SUPPORTING INFORMATION

Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields

Parimal Kar, Michael Feig*

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States

*Corresponding author: Email: feig@msu.edu Phone: +1 (517) 432-7439 Fax: +1 (517) 353-9334.

Figure S1: Time evolution of C_{α} root-mean-squared-deviation (RMSD) with respect to the experimental structure for protein G (PDB code: 3GB1, top), and the SH3 domain (PDB code: 1SHG, bottom) with the hybrid AA/CG model (AA/CG), fully atomistic simulations with explicit solvent (AA/TIP3P), AA/GBMV (AA/GB), or coarse-grained simulations using the PRIMO force field (CG). Different colored lines represent simulation replicates.

Figure S2: Time evolution of secondary structure for protein G based on DSSP analysis for AA/CG and AA/TIP3P simulations (α -helix: red; β -sheet: blue/light blue; orange: 3¹⁰-helix; turn: grey; bend: dark green).

Figure S3: Time evolution of secondary structure for SH3 domain based on DSSP analysis for AA/CG and AA/TIP3P simulations (colors as in Fig. S2).

Figure S4: Time evolution of φ/ψ backbone torsion angles for protein G in AA/CG and AA/TIP3P simulations according to color diagram.

and AA/TIP3P simulations according to color diagram.

Figure S6: Time evolution of χ_1 side chain torsion angles for protein G in AA/CG and AA/TIP3P simulations according to color diagram.

Figure S7: Time evolution of χ_1 side chain torsion angles for SH3 domain in AA/CG and AA/TIP3P simulations according to color diagram.