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ABSTRACT Learning the underlying details of a gene network is a major challenge in cellular and synthetic biology. We
address this challenge by building a chemical kinetic model that utilizes information encoded in the stochastic protein expression
trajectories typically measured in experiments. The applicability of the proposed method is demonstrated in an auto-activating
genetic circuit, a common motif in natural and synthetic gene networks. Our approach is based on the principle of maximum
caliber (MaxCal)—a dynamical analog of the principle of maximum entropy—and builds a minimal model using only three con-
straints: 1) protein synthesis, 2) protein degradation, and 3) positive feedback. The MaxCal-generated model (described with
four parameters) was benchmarked against synthetic data generated using a Gillespie algorithm on a known reaction network
(with seven parameters). MaxCal accurately predicts underlying rate parameters of protein synthesis and degradation as well as
experimental observables such as protein number and dwell-time distributions. Furthermore, MaxCal yields an effective feed-
back parameter that can be useful for circuit design. We also extend our methodology and demonstrate how to analyze trajec-
tories that are not in protein numbers but in arbitrary fluorescence units, a more typical condition in experiments. This ‘‘top-down’’
methodology based on minimal information—in contrast to traditional ‘‘bottom-up’’ approaches that require ad hoc knowledge of
circuit details—provides a powerful tool to accurately infer underlying details of feedback circuits that are not otherwise visible in
experiments and to help guide circuit design.
INTRODUCTION
Biological function is largely dictated by gene networks that
control protein expression in single cells. Understanding
details of these networks and consequently building quanti-
tative models is essential to control gene expression and
ultimately regulate cellular dynamics. However, model
development has been limited due to the lack of information
about the complex web of interactions (including feedback
regulation) that defines these networks. Typical experi-
ments only provide partial information by measuring the
expression levels of one or two proteins of interest using
fluorescent tags, much less than the actual number of en-
tities (mRNAs, promoters, nucleotides, and amino acids)
involved in the process of gene expression. This problem
of partial information is a key challenge for model building.
Although the number of species monitored is limited, exper-
imental read-outs contain crucial information, as they record
the entire time trajectory of fluctuating protein expression
levels. The stochastic nature of the trajectories is due to
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small copy numbers of molecules involved in these reac-
tions (1–9). The details of noise statistics encode the details
of network architecture. This provides a potentially useful
avenue for inferring details of network architecture by
analyzing noisy protein expression levels (10–15). Despite
realizing the power of this approach (10,12,14,15), such ef-
forts are still in their infancy. Existing models are either too
simple, with limited single-cell-level predictive power, or
too detailed, requiring too many unknown parameters
(16). The most common stochastic approaches first define
sets of reaction networks to be simulated using a Gillespie
algorithm (17) or related methods and then fit different ob-
servables to determine the corresponding reaction rate pa-
rameters. A major drawback of these methods is that they
are ‘‘bottom-up’’ and require detailed knowledge of the un-
derlying reaction network. This is particularly challenging
when networks involve feedback, a common feature in
many natural networks and synthetic biology. It is currently
impossible to test many of these ad hoc assumptions inde-
pendently. Furthermore, these approaches can involve too
many parameters that can fit the same data with multiple
models, creating additional challenges for efficient param-
eter estimation (11). The challenge of having too many
Biophysical Journal 113, 2121–2130, November 7, 2017 2121

mailto:kingshuk.ghosh@du.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2017.08.057&domain=pdf
https://doi.org/10.1016/j.bpj.2017.08.057


A

Firman et al.
parameters is also problematic for circuit design (18–30), as
it requires ways to efficiently explore parameter space to test
different models, thus demanding models with the least
possible number of parameters.

To circumvent these obstacles, we propose a ‘‘top-down’’
approach for modeling these networks. We use the principle
of maximum caliber (MaxCal) to model stochastic trajec-
tories with minimal information. We show the application
of MaxCal on a simple auto-activating circuit, a common
motif in many biological circuits (31). MaxCal maximizes
path entropy subject to constraints, similar to maximum
entropy on state space, and directly works with path trajec-
tories. This makes MaxCal directly applicable to experi-
mentally measured time trajectories of protein numbers.
We establish the methodology on synthetic data generated
using Gillespie simulations (17) of a known auto-activating
circuit. These trajectory data serve as the input data—a
proxy for experimental data—for MaxCal. The minimal
model of MaxCal is then applied to the raw trajectory statis-
tics in conjunction with maximum likelihood (ML) to
determine representative parameters for the model. These
parameters can predict other statistics of the data and quan-
titatively infer several underlying physical variables that are
not visible otherwise. In the next section, we first describe
the synthetic circuit and generation of in silico data that
mimic experimental data. Next, we introduce MaxCal and
its specific application to the circuit. We show how MaxCal,
along with ML, can be used to infer model parameters and
make predictions. Comparing these predictions against the
known model allows us to benchmark the predictive capa-
bilities of MaxCal. Finally, we discuss how the methodology
can be applied when the input data are not in protein number
but in arbitrary fluorescence, a common challenge in inter-
preting experimental data.
B

