, = . In Supplementary Equation (16) and (17) m and n are non-negative integers.



Supplementary Note 3: Mode Profiles Normalization and Coupling Factors Calculation

According to Poynting's theorem, the power density in the X direction carried by the ordinary

(TE) and extraordinary (TM) waveguide modes can be expressed as

1 B e,
P==E (2)H, (2) == E’(z)dz 18
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respectively. Thus, the ordinary and extraordinary mode profiles can be normalized as

E,(2)= (20)

and

E (=502 @1)
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respectively. Of course, Supplementary Equation (20) and (21) can be further normalized by

dividing the maximum of E, (z) and E,(z)— max { E,(2),E, (z)} :

If we take the interval 0 nm <z <100 nm to be the efficient coupling region of the waveguide
modes and the s-SNOM tip-induced hot spot, the coupling factors can be defined as
100 E d
CF, =—I° A (22)
I:jﬁﬂj)dz
and

100 —
j E, (2)dz
CF=2_"* "~

[TE (2)dz

(23)

for the ordinary and extraordinary modes, respectively.
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Supplementary Figure 2 | AFM images and height profiles for MoS: samples of different

thicknesses. (a) =81 nm; (b) =103 nm; (¢) d=170 nm; (d) d=198 nm.
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Supplementary Figure 3 | The schematic diagram of using a window function to suppress the
edge effect in Fourier transform. (a) Subtract the average value of the whole profile from the
original data to suppress the DC component in the momentum-space spectra, the shadowed areas
indicate where the edge effect exists, widths of the shadows are 3 um; (b) The Parzen window
function used to suppress the edge effect; (¢) The windowed optical profile obtained by
multiplying a with b, the shadowed areas indicate that the edge effect has been effectively
suppressed; (d) The Fourier transform of ¢, reflecting mainly the spatial frequencies in the center

areas of the near-field images.
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Supplementary Figure 4 | Thickness dispersions of MoS: waveguide with different degrees
of symmetry. (a) and (b) Thickness dispersions of the TEo and TMo mode with increasing
superstrate dielectric constant, respectively; (¢) and (d) Thickness dispersions of the TEo and TMg

mode with decreasing substrate dielectric constant, respectively. The cut-off thickness decreases
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Supplementary Figure 5 | Electric field profiles of the fundamental and the first order TE

waveguide modes. The high order modes possess smaller in-plane wavevectors compared with

the fundamental modes, thus their evanescent fields extend much further out of the sample surface,

leading to high excitation efficiencies of these high order waveguide modes and the enhanced

interference visibilities in the s-SNOM images.
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Supplementary Figure 6 | Experimental verification of enhanced interference visibility of
TE1 mode. We used a 250-nm-thick MoS; sample supporting the first order TE mode to verify
our explanation of the varying interference visibilities in Supplementary Fig 5 and main text. (a)
AFM image and height profile for a 250-nm-thick MoS; sample; (b) Near-field image and optical
profile of the 250-nm-thick MoS, sample; (¢) Spatial frequency domain spectrum of the optical

profile in b. Note that the frequency difference between TE; and TMy is expected to be 0.177ko,

too small to be resolved in ¢.
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Supplementary Figure 7 | Thickness dispersions of air-MoS:-SiO2 waveguide. The MoS>
thickness range from 0 to 1000 nm. There are five TE modes (m=0~4) and five TM modes (n=0~4)

for a waveguide of a 1000-nm-thick MoS; guide layer.
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Supplementary Figure 8 | AFM images and height profiles for h-BN samples of different

thicknesses. (a) =75 nm; (b) =230 nm.
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Supplementary Figure 9 | Large-area near-field images and real-space fringe profiles of h-

BN samples. (a) =75 nm; (b) =230 nm.
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