General Experimental Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were taken on a Bruker Avance 300 spectrometer at 300 MHz and 75 MHz respectively, a Bruker Avance 400 spectrometer at 400 MHz and 100 MHz, a Bruker Avance 500 spectrometer at 500 MHz and 125 MHz, or a Bruker Avance 600 spectrometer at 600 MHz and 150 MHz as specified. The chemical shifts are reported in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ¹H NMR: CDCl₃ = 7.27 ppm, for ¹³C NMR: CDCl₃ = 77.2 ppm. Data are reported as follows: m = multiplet, s = singlet; d =doublet; t = triplet; q = quartet; p = pentet; s = sextet; dd = doublet of doublets; dt = doublet of triplets; ddg = doublet of doublet of quartets; ddd = doublet of doublet of doublets etc. Peaks listed with an asterisk (*) represent signals from diastereomers. Infrared (IR) spectra were taken on a Nicolet IR200 FT-IR spectrometer with an ATR attachment. Optical rotations were measured at the sodium D line with a 100 mm path length cell, and are reported as follows: $[\alpha]_D^T$, concentration (g/100 mL), and solvent. Methylene chloride was distilled under N₂ from CaH₂. Diethyl Ether was distilled under N₂ from sodium/benzophenone ketyl. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60 F₂₅₄ plates. Visualization was done under UV (254 nm) or by staining (95mL ethanol, 3mL conc. H₂SO₄, 2mL acetic acid, 5mL anisaldehyde). Flash chromatography was done using SiliCycle SiliaFlash P60 40-63µm 60 Å silica gel. Reagent grade ethyl acetate, diethyl ether, acetone, dichloromethane, methanol, pentane and hexanes (commercial mixture) were purchased from Fisher Scientific and were used as-is for chromatography. All reactions were performed in oven or flame-dried glassware under a positive pressure of N₂ with magnetic stirring unless otherwise noted.

Preparation of Re₂O₇ supported on SiO₂: A slurry of SiO₂ (4.88 g) and of Re₂O₇ (542 mg) in Et₂O (25 mL) was stirred in a round bottom flask at rt for 3 h, then the Et₂O was removed under reduced pressure. The resulting powder was dried under vacuum overnight. The catalyst was transferred to a vial, wrapped in aluminum foil, and stored in a desiccator.

General procedure A for the Re₂O₇-mediated dehydrative cyclizations: To a solution of the substrate in CH₂Cl₂ (0.10 M) was added Re₂O₇ (10% w/w on SiO₂, 0.05 equiv). The reaction mixture was sealed in a 1-dram vial (Chemglass CG-4904-05 with a polypropylene screw cap containing a PTFE faced silicone septum) and stirred at 40 °C for 20 h. The mixture was filtered through a short plug of silica gel (~2 cm) while eluting with CH₂Cl₂ and EtOAc. The solvent was removed under vacuum, and the resulting crude material was purified by silica gel column chromatography. Diastereomeric ratios were determined via ¹H NMR analysis of the crude product mixture. Further chromatographic purification was conducted for product characterization purposes if necessary.

General procedure B for the SiO₂•Re₂O₇-mediated cyclization: To a vial of solution of the substrate in CH₂Cl₂ (0.10M) was added SiO₂•Re₂O₇ (10% w/w, 0.05 equiv). The reaction mixture was sealed in a 1-dram vial (Chemglass CG-4904-05 with a polypropylene screw cap containing a PTFE faced silicone septum) and stirred at rt for 0.5h – 1h. The sealed vial was placed into a 40 °C bath for 20 h. The mixture was filtered through a short plug of silica gel (~2 cm) while eluting with CH₂Cl₂ and EtOAc. The solvent was removed under vacuum, and the resulting crude material was purified by silica gel column chromatography. Diastereomeric ratios were determined via ¹H NMR analysis of the crude product mixture. Further chromatographic purification was conducted for product characterization purposes if necessary.

Reagents and conditions a) Pent-4-en-1-ylmagnesium bromide, Et₂O, 0 °C. b) (*Z*)-But-2-ene-1,4-diol or (*Z*)-hex-3-ene-2,5-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH_2Cl_2 , 65%.

Scheme 1. Synthesis of 1 and 5.