FIGURE 1 Positive feedback circuit. (A) Typical time trace of the

number of proteins in a self-promotion circuit using the reaction scheme

in Eq. 1 (g ¼ 5:0� 10�3 s�1, g� ¼ 50:0� 10�3 s�1, r ¼ 1:0� 10�3 s�1,

fd ¼ 5:0� 10�3 s�1, bd ¼ 50 s�1, fp ¼ 6:0� 10�3 s�1, bp ¼ 3:0�
10�5 s�1, assuming the intrinsic time unit is seconds). Data are recorded

every 300 s. (B) Typical time trace of the number of proteins in the minimal

model of self-promotion using MaxCal (ha ¼ �0:512, hA ¼ 0:585,

KA ¼ 0:0298, M ¼ 15, Dt ¼ 300 s).
MATERIALS AND METHODS

Generating synthetic data for an auto-activating
circuit

Considering the complexity of natural networks with many unknown or

incompletely understood interactions, synthetic biologists are building

mimics of frequently occurring parts of bigger networks, called network

motifs (32–34). One natural network motif with important biological func-

tion that has inspired the design of many synthetic gene circuits is feedback

regulation. Our previous work (35) has demonstrated the application of

MaxCal on double-negative (overall positive) feedback circuits, where

two genes mutually repress each other, commonly referred to as a toggle-

switch circuit (36,37). Here, we consider a positive feedback circuit where

a single gene auto-activates itself. As a proof of concept, we apply MaxCal

to synthetic data generated in silico using a model for which the underlying

parameters are known. This will serve as a proxy for experimental data and

provide us with a gold standard to which we can compare when demon-

strating how well MaxCal performs given stochastic trajectories. Among

several models of auto-activation in different biological contexts (38–45),

we adopt the one below (Eq. 1), studied by Kepler and Elston (46), to

generate stochastic synthetic data that will serve to mimic experimental

time traces:
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a/
g

aþ A ; A/
r

/ ; Aþ A%
fd

bd
A2 (1)

fp � � g� �
aþ A2%
bp

a ; a/ a þ A:

In this scheme, some generic protein, A, is created from its corresponding

gene, a, at a rate g, degrades at a rate r, and dimerizes into A2 with forward
and backward rates fd and bd, respectively.A2 can then bind and unbind to the

promoter site of a at rates fp and bp, respectively, sending a into or out of its

activated state,a�. In this activated state,a� creates proteinA at amuch faster

rate, g�, capturing the essentials of a positive-feedbackmechanism.Rates are

chosen to produce switching times that are representative of experiments

(31) while maintaining protein synthesis and degradation rates in the realm

of typical rates (47). AGillespie algorithm (17)was used to generate stochas-

tic trajectories of protein (A) levels as shown in Fig. 1A. Threemajor features

are worth noting: 1) two clearly separated high and low states, 2) a large

amount of fluctuation within each state, and 3) stochastic switching between

the two states. In the next section, we first attempt to reproduce these three

basic features in MaxCal using as simple a framework as possible.
MaxCal model for auto-activating circuit

Maximum caliber is a variational principle that gives a prescription for

inferring dynamics by maximizing the path entropy (35,48–58), or caliber,

subject to known constraints enforced via Lagrange multipliers. For the

gene circuit of interest, there are three minimal constraints that must be in
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place: 1) protein synthesis, 2) protein degradation, and 3) auto-activation/

positive feedback.We enforce the first two by restricting the average number

of proteins that are created in a discrete time interval ðDtÞ as well as the
average number of proteins that are destroyed (35,55). To do this, we define

‘a as the production-state variable, which describes the number of proteins

that are created in the time interval and ranges as integer values between

zero and some predefinedmaximal value (M), i.e., 0%‘a%M.We also define

‘A as the degradation-state variable, which describes the number of previ-

ously existing proteins that still exist at the end of the time interval. Clearly,

‘A ranges as integer values between zero and the number of proteins present

at the beginning of the time interval ðNAÞ, i.e., 0%‘A%NA. The correspond-

ing Lagrange multipliers for these two constraints are ha and hA, and the

probability of observing a particular combination of ‘a and ‘A is defined as

P‘a ;‘A . Next, we implement the constraint of positive feedback, the idea

that a high number of proteins ðNAÞ should positively correlate with the pro-
duction ofA. This is done by introducing a third Lagrangemultiplier,KA, that

enforces a coupling between protein production and the presence of proteins

by constraining the average of ‘a‘A. This is the lowest-order term in the

coupling of these two variables that must be imposed to capture the essence

of feedback. Similar arguments were used to build models to describe nega-

tive feedback in toggle-switch circuitry (35). The four basic ingredients of

the model, described above, yield the caliber as

C ¼ �
XM
‘a ¼ 0

XNA

‘A ¼ 0

P‘a;‘AlogP‘a;‘A þ ha
XM
‘a ¼ 0

XNA

‘A ¼ 0

‘aP‘a;‘A

þ hA
XM
‘a ¼ 0

XNA

‘A ¼ 0

‘AP‘a;‘A þ KA

XM
‘a ¼ 0

XNA

‘A ¼ 0

‘a‘AP‘a ;‘A; (2)

and the corresponding caliber-maximized path probabilities are

P‘a ;‘A ¼ Q�1

�
NA

‘A

�
expðha‘a þ hA‘A þ KA‘a‘AÞ ;

Q ¼
XM
‘a ¼ 0

XNA

‘A ¼ 0

�
NA

‘A

�
expðha‘a þ hA‘A þ KA‘a‘AÞ:

(3)

Using this path probability distribution, stochastic trajectories are gener-

ated using a Monte Carlo method to select a path for each time point.

