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Table S1: Media and artificial seawater recipes

Seawater Salts (SWS) Per liter:  
8.0g MgSO4 · 7H2O; 1.0g CaCl2·2H2O;  0.5g KCl; 0.16 g NaHCO3; 0.02 g 
H3BO3; 0.08 g KBr; 0.03g SrCl2·6H2O; 0.01g β-glycerophosphate-2Na;  0.1 g 
FeC6H5O7; 1.0 mL trace element solution; 20.0g NaCl; pH 8.0.

Trace Elements Solution Per liter:
100 mg MnCl2·4H2O; 20 mg CoCl2; 10 mg CuSO4; 10mg Na2MoO4·2H2O; 20 
mg ZnCl2; 5mg LiCl; 5mg SnCl2·2H2O; 10mg H3BO3; 20 mg KBr; 20 mg KI; 
8g EDTA·Na-Fe3+ salt.

Medium 1 (M1) Yeast extract 2.0g/L; Mannitol 4.0g/L; Peptone 2.0g/L; 75% SWS to volume; 
pH6.8.

Medium 2 (M2) Glycerol 15 ml/L; L-glutamine 5.0g/L; K2HPO4 1.5g/L; MgSO4 0.2g/L; Di-
H2O to volume; pH7.0.

Medium 3 (M3) Galactose 1.0g/L; Peptone 6.0g/L; Glycerol 0.8ml/L; Yeast Extract 2.5g/L; 
75% SWS to volume; pH6.8.

Medium 4 (M4) Casitone 3.0g/L; MgSO4·7H2O 2.0g/L; CaCl2 0.5g/L; Trace Elements Solution 
1.0 ml/L; Vitamin B12 Solution; 75% SWS to volume; pH6.8.

Medium 5 (M5) K2HPO4 2.0g/L; NH4Cl 1.5g/L; MgSO4 ·7H2O 0.5g/L; Glycerol 8.0 ml/L; 
Myo-inositol 0.4g/L; Monosodium L-glutamate 5.0g/L; NaF 0.084g/L; 
FeSO4·7H2O 0.025g/L; ZnSO4·7H2O 0.01g/L; CoCl2.6H2O 0.01g/L; CaCO3 
0.25g/L; p-aminobenzoate 0.001g/L; DiH2O to volume; pH 7.0.
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Table S2. Experimental 13C NMR data (125MHz, DMSO-d6, 25°C) for 1-methyl-4-methylthio-β-carboline 
(1) and literature data for related compounds: 1-ethyl-4-methylsulfone-β-carboline (3)2, 1-methyl-β-car-
boline (aka harman) (4)1, and 1-ethyl-4-methoxy-β-carboline (aka crenatine) (5)1

(1) Koike, K.; Sakamoto, Y.; Ohmoto, T. A 13C NMR Study of β-Carboline Alkaloids. Org. 
Magn. Reson. 1984, 22 (7), 471–473.

(2) Prinsep, M. R.; Blunt, J. W.; Munro, M. H. G. New Cytotoxic β-Carboline Alkaloids from 
the Marine Bryozoan, Cribricellina Cribraria. J. Nat. Prod. 1991, 54 (4), 1068–1076.
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Figure S1. ESI-FTMS accurate mass spectra.  Left panel: molecular ion cluster of (1) (top) compared to simulated spectra with and without sulfur (middle 
and bottom).  Right panel: accurate MS2 spectrum (top) showing loss of -SCH3 and comparison of measured vs predicted ion cluster for m/z 182.0838(bot-
tom).  In the MS2 experiment, a capture width of +/- 6 Da centered on 229.08 was used so that all isotopic variants of (1) were captured for fragmentation.
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Figure S2. 1H NMR spectrum of 1-methyl-4methylthio-β-carboline  (1), (600 MHz, DMSO-d6). 
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Figure S3. 13C NMR spectrum of 1-methyl-4methylthio-β-carboline  (1), (150 MHz, DMSO-d6). 
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Figure S4. gHSQC NMR spectrum of 1-methyl-4methylthio-β-carboline  (1), (600 MHz, DMSO-d6) 
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Figure S5.  gHMBCAD NMR spectrum of 1-methyl-4methylthio-β-carboline (1), (600 MHz, DMSO-d6)
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Figure S6.  gHMBCAD NMR spectrum (downfield expansion) of 1-methyl-4methylthio-β-carboline  (1), (600 MHz, DMSO-d6)
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Figure S7.  gHMBCAD NMR spectrum (1JCH measurements) of 1-methyl-4methylthio-β-carboline  (1), (600 MHz, DMSO-d6) 