(*E*)-10-Phenyldec-3-ene-2,8-diol (1)

IR (ATR, cm⁻¹) 3346, 3081, 3061, 3026, 2970, 2931, 2859, 1496, 1454, 1369, 1139, 1062, 970, 939, 700

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.24-7.17 (m, 3H), 5.53 (dt, broad, J = 15.3, 6.6 Hz, 1H), 5.52 (dd, broad, J = 15.4, 6.4 Hz, 1H), 4.27 (dq, J = 6.4, 6.3 Hz, 1H), 3.69-3.69 (m, 1H), 2.80 (ddd, J = 13.8, 9.5, 5.8 Hz, 1H), 2.68 (ddd, J = 13.8, 9.4, 6.8 Hz, 1H), 2.09-2.00 (m, 2H), 1.86-1.69 (m, 2H), 1.60-1.44 (m, 4H), 1.42-1.38 (m, 2H), 1.26 (d, J = 6.4 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 142.3, 134.7, 130.7, 128.6, 128.56, 126.0, 71.3, 69.1, 39.3, 37.2, 32.2, 32.18, 25.3, 23.6

HRMS (ESI) m/z calcd. for C₁₆H₂₃O [M – OH]⁺ 231.1743, found 231.1752

(2R,6S)-2-Phenethyl-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran (4): General cyclization protocol A was followed with 1 (41 mg, 0.20 mmol) and Re₂O₇ (10% w/w on SiO₂, 47 mg, 9.8 µmol) in CH₂Cl₂ (2.0 mL). The residue was purified via silica gel flash column chromatography (1% to 10%

EtOAc in hexanes) to yield tetrahydropyran **4** as an oil (36.8 mg, 82%, dr > 30:1 cis:trans). IR (ATR, cm⁻¹) 3084, 3062, 3027, 2933, 2857, 1720, 1496, 1454, 1197, 1078, 1038, 967, 700 ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 2H), 7.23-7.15 (m, 3H), 5.72 (dqd, *J* = 15.3, 6.4, 1.1 Hz, 1H), 5.55 (ddq, *J* = 15.3, 5.7, 1.5 Hz, 1H), 3.76 (ddd, *J* = 11.2, 5.9, 1.1 Hz, 1H), 3.31 (dddd, *J* = 1.8, 4.9, 7.3, 10.8 Hz, 1H), 2.78 (ddd, *J* = 13.8, 9.4, 5.6 Hz, 1H), 2.70 (ddd, *J* = 13.8, 9.3, 7.0 Hz, 1H), 1.96-1.79 (m, 2H), 1.76-1.67 (m, 1H), 1.72 (dt, broad, *J* = 6.4, 1.2 Hz, 3H), 1.64-1.55 (m, 2H), 1.54-1.44 (m, 1H), 1.38-1.18 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 142.6, 132.9, 128.6, 128.4, 126.3, 125.7, 78.1, 76.8, 38.2, 31.9, 31.8, 31.4, 23.7, 18.0

HRMS (ESI) m/z calcd. for C₁₆H₂₃O [M + H]⁺ 231.1743, found 231.1752

(*E*)-9-Phenylnon-2-ene-1,7-diol (5)

IR (ATR, cm⁻¹) 3342(broad), 3081, 3061, 3026, 2998, 2931, 2860, 1496, 1455, 1090, 1001, 972, 700

^{OH} ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 2H), 7.24-7.17 (m, 3H), 5.74-5.59 (m, 2H), 4.09 (d, broad, J = 4.5 Hz, 2H), 3.69-3.58 (m, 1H), 2.80 (ddd, J = 13.9, 9.4, 5.8 Hz, 1H), 2.69 (ddd, J = 13.7, 9.4, 6.8 Hz, 1H), 2.15-2.02 (m, 2H), 1.85-1.68 (m, 2H), 1.59-1.30 (m, 6H)

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 133.0, 129.5, 128.6, 128.5, 126.0, 71.3, 63.9, 39.2, 37.1, 32.3, 32.2, 25.2

HRMS (ESI) m/z calcd. for C₁₅H₂₃O₂ [M + H]⁺ 235.1693, found 235.1702

(2R.6S)-2-Phenethyl-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran (6): General cyclization protocol A was followed with 5 (46 mg, 0.19 mmol) and Re₂O₇ (10% w/w on SiO₂, 46 mg, 9.5 µmol) in CH₂Cl₂ (1.9 mL). The residue was purified via silica gel flash column chromatography (1% to 10% EtOAc in hexanes) to yield tetrahydropyran **6** as an oil (34 mg, 81%, dr = 1.7:1 cis:trans).

