SUPPORTING INFORMATION

Evaluating Nitrogen Containing Biosynthetic Products Produced by Saltwater Culturing of Several California Littoral Zone Gram-Negative Bacteria

Nicholas Lorig-Roach, Patrick C. Still, David Coppage, Jennifer E. Compton, Mitchell S. Crews, Gabriel Navarro, Karen Tenney, and Phillip Crews*

Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 *To whom correspondence should be addressed. Email: pcrews@ucsc.edu; Phone: 831-459-2603.

	Page Number
Table S1. Media and artificial seawater recipes	2
Table S2. Comparitive ¹³ C NMR data between (1) and related β -carbolines	3
Figure S1. ESI-FTMS accurate mass spectra of 1-methyl-4-methylthio-β-carboline (1)	4
Figure S2. ¹ H NMR spectrum of (1), (600 MHz, DMSO- d_{6})	5
Figure S3. ¹³ C NMR spectrum of (1), (150 MHz, DMSO- d_6)	6
Figure S4. gHSQC NMR spectrum of (1), (600 MHz, DMSO-d ₆)	7
Figure S5. gHMBCAD NMR spectrum of (1), (600 MHz, $DMSO-d_6$)	8
Figure S6 . gHMBCAD NMR spectrum (downfield expansion) of (1), (600 MHz, DMSO- d_6)	9
Figure S7 . gHMBCAD NMR spectrum (${}^{1}J_{CH}$ measurements) of (1), (600 MHz, DMSO-d ₆)	10
Figure S8 . gHMBCAD NMR spectrum (${}^{1}J_{CH}$ measurements, methyls) of (1), (600 MHz, DMSO-d ₆)	11
Figure S9. 1 H- 1 H COSY NMR spectrum of (1), (600 MHz, DMSO-d ₆)	12
Figure S10. NOESY NMR spectrum of (1), (600 MHz, $DMSO-d_6$)	13
Figure S11. 1D nOe NMR spectra of (1) irradiated at 2.65 ppm, (600 MHz, DMSO-d ₆)	14
Figure S12. UV spectrum (200-600nm) of 1-methyl-4-methylthio-β-carboline (1)	15
Figure S13. IR spectrum of 1-methyl-4-methylthio- β -carboline (1)	16
Figure S14. 1-methyl-4-methylthio- β -carboline (1) isolation scheme.	17
Figure S15. Examples of challenging 'Crews rule' compounds from the literature	18
Figure S16. Querying medium 4 control for m/z 229.0794	19
Figure S17. Querying for oxidized analogues of 1.	20
Chart S1. Reference ${}^{1}J_{CH}$ coupling constants for relevant sp ² carbons.	21