The system then creates and destroys the number of proteins correspond-

ing to the ‘a and ‘A of the selected path and the time of the system ad-

vances by the predetermined Dt. A quick search of the parameter phase

space (ha, hA, KA, M) reveals that even with just these four parameters,

bimodal behaviors like the ones seen in the self-promotion circuit of the

previous section (characterized with seven parameters in Fig. 1 A) can

be reproduced (see Fig. 1 B). For efficient computation, protein number

probability distributions are generated using the method of finite-state pro-

jection (FSP) of Munsky and Khammash (59). This method is needed to

provide a systematic way to truncate the infinite phase space of possible

states, since protein number does not have an upper bound. FSP provides

a rigorous self-consistent approach to ensure that the truncation error is

within a pre-determined error bound (see Supporting Material for exact

application).

Furthermore, the state variables ‘a and ‘A directly relate to effective pro-

tein synthesis and degradation rates analogous to g, g�, and r in the auto-

activation circuit (Eq. 1). Specifically,

g ¼h‘aiNA ¼NL

Dt
; g� ¼ h‘aiNA ¼NH

Dt
;

rðNÞ ¼ N � h‘AiNA ¼N

NDt
; r ¼

X
N

PðNÞrðNÞ;
(4)
where NL and NH are the peak values of the number of proteins in the low

and high states, respectively, and PðNÞ is the probability of having N pro-

teins within the system (calculated via FSP).

An additional metric that could be of interest in genetic circuit design is

the effective feedback metric, F. We define F as the average Pearson corre-

lation coefficient between ‘a and ‘A:

F ¼
X
N

PðNÞ h‘a‘Ai � h‘aih‘Ai
s‘as‘A

; (5)

where s‘a and s‘A represent the standard deviations of ‘a and ‘A, respec-

tively. The averages (in the numerator) and standard deviations (in the de-

nominator) are first evaluated for a given N and then the ratio is further

averaged over the protein number distribution, PðNÞ, to yield effective feed-
back, F. This parameter is designed to be restricted between �1 and 1 as a

way to quantify the relative feedback within the system and will help to

objectively compare two independent gene circuits. Although in the appli-

cation presented here we expect 0<F< 1, we anticipate 0>F> � 1 while

describing negative-feedback circuits.
Parameter estimation via maximum likelihood

The exercise above ensures that the minimal model of MaxCal with only

four parameters is capable of producing the general features of a bimodal

system. Next, we proceed to benchmark the performance of the model

quantitatively when given a particular stochastic trajectory to characterize.

This will allow us to learn about quantitative details of the underlying

network by decoding information hidden in the noisy raw trajectory. For

example, we may be interested in inferring the effective synthesis/degrada-

tion rates or the degree of feedback (F), quantities that are not directly

available from the raw experimental trajectory. Below, we provide the

framework to quantitatively infer these specific characteristics of a network

from the stochastic trajectory.

Consider an experimentally observed trajectory of sufficiently long

time, T, expressed in the units of the typical timescale ðDtÞ used for sam-

pling the data. In this intrinsic time unit ðDtÞ, we have T þ 1 frames at

which the protein number has been recorded. Now consider a particular

transition between two subsequent frames, say t and t þ 1, in which the pro-

tein number changed from i to j. We denote the probability of this one-step

(single-frame) transition as Pðj; t þ 1; i; tÞ, which is abbreviated as Pi/j .

These one-step transition probabilities can be determined from MaxCal as

Pi/j ¼
XM
‘a ¼ 0

Xi

‘A ¼ 0

dð‘a þ ‘A � jÞP‘a;‘A; (6)

where d is the Dirac delta function, and P‘a ;‘A are functions of the Lagrange

multipliers, described by Eq. 3. The likelihood ðLÞ of observing the exper-

imental trajectory given a specific set of MaxCal parameters (ha, hA, KA,

and M) can then be calculated as

L ¼
YT�1

t¼ 0

PðNtþ1; t þ 1;Nt; tÞ ¼
Y
fi/jg

P
ui/j

i/j ; (7)

where Nt is the number of proteins present in frame t, ui/j is the total num-

ber of i/j one-step transitions, and the second product is over all possible

transitions between different values of i and j. As outlined above (Eq. 6),

Pi/j values are determined using MaxCal, hence the likelihood is a func-

tion of ha, hA, KA, andM. Thus, we can maximize the likelihood of the tra-

jectory to select ha, hA, KA, and M.

Experiments (and our Gillespie simulations) have no upper limit on pro-

duction analogous to M in MaxCal. Rare fluctuations leading to unusually

large jumps in protein number (>M) in one time step will severely penalize
Biophysical Journal 113, 2121–2130, November 7, 2017 2123
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the likelihood of parameter values that are otherwise most likely. This

discontinuous jump in likelihood will erroneously eliminate the most likely

set of parameters. We avoid this problem by calculating transition probabil-

ities over multiple intervals (m frames) for a given set of MaxCal parame-

ters. We denote the probability of a multi-step (multiple-frame) transition as

Pðj; t þ m; i; tÞ, abbreviated as Pði/jÞ;m. This slightly modifies our likeli-

hood function, L, as

L ¼
YN
n¼ 1

PðNtþm; t þ m;Nt; t ¼ mðn� 1ÞÞ

¼
Y
fi/jg

P
uði/jÞ;m
ði/jÞ;m; (8)

where N is T=m rounded down to the nearest integer and uði/jÞ;m is the to-

tal number of i/j transitions over m frames. An objective choice of m can

be provided by using the average residence times (in frames) in the high and

low states . However, our result is not sensitive to the choice of m and is

robust for a range of values around the typical value.
Dealing with experimental data