IR (ATR, cm⁻¹) 3084, 3063, 3027, 2934, 2857, 1729, 1496, 1455, 1266, 1202, 1089, 1041, 991, 923, 738, 700

¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 2H), 7.27-7.17 (m, 3H), 6.02-5.87 (m, 1H), 5.30 (dt, J = 17.4, 1.6 Hz, 0.60 H), 5.25 (dt, J = 17.4, 1.7 Hz, 0.40 H), 5.21 (dt, J = 10.6, 1.7 Hz, 1.7 Hz)0.40H), 5.13 (dt, J = 10.6, 1.5 Hz, 0.60H), 4.43-4.35 (m, 0.40H), 3.86-3.79 (m, 0.60H), 3.76 (dddd, J = 2.9, 4.2, 7.9, 7.9 Hz, 0.40H), 3.34 (dddd, J = 10.5, 7.8, 4.5, 1.9 Hz, 0.60H), 2.86-2.59 (m, 2H), 2.04-1.90 (m, 1H), 1.90-1.72 (m, 2H), 1.70-1.63 (m, 2H), 1.60-1.54 (m, 1H), 1.44-1.21 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 142.48, 142.47, 139.7, 139.0, 128.6, 128.5, 128.3, 128.29, 125.7, 125.6, 115.8, 114.3, 78.1, 76.7, 72.2, 70.5, 38.1, 36.3, 32.0, 31.8, 31.5, 31.3, 30.7, 29.2, 23.6, 18.8

HRMS (ESI) m/z calcd. for C₁₅H₂₁O [M + H]⁺ 217.1587, found 217.1594

Reagents and conditions CC, Celite, CH₂Cl₂. b) PhCH₂CH₂MgBr, THF, reflux. c) TESCI, imidazole, DMAP, CH₂Cl₂, 81%. d) Methacrolein, Grubbs-Hoveyda second generation catalyst, CH₂Cl₂, reflux, 85%. e) NaBH₄, MeOH, 0 °C, 48%. f) HF•Py, THF, 64%.

Scheme 2. Synthesis of 7.

(E)-2-Methyl-9-phenylnon-2-ene-1,7-diol (7)

IR (ATR, cm⁻¹) 3323, 3025, 2929, 2858, 1495, 1454, 1011, 911, 731, 699 ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.23-7.17 (m, 3H), 5.41 (tq, J = 7.3, 1.3 Hz, 1H), 4.00 (s, 2H), 3.68-3.60 (m, 1H), 2.81 (ddd, J = 13.8, 9.5, 9.5, 1.3 Hz, 1H), 4.00 (s, 2H), 3.68-3.60 (m, 1H), 2.81 (ddd, J = 13.8, 9.5, 9.5, 1.3 Hz, 1H), 4.00 (s, 2H), 3.68-3.60 (m, 1H), 2.81 (ddd, J = 13.8, 9.5, 1.3 Hz, 1H), 4.00 (s, 2H), 3.68-3.60 (m, 1H), 2.81 (ddd, J = 13.8, 9.5, 1.3 Hz, 1H), 4.00 (s, 2H), 3.68-3.60 (m, 1H), 2.81 (ddd, J = 13.8, 9.5, 1.3 Hz, 1H), 4.00 (s, 2H), 3.68-3.60 (m, 1H), 2.81 (ddd, J = 13.8, 9.5, 1.3 Hz, 1H), 4.00 (s, 2H), 3.68-3.60 (m, 1H), 4.00 (s, 2H), 4.00 (s, 5.6, 1H), 2.68 (ddd, J = 13.8, 9.5, 6.7 Hz, 1H), 2.10-2.02 (m, 2H), 1.84-1.70 (m, 2H), 1.66 (s, 3H), 1.56-1.43 (m, 4H)

¹³C NMR (125 MHz, CDCl₃) δ 142.3, 135.2, 128.6, 128.6, 126.1, 126.0, 71.4, 69.1, 39.3, 37.3, 32.2, 27.7, 25.7, 13.9

HRMS (ESI) m/z calcd. for C₁₆H₂₄O₂Na [M+Na]⁺ 271.1669, found: 271.1648

2-Phenethyl-6-(prop-1-en-2-yl)tetrahydro-2H-pyran (8): General cyclization procedure B was followed with 7 (87 mg, 0.35 mmol), Re₂O₇ (8.5 mg, 0.017 mmol, 10% on SiO₂) and CH₂Cl₂ (3.5 ml). The reaction crude was directly loaded onto silica gel, then purified by flash chromatography (10% to 20% ethyl acetate in hexane) to give the product diastereomers (66 mg, 81% yield, dr = 2.6:1). The mixture was purified again by flash chromatography (5% to 10% diethyl ether in hexane) to give the pure diastereomers.

