## **Expanded View Figures**

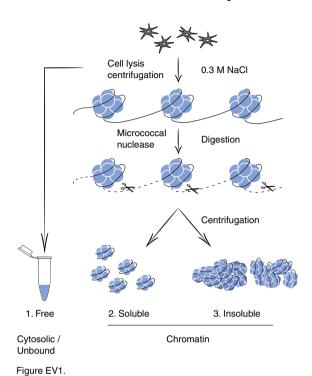



Figure EV1. Chromatin fractionation.

Flow diagram illustrating the chromatin dissection after removal of unbound or loosely bound (free) proteins by salt extraction (0.3 M NaCl). MNase digestion removes linker DNA, thus generating a supernatant of solubilized chromatin proteins and a remaining insoluble pellet strongly enriched in nucleosome cores.

EV1 The EMBO Journal © 2017 The Authors

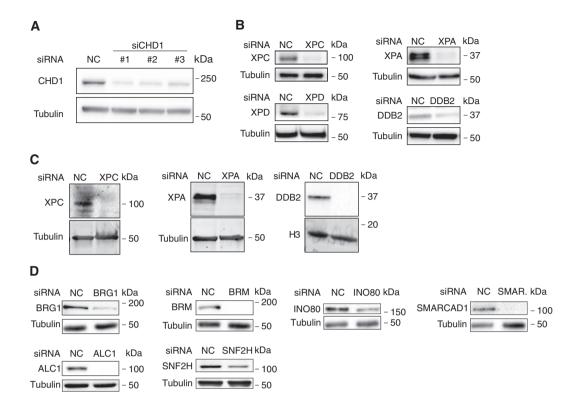
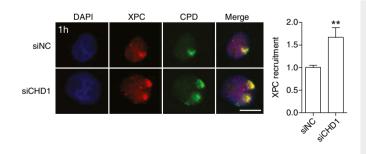




Figure EV2. Efficiency of siRNA-mediated protein depletions.

- A Analysis of CHD1 protein levels after depletion with three different siRNA sequences (16 nM) directed against the CHD1 transcript. Immunoblots of HeLa cell lysates were carried out 2 days after transfection. Tubulin served as the loading control.
- B Protein depletion achieved in U2OS cells 2 days after transfection with the indicated siRNA sequences (16 nm).
- C Protein depletion achieved in HeLa cells 2 days after transfection with the indicated siRNA sequences (16 nm). Tubulin and histone H3 served as loading controls.
- D Protein depletion achieved in HeLa cells 2 days after transfection with siRNA sequences (16 nM) against the indicated chromatin remodelers. Tubulin served as the loading control.

Source data are available online for this figure.



## Figure EV3. $\,$ XPC accumulation in the chromatin of UV-irradiated HeLa cells.

Representative immunofluorescence images of HeLa cells that were UV-irradiated (dose applied to filters:  $100 \text{ J/m}^2$ ) through micropore filters to generate local spots of DNA damage. Immunostaining was carried out after 1 h with antibodies against CPDs and XPC protein. Cells were pretreated 2 days earlier with siRNA targeting the CHD1 transcript (siCHD1) or with non-coding control RNA (siNC). DAPI was used to stain nuclear DNA. Scale bar:  $10 \mu m$ . The recruitment of XPC protein was quantified by measuring spot intensities followed by normalization to the nuclear background. Control values were set to 1. Data are presented as mean  $\pm$  SEM (n=3, 100 cells for each experiment). \*\*\* $P \leq 0.01$  (unpaired, two-tailed t-test).

© 2017 The Authors EV2

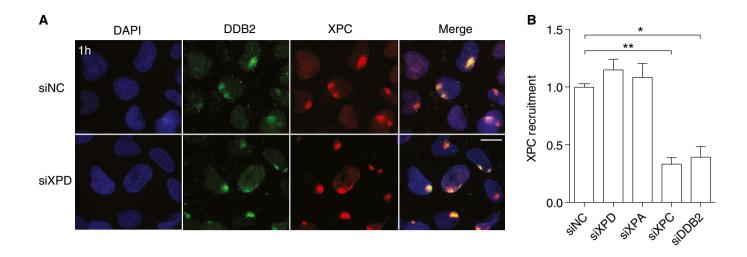
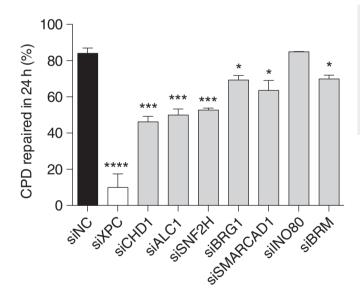




Figure EV4. XPC recruitment to local spots of UV damage.

- A Representative immunofluorescence images of U2OS cells that were UV-irradiated (dose applied to filters: 100 J/m²) through micropore filters to generate local spots of DNA damage. Immunostaining was carried out after 1 h with antibodies against DDB2 (as a marker of UV lesions) and XPC proteins. Cells were pretreated 2 days earlier with siRNA targeting the XPD transcript (siXPD) or with non-coding control RNA (siNC). DAPI was used to stain nuclear DNA. Scale bar: 10 μm.
- B The recruitment of XPC protein was quantified by measuring spot intensities followed by normalization to the nuclear background. Control values were set to 1. Cells were pretreated 2 days earlier with siRNA targeting the XPD, XPA, XPC, or DDB2 transcripts, as indicated, or with non-coding control RNA (siNC). Data are presented as mean ± SEM (n = 3, 100 cells for each experiment). \*P ≤ 0.05, \*\*P ≤ 0.01 (unpaired, two-tailed t-test).



## Figure EV5. Comparison between chromatin remodelers.

Excision of CPDs in HeLa cells treated with siRNA (16 nM) targeting the indicated chromatin-remodeling factors, compared to transfection with siNC. The cells were UV-irradiated (10 J/m²) 2 days after siRNA transfections, and the proportion of excised CPDs was determined after a repair incubation of 24 h. The efficiency of protein downregulation is shown in the immunoblots of Fig EV2A and D. Data are presented as mean  $\pm$  SEM (n=5–7 independent experiments with four replicates). \*\*\*\* $P \le 0.0001$ , \*\*\* $P \le 0.001$ , \* $P \le 0.005$  (unpaired, two-tailed t-test).

EV3 The EMBO Journal © 2017 The Authors