Although the procedure above is applicable to synthetic data in terms of

protein number, typical experimental read-outs are in arbitrary fluorescence

units. Furthermore, the amount of fluorescence measured per protein is

noisy and requires one to de-convolute fluorescence fluctuations from pro-

tein number fluctuations. To mimic typical experimental readouts with

these challenges, we use the same synthetic data from the auto-activating

circuit, but ‘‘corrupt’’ it to create a fluorescence trajectory in silico that is

likely to be observed in an experiment. We assume the probability distribu-

tion of fluorescence intensity (I) measured per protein to be a Gaussian dis-

tribution (60–62) centered at a with a standard deviation of b, i.e., hIi ¼ a
and hI2i � hIi2 ¼ b2. With this assumption, the fluorescence measured

from N proteins would follow a probability distribution that is a convolution

of N protein fluorescence distributions leading to a Gaussian distribution

with mean Na and variance Nb2. To ‘‘corrupt’’ simulated trajectories of pro-

tein numbers, we select a fluorescence for each time point from this distri-

bution where the mean and variance depend on the protein number, N.

Although the procedure described here assumes that the fluorescence per

protein follows a Gaussian distribution, we used a similar approach for G

distributions (63,64) as well.

With this ‘‘synthetic fluorescence trajectory’’ closely mimicking realistic

experimental situations, we propose two strategies to infer the underlying

model. In the first strategy, we assume the average fluorescence intensity

per protein ðhIi ¼ aÞ is known, possibly obtained by carrying out low-inten-
sity photobleaching (65–77). We use a as a conversion factor to determine

protein number (N) from the fluorescence intensity, f, as

N ¼ Intð f =aÞ; (9)

where the Int function yields the nearest integer with negative protein

numbers being rounded to zero. Parameter estimation then proceeds in

the same fashion as before when analyzing trajectories in terms of protein

number over time. In this strategy, parameter estimation takes place in two

steps serially: first, fluorescence to number conversion (using Eq. 9), and

then MaxCal with ML (as described earlier). We call this method serial

fluorescence-to-number conversion, or simply SFNC.

We propose a second strategy in which the fluorescence fluctuation is

included when calculating the likelihood of a set of MaxCal parameters.

In this second approach (termed parallel FNC, or PFNC), we assume that

the variance—in addition to the average—in intensity fluctuation per pro-

tein is also known, i.e., both a and b are given. This can be obtained using

the same photobleaching experiment mentioned above to measure the prob-

ability distribution of fluorescence per protein (65–77). With this informa-
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tion, we can incorporate the fluorescence distribution in the likelihood

function (Eq. 8), modifying it to

L ¼
YN
n¼ 1

 X
Nt

X
Ntþm

FðNt j ftÞPðNtþm; t þ m;Nt; t

¼ mðn� 1ÞÞFðNtþm j ftþmÞ
!

(10)

where ft is the fluorescence at frame t, and FðNt j ftÞ is the conditional prob-
ability that Nt proteins are present given a fluorescence measurement of ft .
These probabilities are known and used as previously with the knowledge

of the known variance and mean. The probability PðNtþm; t þ m;Nt ; tÞ is

determined as above using MaxCal and is a function of the Lagrange mul-

tipliers and M. The new likelihood function (Eq. 10) is then maximized to

determine ha, hA, KA, and M.
RESULTS AND DISCUSSION

MaxCal accurately infers underlying rate
parameters

Using the procedures described above, we determine ha,
hA;KA, and M for a given stochastic trajectory in terms of
either protein number or fluorescence readout. These fully
specify the minimal MaxCal model and are capable of mak-
ing multiple predictions, such as of the underlying rate pa-
rameters. Effective values for the underlying production
and degradation rates can be predicted using the average
value of the production- and degradation-state variables,
respectively (see Eq. 4). To see how well these inferred rates
compare to the true values, we applied our inference method
to input trajectories that are �2000 frames long with an
intrinsic sampling rate of 5 min ðDt ¼ 300 sÞ, equivalent
to trajectories of 7 days. Furthermore, we used 100 such
trajectories, equivalent to tracking protein numbers in 100
cells. These numbers were chosen to closely match typical
experimental conditions (31). To quantify the variance of
the effective rate estimates, we apply our method to 10
different sets of these simulations and present the average
and standard deviation of the 10 sets of predicted rates. Us-
ing simulations from the reaction rates listed in Table 1, the
predicted values compare well against the ‘‘true’’ values
used to generate the synthetic data (see Table 1). The robust-
ness of the prediction was further tested by creating syn-
thetic data using different values of g, g�, and r, and
similar accuracies were produced. In addition, the inference
scheme was applied to an alternate model of positive feed-
back—different from Eq. 1—to generate the synthetic
data, and again, the inferred rates matched well with input
values (see Supporting Material for details). However, it is
important to realize that Eq. 4 is only an approximation to
infer the intrinsic production and degradation rates. Thus,
it is possible to have deviations between the inferred and
true rates—higher than the ones reported in Table 1—
whereas MaxCal captures the temporal statistics well