Major product (2,6-cis-isomer):

IR (ATR, cm⁻¹) 3026, 2933, 2856, 1652, 1603, 1496, 1454, 1439, 1370, 1311, 1196, 1152, 1087, 1044, 896, 743, 697

¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 2H), 7.25-7.17 (m, 3H), 5.03 (s, 1H), 4.86 (s, 1H), 3.71 (d, J = 10.8 Hz, 1H), 3.36 (dddd, J = 10.7, 8.3, 4.5, 2.1 Hz, 1H), 2.82 (ddd, J = 13.8, 9.5, 5.4 Hz, 1H), 2.72 (ddd, J = 13.8, 9.5, 7.1 Hz, 1H), 1.96-1.85 (m, 2H), 1.82 (s, 3H), 1.80-1.69 (m, 2H), 1.62-1.48 (m, 2H), 1.42-1.25 (m, 2H)

¹³C NMR (101 MHz, CDCl₃) δ 146.6, 142.7, 128.7, 128.4, 125.7, 110.0. 80.5, 76.9, 38.3, 31.8, 31.5, 30.2, 23.9, 19.6

HRMS (ESI) m/z calcd. for C₁₆H₂₂O [M]⁺ 230.1671, found: 230.1678.

Minor product (2,6-*trans*-isomer):

IR (ATR, cm⁻¹): 3063, 3027, 2938, 2865, 1650, 1603, 1496, 1454, 1373, 1193, 1091, 1042, 897, 699

¹H NMR (500 MHz, CDCl₃) δ 7.31-7.26 (m, 2H), 7.24-7.17 (m, 3H), 4.98-4.95 (m, 2H), 4.18 (t, J = 4.8 Hz, 1H), 3.74-3.68 (m, 1H), 2.82 (ddd, J = 13.8, 10.9, 5.1 Hz, 1H), 2.62 (ddd, J = 13.8, 10.9, 6.0 Hz, 1H), 2.02 (dddd, J = 14.0, 10.7, 8.8, 5.2 Hz, 1H), 1.79 (s, 3H), 1.77-1.65 (m, 6H), 1.45-1.35 (m, 1H)

¹³C NMR (125 MHz, CDCl₃) δ 145.4, 142.7, 128.5, 128.5, 125.8, 111.7, 73.8, 71.4, 35.7, 32.4, 30.4, 27.9, 20.1, 19.2

HRMS (ESI) m/z calcd. for C₁₆H₂₃O [M+H]⁺ 231.1743, found: 231.1736

Reagents and conditions a) MeLi, THF, Et₂O, -78 °C, 65%. b) HF•Py, THF, rt, 72%

Scheme 3. Synthesis of 9 and 11.

(E)-3-Methyl-10-phenyl-8-((triethylsilyl)oxy)dec-3-en-2-ol (9)

Ph O TES OF

IR (ATR, cm⁻¹) 3363, 3026, 2950, 2875, 1495, 1459, 1414, 1372, 1314, 1238, 1077, 1004, 888, 807, 723, 698

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.26 (m, 2H), 7.21-7.16 (m, 3H), 5.40 (tt, J = 7.1, 1.2 Hz, 1H), 4.22 (q, J = 6.4 Hz, 1H), 3.73 (p, J = 5.7 Hz, 1H), 2.71 (ddd, J = 13.7, 10.3, 6.7 Hz, 1H), 2.61 (ddd, J = 13.7, 10.3, 6.3 Hz, 1H), 2.02 (dd, J = 14.4, 7.2 Hz, 2H), 1.82-1.70 (m, 2H), 1.63 (s, 3H), 1.56-1.32 (m, 4H), 1.26 (d, J = 6.4 Hz, 3H), 0.98 (t, J = 7.9 Hz, 9H), 0.62 (q, J = 7.9 Hz, 6H)

¹³C NMR (101 MHz, CDCl₃) δ 142.8, 138.8, 128.5, 128.5, 125.8, 125.1, 73.6, 72.0, 39.2, 37.0, 31.9, 27.7, 25.4, 21.7, 11.6, 7.1, 5.3

HRMS (ESI) m/z calcd. for C₂₃H₃₉O₂Si [M-H]⁺ 375.2719, found: 375.2739

(*E*)-3-Methyl-10-phenyldec-3-ene-2,8-diol (11)