Table S1: Media and artificial seawater recipes

Seawater Salts (SWS)	Per liter:		
	$8.0g MgSO_4 \cdot 7H_2O; 1.0g CaCl_2 \cdot 2H_2O; 0.5g KCl; 0.16 g NaHCO_3; 0.02 g$		
	H_3BO_3 ; 0.08 g KBr; 0.03g SrCl ₂ ·6H ₂ O; 0.01g β-glycerophosphate-2Na; 0.1 g		
	$FeC_6H_5O_7$; 1.0 mL trace element solution; 20.0g NaCl; pH 8.0.		
Trace Elements Solution	Per liter:		
	100 mg MnCl ₂ ·4H ₂ O; 20 mg CoCl ₂ ; 10 mg CuSO ₄ ; 10mg Na ₂ MoO ₄ ·2H ₂ O; 20 mg ZnCl ₂ ; 5mg LiCl; 5mg SnCl ₂ ·2H ₂ O; 10mg H ₃ BO ₃ ; 20 mg KBr; 20 mg KI; 8g EDTA·Na-Fe3+ salt.		
Medium 1 (M1)	Yeast extract 2.0g/L; Mannitol 4.0g/L; Peptone 2.0g/L; 75% SWS to volume; pH6.8.		
Medium 2 (M2)	Glycerol 15 ml/L; L-glutamine 5.0g/L; K ₂ HPO ₄ 1.5g/L; MgSO ₄ 0.2g/L; Di- H ₂ O to volume; pH7.0.		
Medium 3 (M3)	Galactose 1.0g/L; Peptone 6.0g/L; Glycerol 0.8ml/L; Yeast Extract 2.5g/L; 75% SWS to volume; pH6.8.		
Medium 4 (M4)	Casitone 3.0g/L; MgSO ₄ ·7H ₂ O 2.0g/L; CaCl ₂ 0.5g/L; Trace Elements Solution 1.0 ml/L; Vitamin B12 Solution; 75% SWS to volume; pH6.8.		
Medium 5 (M5)	$ \begin{array}{l} {\rm K_2HPO_4~2.0g/L;~NH_4Cl~1.5g/L;~MgSO_4\cdot7H_2O~0.5g/L;~Glycerol~8.0~ml/L;} \\ {\rm Myo-inositol~0.4g/L;~Monosodium~L-glutamate~5.0g/L;~NaF~0.084g/L;} \\ {\rm FeSO_4\cdot7H_2O~0.025g/L;~ZnSO_4\cdot7H_2O~0.01g/L;~CoCl_2.6H_2O~0.01g/L;~CaCO_3} \\ {\rm 0.25g/L;~p-aminobenzoate~0.001g/L;~DiH_2O~to~volume;~pH~7.0.} \end{array} $		

Table S2. Experimental ¹³C NMR data (125MHz, DMSO-d₆, 25°C) for 1-methyl-4-methylthio-β-carboline (1) and literature data for related compounds: 1-ethyl-4-methylsulfone-β-carboline (3)², 1-methyl-β-carboline (aka harman) (4)¹, and 1-ethyl-4-methoxy-β-carboline (aka crenatine) (5)¹

Carbon	1	3	4	5
1	139.6 (C)	152.7	142.2	140.6
3	134.8 (CH)	139.9	137.6	120.0
4	125.2 (C)	119.2	112.6	151.0
4a	124.3 (C)	no data	121.2	118.3
4b	120.9 (C)	126.7	127.0	119.6
5	123.4 (CH)	125.9	121.7	124.2
6	119.5 (CH)	121.7	119.2*	127.2
7	127.5 (CH)	129.8	127.8*	121.4
8	111.9 (CH)	111.9	112.0	111.3
8a	140.2 (C)	140.6	140.5	140.1
9a	133.8 (C)	133.7	134.6	135.3
1'	20.1 (CH ₃)	27.5	no data	26.8
2'		12.2		13.3
4'	15.2 (CH ₃)	43.2		56.1

*Literature value errors corrected.

(1) Koike, K.; Sakamoto, Y.; Ohmoto, T. A 13C NMR Study of β -Carboline Alkaloids. Org. Magn. Reson. 1984, 22 (7), 471–473.

(2) Prinsep, M. R.; Blunt, J. W.; Munro, M. H. G. New Cytotoxic β -Carboline Alkaloids from the Marine Bryozoan, Cribricellina Cribraria. J. Nat. Prod. 1991, 54 (4), 1068–1076.

Figure S1. ESI-FTMS accurate mass spectra. Left panel: molecular ion cluster of (1) (top) compared to simulated spectra with and without sulfur (middle and bottom). Right panel: accurate MS² spectrum (top) showing loss of -SCH₃ and comparison of measured vs predicted ion cluster for m/z 182.0838(bottom). In the MS² experiment, a capture width of +/- 6 Da centered on 229.08 was used so that all isotopic variants of (1) were captured for fragmentation.

Figure S3. ¹³C NMR spectrum of 1-methyl-4methylthio-β-carboline (1), (150 MHz, DMSO-d6).

