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Supporting Material

Application of Finite State Projection to Maximum Caliber

Since protein number theoretically has no upper limit, our self-promotion gene network
would be considered an open system, a problematic condition for analytically calculating
protein number distributions. However, Finite State Projection (FSP) circumvents this
problem by truncating the infinite phase space of protein number down to some relatively
high, finite maximum. The probabilities of any protein numbers higher than this maximum
are combined into one collective state, or ‘sink’, and the probability of being in this sink
provides a measurement of how much error has accumulated in the distribution due to the
truncation. As such, this rigorous technique can provide analytical probability distributions
within objective levels of error. For a full explanation of the technique, see the original
work of Munsky and Khammash [J. Chem. Phys. 124:044104 (2006)]. However, one slight
modification must be made for application to MaxCal. Within section II of Munsky et al,
the chemical master equation for every possible reaction in the finite reaction space can be
rewritten as

Ṗ (X; t) = A ·P (X; t) , (S1)

where X is a column vector representing the different states of the system (in our case, the
number of proteins present), P (X; t) is a column vector containing the probabilities of the
different states at time t, and A is the state reaction matrix where each element of the
matrix is a combination of the reaction propensities going from one state (corresponding to
the column) to another (corresponding to the row). In a reaction network designed for a
Gillespie simulation, these propensities would simply be the reaction rate multiplied by the
stoichiometry of the reactants. For our MaxCal system, these propensities would simply be
the probability of transitioning from one protein level to another (defined by equations 3
and 6 of the main text) and time would be renormalized into units of ∆t. From there, we
can calculate transition probabilities over multiple frames (m) to within an acceptable error
using the exponential matrix of A,

P (X;m∆t) = exp (Am)P (X; 0) . (S2)

To find the effective equilibrium distribution for the number of proteins in the system, we
can set the time as a number large enough to ensure the system is at relative equilibrium,
e.g. 100 times the average dwell time, and perform the same matrix exponentiation.

SI 1



Alternate model to test MaxCal inference

To further test the accuracy of MaxCal, the inference method described in the main text was
applied to an alternate model of self-promotion that has monomers binding to the promoter
site rather than dimers. The reaction scheme is represented as

α
g−→ α + A A

r−→ � (S3)

α + A
fp−→←−
bp

α∗ α∗
g∗−→ α∗ + A

where some generic protein A is created from its corresponding gene α at a rate of g, degrades
at a rate of r, and binds to the promoter site, α, with forward and backward rates of fp and
bp respectively. This sends α into or out of its activated state α∗, which creates protein A at
a much faster rate g∗. This again captures the essentials of a positive feedback mechanism,
but represents a different level of non-linearity and cooperativity in Hill-type models. This
circuit is motivated by the earlier work of Lipshtat, Loinger, Balaban, and Biham [Phys.
Rev. Lett. 96:188101 (2006)] demonstrating that bimodality in toggle switch circuits can
be obtained without cooperative binding. Similarly, we also notice the above model can
produce bimodality for this positive feedback circuit. Using reaction rates similar to those
utilized for the model in the main text, the inferred rates and distributions are displayed in
Table S1 and Figure S1 respectively. These results demonstrate that an acceptable level of
accuracy can be generated using MaxCal, regardless of the exact molecular underpinnings
of the circuit being considered.
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Figure S1: Predicted distributions for alternate model agree well with the “true”
distributions. (A) Protein number probability distributions from synthetic input trajec-
tories (blue) and predicted MaxCal trajectories (red). (B) Low state and (C) high state
residence time probability distributions for synthetic input trajectories (blue) and predicted
MaxCal trajectories (red). Underlying Gillespie reaction rates are the same as those used in
Table S1 and the extracted MaxCal parameters used are a representative example from the
ten sets extracted to make Table S1.
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True Values Predicted Values

g (s−1) 5.0× 10−3 6.2± 0.1× 10−3

g∗ (s−1) 50.0× 10−3 45.8± 1.4× 10−3

r (s−1) 1.0× 10−3 1.01± 0.03× 10−3

τL→H (s) 59.0× 103 85.2± 3.0× 103

τH→L (s) 78.7× 103 105.5± 5.5× 103

SI (bits) 8.86 9.23 ± 0.03

Sh (bits) 9.38 9.02 ± 0.02

Sl (bits) 6.25 7.66 ± 0.02

Scg (bits) 1.02 1.01 ± 0.01

Table S1: Comparison of true rates and predicted rates using MaxCal on alter-
nate self-promotion model. The first column reports “true” underlying protein syn-
thesis and degradation rates used to create synthetic input data (fp = 3.56 × 10−6 s−1,
bp = 1.65× 10−5 s−1), average residence times in the high and low states, and corresponding
path informational entropies. Synthetic input data was recorded at ∆t = 300s. The sec-
ond column reports the average and standard deviation of the same quantities of interest,
but extracted using the MaxCal model on ten sets of synthetic data, each consisting of 100
trajectories of 7 days.

High and low state assignment for Sh, Sl, Scg, and dwell times

To assign parts of a trajectory to the low and high state, the locations of the low and high
state peaks are used as thresholds (N = 5 and N = 50 in the case of the Gillespie distribution
(blue) of Figure 2A in the main text). Once the protein level is less (greater) than or equal
to the lower (upper) threshold, the system is considered to be in the low (high) state. It
then remains in that state until it reaches the opposite threshold. This is done to reduce the
amount of false positive state switches associated with a single high/low threshold (N = 25
in the case of the Gillespie distribution (blue) of Figure 2A in the main text).
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