IR (ATR, cm⁻¹) 3396, 3026, 2929, 2860, 1710, 1665, 1603, 14955, 1453, 1368, 1246, 1179, 1030, 910, 738, 698

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.23-7.17 (m, 3H), 5.40 (t, J = 7.1 Hz, 1H), 4.21 (q, J = 6.4 Hz, 1H), 3.64 (dddd, J = 4.0 Hz, 1H), 2.80 (ddd, J = 13.7, 9.5, 5.8 Hz, 1H), 2.68 (ddd, J = 13.7, 9.5, 6.8 Hz, 1H), 2.07-2.00 (m, 2H), 1.85-1.70 (m, 2H), 1.62 (s, 3H), 1.55-1.40 (m, 4H), 1.26 (d, J = 6.4 Hz, 3H)

¹³C NMR (101 MHz, CDCl₃) 142.3, 139.0, 128.6, 128.6, 126.0, 124.9, 73.5, 71.4, 39.3, 37.3, 32.2, 27.6, 25.7, 21.8, 11.7

HRMS (ESI) *m/z* calcd. C₁₇H₂₅O₂ [M-H]⁺ 261.1849, found: 261.1828

2-((*E***)-But-2-en-2-yl)-6-phenethyltetrahydro-2***H***-pyran (10) (from 9): General cyclization protocol B was followed with 9 (73 mg, 0.34 mmol), \text{Re}_2\text{O}_7 (4.9 mg, 0.010 mmol, 10% on SiO₂) and CH₂Cl₂ (2.7 ml). The reaction**

mixture was directly loaded onto silica gel, then purified by flash chromatography (10% to 20% ethyl acetate in hexane) to give the diastereomeric products (34 mg, 71% yield, dr = 38:1). The mixture was purified again by flash chromatography (6% to 12% ethyl acetate in hexane) to give the desired product.

IR (ATR, cm⁻¹) 3026, 2932, 2857, 1496, 1454, 1379, 1311, 1193, 1080, 1040, 908, 697 ¹H NMR (400 MHz, C₆D₆) δ 7.20-7.05 (m, 5H), 5.62 (qp, *J* = 2.3, 1.3 Hz, 1H), 3.61 (d, *J* = 11.3 Hz, 1H), 3.18 (dddd, *J* = 10.7, 8.6, 4.1, 2.1 Hz, 1H), 2.82 (ddd, *J* = 13.8, 9.2, 5.1 Hz, 1H), 2.71 (ddd, *J* = 13.7, 9.2, 7.3 Hz, 1H), 1,88 (dddd, *J* =13.7, 9.2, 8.4, 5.5 Hz, 1H), 1.70 (t, *J* = 1.1 Hz, 3H), 1.66-1.58 (m, 2H), 1.57 (dt, *J* = 6.7, 0.9 Hz, 3H), 1.48-1.20 (m, 4H), 1.18-1.07 (m, 1H) ¹³C NMR (101 MHz, C₆D₆) δ 143.5, 138.3, 129.5, 129.2, 126.5, 119.5, 83.4, 77.2, 39.4, 32.7, 32.4, 31.2, 24.8, 13.7, 13.4

HRMS (ESI) m/z calcd. for C₁₇H₂₃O [M-H]⁺ 243.1743, found: 243.1722

2-((*E***)-But-2-en-2-yl)-6-phenethyltetrahydro-2***H***-pyran (10) (from 11): General cyclization protocol B was followed with 11** (89 mg, 0.34 mmol), Re_2O_7 (8.2 mg, 0.017 mmol, 10% on SiO₂) and CH_2Cl_2 (3.4 ml). The reaction the loaded onto silicated than purified by flash chromatography (10% to 20%)

mixture was directly loaded onto silica gel, then purified by flash chromatography (10% to 20% ethyl acetate in hexane) to give the diastereomeric products (72 mg, 86% yield, dr = 33:1). The mixture was purified again by flash chromatography (4% to 10% ethyl acetate in hexane) to give the desired product.

Reagents and conditions a) NaH, THF, then Bu_4NI , BnBr, 76%. b) PCC, Celite, CH_2Cl_2 , 40%. c) 1-Pentenyl-5-magnesium bromide, THF, reflux, 30%. d) 1-Buten-3-ol, Grubbs-Hoveyda second generation catalyst, CH_2Cl_2 , reflux, 30%.