TABLE 1 Comparison of True Rates and Predicted Rates

Using MaxCal

True Values Predicted Values

g ðs�1Þ 5:0� 10�3 5:850:3� 10�3

g� ðs�1Þ 50:0� 10�3 43:052:2� 10�3

r ðs�1Þ 1:0� 10�3 0:9550:05� 10�3

tL/H (s) 71:5� 103 99:0511:5� 103

tH/L (s) 86:0� 103 117:6512:9� 103

SI (bits) 8.84 9.24 5 0.03

Sh (bits) 9.42 9.07 5 0.02

Sl (bits) 6.20 7.66 5 0.04

Scg (bits) 1.03 1.02 5 0.01

The first column reports the ‘‘true’’ underlying protein synthesis and degra-

dation rates used to create synthetic input data (fd ¼ 5:0� 10�3 s�1,

bd ¼ 50 s�1, fp ¼ 6:0� 10�3 s�1, bp ¼ 3:0� 10�5 s�1), average residence

times in the high and low states, and corresponding path informational en-

tropies. Synthetic input data were recorded at Dt ¼ 300s. The second col-

umn reports the average and standard deviation of the same quantities of

interest, but extracted using the MaxCal model on 10 sets of synthetic

data, each consisting of 100 trajectories of 7 days.

Genetic Circuits
(e.g., fluctuations in the high/low states and transitions be-
tween states).
Distributions predicted from MaxCal agree well
with data

For a more detailed demonstration of how well MaxCal de-
scribes data, we further compared MaxCal-predicted distri-
butions to that of the input data (generated from the reaction
network in Eq. 1). Fig. 2 A shows that the protein number
distribution predicted from MaxCal agrees well with the
input data in that the locations and widths of the two peaks
are comparable between the two approaches. Next, we
compare the distribution of dwell times predicted by
MaxCal to that obtained from the synthetic data. The agree-
ment for the shape of the distribution and the average dwell
times in the low and high states (see Fig. 2, B and C; Table 1)
are reasonable.

The comparisons between ‘‘true’’ and predicted values for
multiple observables show that the minimal model of
A B

FIGURE 2 Predicted distributions agree well with the ‘‘true’’ distributions. (A

(blue) and predicted MaxCal trajectories (red). (B) Low-state and (C) high-state r

and predicted MaxCal trajectories (red). The underlying Gillespie reaction rates

used are a representative example from the 10 sets extracted to make Table 1. T
MaxCal with only four parameters can make reasonable pre-
dictions for data generated with more complex models (with
seven parameters). To further quantify the quality of the
parameter extraction and performance of our minimal
model against those of the actual model with more parame-
ters, we compare the informational content in the ‘‘syn-
thetic’’ Gillespie trajectories and trajectories generated by
MaxCal using these parameters. We compute path informa-
tional entropy as (78)

SI ¼ �
X
i;j

PiPi/jlog2
�
PiPi/j

�
; (11)

where Pi is the probability of having i proteins in the system
and Pi/j is the probability of transitioning from i proteins
to j proteins after a single frame. If our MaxCal model is
too simple and cannot adequately capture the dynamics of
the Gillespie trajectories used, its SI will be notably different
from that of the Gillespie model. We find that the MaxCal
model selected by ML has only a 4.5% difference in path
informational entropy compared to the ‘‘synthetic’’ input
data from Gillespie simulations (see Table 1). This provides
quantitative verification that the minimal constraints used in
Eq. 2 are sufficient to describe the auto-activating circuit
modeled here. The overall path entropy has contributions
from three types of fluctuations: 1) within the high state, 2)
within the low state, and 3) transitions between the high and
low states. To further explore how MaxCal-generated path
entropy captures details of these fluctuations, we compute
three additional path entropies: Sh, Sl, and Scg. Sh and Sl
are computed in the same fashion as SI , but only consider
parts of the trajectory in the high state and low state
respectively (see Supporting Material for high/low state
assignment). To measure Scg, the trajectory is first coarse-
grained into a binary trajectory between the low state
ðNcg ¼ 0Þ and the high state ðNcg ¼ 1Þ. Scg is then calcu-
lated in the same manner as Eq. 11. We find that MaxCal
generated estimates of Sh and Scg are in excellent agreement
C

) Protein-number probability distributions from synthetic input trajectories

esidence time probability distributions for synthetic input trajectories (blue)

are the same as those used in Table 1 and the extracted MaxCal parameters

o see this figure in color, go online.
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with the input data, whereas Sl differs by �24% from the
input (see Table 1). The analysis above provides a quantita-
tive measure of performance for MaxCal with a given set
of constraints. These measures can be further used to
determine the need for incorporating higher-order combina-
tions of the state variables to the caliber function (Eq. 2;
e.g., h‘a‘2Ai, h‘2a‘Ai, etc.) to develop models of higher
complexity (51).
MaxCal provides an effective feedback parameter
for the circuit

We also extract the effective feedback parameter, F, using
Eq. 5. As a demonstration of its usefulness, if we compared
the MaxCal parameters extracted from experimental traces
with varying concentrations of inducer (31), the effective
production and degradation rates might be similar, but F
would be expected to vary with different amounts of
inducer, representing the degree of coupling between the
production of A and the concentration of A. To mimic the ef-
fect of varying inducer concentrations, we generated syn-
thetic data with higher or lower promoter binding rates, fp,
to effectively increase or decrease the amount of self promo-
tion in the system. Next, we applied our MaxCal framework
to these trajectories with different levels of self-promotion.
Fig. 3, A–C, shows that MaxCal reproduces comparable pro-
tein number distributions regardless of the degree of self-
promotion. Table 2 further demonstrates that although
MaxCal infers very similar production and degradation rates
between the three levels of self-promotion, the effective
feedback, F, changes accordingly.