шdd

Figure S5. gHMBCAD NMR spectrum of 1-methyl-4methylthio-β-carboline (1), (600 MHz, DMSO-d6)

8

9

шd

шd

10

{7.64,11.83}

8.0

7.5 ppm 7.0

6.5

6.0

5.5

5.0

8.5

9

12.5

12.0

11.5

11.0

10.5

10.0

9.5

9.0

13

4.5

4.0

шdd

-10

-11

-12

2.5

{2.74<mark>,11.83}</mark>

3.0

3.5

Figure S11. 1D nOe NMR spectra of 1-methyl-4methylthio-β-carboline (1) irradiated at 2.65 ppm (50Hz width), (600 MHz, DMSO-d6) Key: 1 - full proton; 2 - 500 ms mixing time; 3 - 600ms; 4 - 700 ms; 5 - 800 ms

Figure S14. Survey of seven CA littoral zone Gram-negative bacteria strains assessed by LCMS for their capacity to produce 1-methyl-4-methylthio- β -carboline (1) and subsequent steps for its purification from strain M125SB302Ax. See Table S1 for media composition.

Figure S15. Select examples of structure assignment outcomes of natural products that possess a core H/(C+Z) < 0.6 (C+Z = $\Sigma \#C + \#$ heteroatoms). These molecules are particularly challenging to elucidate using 2D NMR data as denoted by "Crews Rule." Molecular formulas represent highlighted region of molecules only. *data does not rule out other structures. *based on comparison to marinoazepinone A, which has an additional N-CH₃ and H/(C+Z)= 0.65. Reference letters correspond to reference 26 in the main text.

Figure S16. Querying medium 4 control for m/z 229.0794 (i.e. 1) via extracted ion chromatography (XIC) searches. The normalization level (NL) shown at the right of each panel provides an ion current value for a peak with 100% relative abundance. The top trace [A] shows total ion chromatogram (TIC) from the media 4 control; a culture blank not inoculated with any Gram-negative bacterium and not expected to contain secondary metabolites. The trace [B] shows and XIC for the sample shown in [A] and confirms that the peaks at 3.00-3.07 minutes are devoid of the m/z = 229.07 compound. The trace [C] documents, by XIC, that retention time of 1 (m/z = 229.07), produced by the indicated strain, is 3.07 minutes.

Figure S17. Querying for oxidized analogues of 1 via extracted ion chromatography (XIC) searches. The normalization level (NL) shown at the right of each panel provides an ion current value for a peak with 100% relative abundance. The top trace [A1] shows total ion chromatogram (TIC) peaks from the media 4 plus Gram-negative strain M125SB302Ax of the parent crude extract containing 1. The traces [A2-A4] show three different XICs of the same parent crude extract. The trace [A2] documents that the retention time of 1 is 3.09 minutes (also observed in trace [A1]). Though panel [A3] shows XIC peaks (rt = 1.2-1.65) their mass spectra (not shown here) are not consistent with compounds of formula $C_{13}H_{13}N_2OS$. Trace [A4] also shows possible evidence for the presence of a doubly oxidized 1 ($C_{13}H_{13}N_2O_2S_2^+$) in the XIC peaks at rt = 2.85 min. and 2. 97 min and is supported by the experimental vs. predicted MS shown in [B]. However the lower ion count indicates a compound of this formula is possibly present but in a minute amount: approximately 200 fold less abundant than 1 based on their relative ion counts (NL) between trace [A2] and [A4].

Chart S1. Reference ${}^{1}J_{CH}$ values for relevant sp² and sp³ carbons

References:

(1) Crews, P.; Rodríguez, J.; Jaspars, M. Organic Structure Analysis, 2nd ed.; p. 150; Oxford University Press: New York, 2010.

(2) Reich, H. C-H Coupling Constants. Structure Determination Using NMR. http://www.chem. wisc.edu/areas/reich/nmr/10-cdata-05-jch.htm (accessed Mar 28, 2017).