1JC6H= Δ 0.271ppm (163 Hz)

1JC8H= Δ 0.268ppm (161 Hz)

1JC7H= Δ 0.265ppm (159 Hz)

1JC2H= Δ 0.300 ppm (180 Hz)

1JC5H= Δ 0.267ppm (160 Hz)
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Figure S8.  gHMBCAD NMR spectrum (1JCH measurements) of 1-methyl-4methylthio-β-carboline (1), (600 MHz, DMSO-d6) 

1JC4’H
= Δ 0.235ppm (141 Hz)

1JC1’H
= Δ 0.211ppm (127 Hz)
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Figure S9.  1H-1H gCOSY of 1-methyl-4methylthio-β-carboline (1), (600 MHz, DMSO-d6) 
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Figure S10.  NOESY NMR spectrum of 1-methyl-4methylthio-β-carboline (1), (600 MHz, DMSO-d6)
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Figure S11. 1D nOe NMR spectra of 1-methyl-4methylthio-β-carboline  (1) irradiated at 2.65 ppm (50Hz width), (600 MHz, DMSO-d6)
       Key: 1 - full proton; 2 - 500 ms mixing time; 3 - 600ms; 4 - 700 ms; 5 - 800 ms
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Figure S12. UV spectrum of 1-methyl-4-methylthio-β-carboline (1)
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Figure S13. IR spectrum of 1-methyl-4-methylthio-β-carboline (1)
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Figure S15. Select examples of structure assignment outcomes of natural products that possess 
a core H/(C+Z) < 0.6 (C+Z = Σ #C + # heteroatoms). These molecules are particularly challeng-
ing to elucidate using 2D NMR data as denoted by “Crews Rule.” Molecular formulas represent 
highlighted region of molecules only.  *data does not rule out other structures. †based on com-
parison to marinoazepinone A, which has an additional N-CH3 and H/(C+Z)= 0.65. Reference 
letters correspond to reference 26 in the main text.
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Figure S16. Querying medium 4 control for m/z 229.0794 (i.e. 1) via extracted ion chromatography (XIC) 
searches. The normalization level (NL) shown at the right of each panel provides an ion current value for a 
peak with 100% relative abundance. The top trace [A] shows total ion chromatogram (TIC) from the media 
4 control; a culture blank not inoculated with any Gram-negative bacterium and not expected to contain 
secondary metabolites. The trace [B] shows and XIC for the sample shown in [A] and confirms that the 
peaks at 3.00-3.07 minutes are devoid of the m/z = 229.07 compound. The trace [C] documents, by XIC, 
that retention time of 1 (m/z = 229.07), produced by the indicated strain, is 3.07 minutes.



20

Figure S17. Querying for oxidized analogues of 1 via extracted ion chromatography (XIC) searches. The nor-
malization level (NL) shown at the right of each panel provides an ion current value for a peak with 100% 
relative abundance. The top trace [A1] shows total ion chromatogram (TIC) peaks from the media 4 plus 
Gram-negative strain M125SB302Ax of the parent crude extract containing 1. The traces [A2-A4] show three 
different XICs of the same parent crude extract. The trace [A2] documents that the retention time of 1 is 3.09 
minutes (also observed in trace [A1]). Though panel [A3] shows XIC peaks (rt = 1.2-1.65) their mass spectra 
(not shown here) are not consistent with compounds of formula C13H13N2OS. Trace [A4] also shows possible 
evidence for the presence of a doubly oxidized 1 (C13H13N2O2S2

+) in the XIC peaks at rt = 2.85 min. and 2. 97 
min and is supported by the experimental vs. predicted MS shown in [B]. However the lower ion count indi-
cates a compound of this formula is possibly present but in a minute amount: approximately 200 fold less abun-
dant than 1 based on their relative ion counts (NL) between trace [A2] and [A4].
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Chart S1.  Reference 1JCH  values for relevant sp2 and sp3 carbons
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