Estimating the effective feedback parameter can be
important, as it determines the onset of bimodality from un-
imodality as well as the relative population in the high and
low states. Bimodal protein distributions and stochastic
switching between the two states often dictate phenotypic
variability, a characteristic of bet-hedging strategies used
by microbes to evade stress such as antibiotic (31,79,80).
Consequently, different strains that have evolved under
A B

FIGURE 3 MaxCal can capture distributions under varying degrees of feedbac

(blue) and predicted MaxCal trajectories (red) for different levels of self-prom

fP ¼ 12� 10�3 s�1. The underlying Gillespie reaction rates are the same as tho

sentative example from the 10 sets extracted to make Table 2. To see this figur
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different selection pressures may differentially tune their
level of feedback (81). Similarly, it may be interesting to
see whether strains using ‘‘resistance’’ or ‘‘tolerance’’ mech-
anisms to evade antibiotics (82) evolve their feedback pa-
rameters differently. Applying MaxCal on experimental
trajectories of different strains evolved under different con-
ditions to infer these feedback parameters can give us
further insights into evolvability and selection. Similarly,
this metric can be useful when describing circuits with nega-
tive feedback as well.

The ability to extract an effective feedback parameter is a
special feature of MaxCal that provides a coarse-grained
description of feedback. This is in contrast to traditional
parameterization schemes that invoke auxiliary species
and multiple reactions involving many parameters to
describe feedback. As a result, MaxCal can provide a model
with fewer parameters compared to traditional bottom-up
approaches. This is true even when describing circuits
with multiple species beyond the single-gene expression
circuit used in this study (35,55). The success of MaxCal
presented here motivates the need for future studies on syn-
thetic data generated using more intermediate steps, such as
RNA synthesis before protein synthesis. Further research
must also be performed on circuits involving more species
that mutually regulate each other, possibly leading to oscil-
latory behaviors as in the repressilator circuit of Elowitz and
Liebler (83). It is also important to note that MaxCal is
exactly equivalent to the master equation when describing
systems without feedback, e.g., biochemical cycles where
states interconvert among themselves (52,55,84).
MaxCal can be applied when dealing with noisy
fluorescence trajectories

The results above illustrate the applicability of MaxCal
when experimental trajectories are expressed in protein-
number fluctuations. We now proceed to demonstrate
the applicability of MaxCal when data are reported in
noisy fluorescence trajectories instead of protein-number
C

k. Protein-number probability distributions from synthetic input trajectories

otion, specifically (A) fP ¼ 2� 10�3 s�1, (B) fP ¼ 6� 10�3 s�1, and (C)

se used in Table 2 and the extracted MaxCal parameters used are a repre-

e in color, go online.



TABLE 2 Comparison of Feedback Parameter Using Different Promoter Binding Rates

fp Extracted g Extracted g� Extracted r F

2:0� 10�3 s�1 4:350:3� 10�3 s�1 34:952:5� 10�3 s�1 0:8150:06� 10�3 s�1 0:08050:006

6:0� 10�3 s�1 5:850:3� 10�3 s�1 43:052:2� 10�3 s�1 0:9550:05� 10�3 s�1 0:13250:005

12:0� 10�3 s�1 5:750:4� 10�3 s�1 38:852:9� 10�3 s�1 0:8050:06� 10�3 s�1 0:14550:006

Each row reports the average and SD of the extracted production and degradation rates as well as the effective feedback, F, for different values of fp. Similar to

Fig. 2, for all three cases, g ¼ 5:0� 10�3 s�1, g� ¼ 50:0� 10�3 s�1, r ¼ 1:0� 10�3 s�1, fd ¼ 5:0� 10�3 s�1, bd ¼ 50 s�1, bp ¼ 3:0� 10�5 s�1, and 10

sets of synthetic data, each equivalent to 100 trajectories of 7 days, were used to extract predicted values and standard deviations.
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trajectories. We use both methodologies, SFNC and PFNC,
as described earlier, to infer the underlying model from the
noisy data. Fig. 4 and Table 3 show the performance of these
strategies tested against ‘‘corrupted’’ synthetic data. SFNC,
based on only the knowledge of average intensity per pro-
tein, performs well when the fluctuation in fluorescence
per protein is sufficiently small compared to the average
fluorescence (see Table 3). However, SFNC starts to deviate
significantly from the ‘‘true’’ values when noise increases,
e.g., noise is >100% of the average fluorescence. In fact,
at these levels of noise, it becomes increasingly difficult to
determine the unique ML function, and the corresponding
values of rate parameters start to deviate largely from the
true values. Considering this deficiency, SFNC should not
be used for noise levels >100%. PFNC, on the other hand,
does not suffer from any such issues. PFNC infers rates
with reasonable accuracy even when noise is as high as
200% (see Table 3, bottom rows). The success of PFNC is
further demonstrated by comparing ‘‘true’’ and predicted
distributions of protein numbers and dwell times (see
Fig. 4) at this level of noise. PFNC performs better than
SFNC due to the incorporation of fluorescence fluctuation
within its ML procedure. Although the above results were
extracted from data using a Gaussian fluorescence distribu-
tion, we carried out similar exercises using a G distribution
for the fluorescence per protein (63,64), with similarly
accurate results. This highlights the need for carrying out
controlled photobleaching experiments to learn about the
average as well as the noise in the fluorescence per protein
A B

FIGURE 4 Predicted distributions from fluorescence trajectories with 200% n

synthetic input trajectories (blue) and MaxCal trajectories using PFNC inference

(B) low-state and (C) high-state residence time probability distributions. The und

extracted MaxCal parameters are a representative example from the 10 sets extr
to faithfully infer underlying dynamics. In summary, the ex-
ercise above demonstrates broad applicability of MaxCal,
even when experimental data are not in protein number
but in fluorescence with high fluctuation.
CONCLUSIONS

We use the principle of maximum caliber (MaxCal)—akin
to the principle of maximum entropy applied to describe
path probabilities—to model protein-number fluctuations
as observed in genetic circuits. We demonstrate the applica-
tion of MaxCal in a positive feedback circuit, a common
motif in many naturally occurring and synthetic circuits.
Specifically, we consider a single-gene auto-activating cir-
cuit where a minimal model based on MaxCal was devel-
oped with three physical constraints: protein synthesis,
protein degradation, and positive feedback. Through this
analysis, we make four key conclusions. First, the minimal
model is capable of producing the switch-like behavior of
the circuit. Second, the model shows its usefulness to quan-
titatively infer underlying parameters. To mimic raw data
from experiment, synthetic data were generated using a Gil-
lespie algorithm with a known reaction network model to
produce trajectories of fluctuating protein numbers. MaxCal
correctly infers underlying rates when compared to the
‘‘known’’ values. Furthermore, MaxCal-predicted distribu-
tions agree well with the ones derived from the input data.
Third, MaxCal provides an effective feedback parameter
to characterize these circuits that can be useful for circuit
C

oise using PFNC. (A) Protein-number probability distributions from ‘‘true’’

strategy (red). Comparisons between ‘‘true’’ and PFNC are also shown for

erlying Gillespie reaction rates are the same as those used in Table 3 and the

acted to make the last row of Table 3. To see this figure in color, go online.
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TABLE 3 Effective Rates from Fluorescence Trajectories

Noise g ðs�1Þ g� ðs�1Þ r ðs�1Þ Method

True 5:0� 10�3 50:0� 10�3 1:0� 10�3

0% 5:850:3� 10�3 43:052:2� 10�3 0:9550:05� 10�3 MaxCal

50% 6:150:3� 10�3 46:252:6� 10�3 1:0350:06� 10�3 SFNC

50% 5:350:3� 10�3 41:552:1� 10�3 0:9350:05� 10�3 PFNC

100% 6:850:4� 10�3 50:552:7� 10�3 1:0850:05� 10�3 SFNC

100% 5:750:3� 10�3 48:052:5� 10�3 1:0950:06� 10�3 PFNC

150% 6:150:3� 10�3 55:253:5� 10�3 1:2650:08� 10�3 PFNC

200% 6:650:3� 10�3 63:353:9� 10�3 1:4750:08� 10�3 PFNC

The first row reports the ‘‘true’’ underlying protein synthesis and degradation rates used to create synthetic input data (same rates and conditions as in Table 1).

The second row reports the average and standard deviation of MaxCal-inferred rates when trajectories are in protein number. Rows 3–8 report extracted rates

for synthetically corrupted trajectories generated using different levels of noise in fluorescence per protein compared to the average (indicated in column 1)

and different methods of extraction (SFNC and PFNC, as indicated in column 5).

Firman et al.
design as well as analysis of differently evolved strains.
Finally, we show how similar methods can be applied
when the raw trajectory is in fluorescence rather than protein
number, a typical attribute of experimental data. We demon-
strate this by ‘‘corrupting’’ the same synthetic protein num-
ber trajectories with Gaussian fluctuation to create noisy
fluorescence trajectories. In the regime of low fluorescence
noise, the average fluorescence per protein can be used to
convert traces back to protein number, followed by MaxCal
to infer the model (SFNC). However, higher levels of
noise require a more integrated approach (PFNC), where
a model’s likelihood is calculated by combining both
MaxCal-generated transition probabilities and fluorescence
fluctuation. Using fluorescence-corrupted trajectories, we
show that PFNC can infer underlying rates and distributions
of observables even when the relative noise is fairly high.
The method presented here demonstrates the potential appli-
cation of MaxCal to broader problems in gene networks
involving feedback, even when data are presented in
fluorescence.
SUPPORTING MATERIAL

Supporting Materials and Methods, one figure, and one table are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)

31016-0.
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Supporting Material

Application of Finite State Projection to Maximum Caliber

Since protein number theoretically has no upper limit, our self-promotion gene network
would be considered an open system, a problematic condition for analytically calculating
protein number distributions. However, Finite State Projection (FSP) circumvents this
problem by truncating the infinite phase space of protein number down to some relatively
high, finite maximum. The probabilities of any protein numbers higher than this maximum
are combined into one collective state, or ‘sink’, and the probability of being in this sink
provides a measurement of how much error has accumulated in the distribution due to the
truncation. As such, this rigorous technique can provide analytical probability distributions
within objective levels of error. For a full explanation of the technique, see the original
work of Munsky and Khammash [J. Chem. Phys. 124:044104 (2006)]. However, one slight
modification must be made for application to MaxCal. Within section II of Munsky et al,
the chemical master equation for every possible reaction in the finite reaction space can be
rewritten as

Ṗ (X; t) = A ·P (X; t) , (S1)

where X is a column vector representing the different states of the system (in our case, the
number of proteins present), P (X; t) is a column vector containing the probabilities of the
different states at time t, and A is the state reaction matrix where each element of the
matrix is a combination of the reaction propensities going from one state (corresponding to
the column) to another (corresponding to the row). In a reaction network designed for a
Gillespie simulation, these propensities would simply be the reaction rate multiplied by the
stoichiometry of the reactants. For our MaxCal system, these propensities would simply be
the probability of transitioning from one protein level to another (defined by equations 3
and 6 of the main text) and time would be renormalized into units of ∆t. From there, we
can calculate transition probabilities over multiple frames (m) to within an acceptable error
using the exponential matrix of A,

P (X;m∆t) = exp (Am)P (X; 0) . (S2)

To find the effective equilibrium distribution for the number of proteins in the system, we
can set the time as a number large enough to ensure the system is at relative equilibrium,
e.g. 100 times the average dwell time, and perform the same matrix exponentiation.
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Alternate model to test MaxCal inference

To further test the accuracy of MaxCal, the inference method described in the main text was
applied to an alternate model of self-promotion that has monomers binding to the promoter
site rather than dimers. The reaction scheme is represented as

α
g−→ α + A A

r−→ � (S3)

α + A
fp−→←−
bp

α∗ α∗
g∗−→ α∗ + A

where some generic protein A is created from its corresponding gene α at a rate of g, degrades
at a rate of r, and binds to the promoter site, α, with forward and backward rates of fp and
bp respectively. This sends α into or out of its activated state α∗, which creates protein A at
a much faster rate g∗. This again captures the essentials of a positive feedback mechanism,
but represents a different level of non-linearity and cooperativity in Hill-type models. This
circuit is motivated by the earlier work of Lipshtat, Loinger, Balaban, and Biham [Phys.
Rev. Lett. 96:188101 (2006)] demonstrating that bimodality in toggle switch circuits can
be obtained without cooperative binding. Similarly, we also notice the above model can
produce bimodality for this positive feedback circuit. Using reaction rates similar to those
utilized for the model in the main text, the inferred rates and distributions are displayed in
Table S1 and Figure S1 respectively. These results demonstrate that an acceptable level of
accuracy can be generated using MaxCal, regardless of the exact molecular underpinnings
of the circuit being considered.
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Figure S1: Predicted distributions for alternate model agree well with the “true”
distributions. (A) Protein number probability distributions from synthetic input trajec-
tories (blue) and predicted MaxCal trajectories (red). (B) Low state and (C) high state
residence time probability distributions for synthetic input trajectories (blue) and predicted
MaxCal trajectories (red). Underlying Gillespie reaction rates are the same as those used in
Table S1 and the extracted MaxCal parameters used are a representative example from the
ten sets extracted to make Table S1.
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True Values Predicted Values

g (s−1) 5.0× 10−3 6.2± 0.1× 10−3

g∗ (s−1) 50.0× 10−3 45.8± 1.4× 10−3

r (s−1) 1.0× 10−3 1.01± 0.03× 10−3

τL→H (s) 59.0× 103 85.2± 3.0× 103

τH→L (s) 78.7× 103 105.5± 5.5× 103

SI (bits) 8.86 9.23 ± 0.03

Sh (bits) 9.38 9.02 ± 0.02

Sl (bits) 6.25 7.66 ± 0.02

Scg (bits) 1.02 1.01 ± 0.01

Table S1: Comparison of true rates and predicted rates using MaxCal on alter-
nate self-promotion model. The first column reports “true” underlying protein syn-
thesis and degradation rates used to create synthetic input data (fp = 3.56 × 10−6 s−1,
bp = 1.65× 10−5 s−1), average residence times in the high and low states, and corresponding
path informational entropies. Synthetic input data was recorded at ∆t = 300s. The sec-
ond column reports the average and standard deviation of the same quantities of interest,
but extracted using the MaxCal model on ten sets of synthetic data, each consisting of 100
trajectories of 7 days.

High and low state assignment for Sh, Sl, Scg, and dwell times

To assign parts of a trajectory to the low and high state, the locations of the low and high
state peaks are used as thresholds (N = 5 and N = 50 in the case of the Gillespie distribution
(blue) of Figure 2A in the main text). Once the protein level is less (greater) than or equal
to the lower (upper) threshold, the system is considered to be in the low (high) state. It
then remains in that state until it reaches the opposite threshold. This is done to reduce the
amount of false positive state switches associated with a single high/low threshold (N = 25
in the case of the Gillespie distribution (blue) of Figure 2A in the main text).
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