Scheme 4. Synthesis of 12.

(*E*)-10-(Benzyloxy)dec-3-ene-2,8-diol (12)

IR (ATR, cm⁻¹) 3377, 2923, 2854, 1717, 1553, 1453, 1366, 1285, 1247, 1094, 1071, 1027, 969, 734, 715, 698

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.28 (m, 5H), 5.64 (dt, J = 15.4, 6.5 Hz, 1H), 5.53 (dd, J = 15.4, 6.5, 1H), 4.53 (s, 2H), 4.26 (p, J = 6.4 Hz, 1H), 3.82 (p, J = 5.8 Hz, 1H), 3.74 (dt, J = 9.3, 4.9 Hz, 1H), 3.66 (dt, J = 9.2, 6.3 Hz, 1H), 2.08-2.01 (m, 2H), 1.77-1.72 (m, 2H), 1.58-1.39 (m, 4H), 1.25 (d, J = 6.4 Hz, 3H)

¹³C NMR (101 MHz, CDCl₃) δ 138.0, 134.6, 130.9, 128.6, 127.9, 127.8, 73.5, 71.5, 69.5, 69.1, 37.0, 36.5, 32.2, 25.2, 23.6

HRMS (ESI) m/z calcd. for $C_{17}H_{25}O_3$ [M-H]⁺ 277.1798, found: 277.1777

2-(2-(Benzyloxy)ethyl)-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran (13): General cyclization protocol B was followed with **12** (83 mg, 0.30 mmol), Re_2O_7 (7.2 mg, 0.015 mmol, 10% on SiO₂) and CH_2Cl_2 (3.0 ml). The

reaction mixture was directly loaded onto silica gel, then was purified by flash chromatography

(10% to 20% ethyl acetate in hexane) to give the diastereomeric products (66 mg, 86% yield, dr = 7.6:1). The mixture was purified again by flash chromatography (6% – 12% diethyl ether in hexanes) for characterization.

IR (ATR cm⁻¹) 2935, 2856, 1557, 1453, 1362, 1266, 1198, 1074, 1035, 965, 732, 697

¹H NMR (400 MHz, CDCl₃) δ 7.44-7.39 (m, 2H), 7.32-7.27 (m, 2H), 7.24-7.16 (m, 1H), 5.77 (dqd, J = 15.4, 6.1, 1.0 Hz, 1H), 5.70 (ddq, J = 15.4, 5.5, 1.3 Hz, 1H), 4.46 (s, 1H), 4.45 (s, 1H), 3.85-3.80 (m, 1H), 3.76 (ddd, J = 9.0, 7.8, 6.1 Hz, 1H), 3.64 (ddd, J = 9.1, 6.1, 5.6 Hz, 1H), 3.58-3.64 (m, 1H), 2.07-1.99 (m, 1H), 1.94-1.86 (m, 1H), 1.68 (dt, J = 6.2, 1.3 Hz, 3H), 1.56-1.50 (m, 1H), 1.50-1.37 (m, 4H), 1.28-1.18 (m, 1H)

¹³C NMR (101 MHz, CDCl₃) δ 138.9, 132.8, 128.5, 127.7, 127.6, 126.5, 78.2, 74.9, 73.0, 67.1, 36.8, 31.8, 31.6, 23.7, 18.0

HRMS (ESI) m/z calcd. for C₁₇H₂₅O₂ [M-H]⁺ 261.1849, found: 261.1830

Reagents and conditions a) PCC, Celite, CH₂Cl₂, 59%. Ethyl diazoacetate, SnCl₂, CH₂Cl₂, 0 °C, 76%. c) (*Z*)-Hex-3-ene-2,5-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 57%. d) LiAlH₄, THF, 40%.

Scheme 5. Synthesis of 14.

(*E*)-Dec-7-ene-1,3,9-triol (14): IR (ATR, cm⁻¹) 3338(broad), 2931, 2856, 1436, 1369, 1141, 1053, 969, 941, 865

¹H NMR (500 MHz, CDCl₃) δ 5.67-5.57 (m, 1H), 5.57-5.50 (m, 1H), 4.30-4.21 (m,1H), 3.93-3.84 (m, 2H), 3.84-3.77 (m, 1H), 2.51 (s, broad, 2H), 2.35-

2.15 (m, broad, 1H), 2.09-1.98 (m, 2H), 1.74-1.61 (m, 2H), 1.57-1.48 (m, 2H), 1.48-1.37 (m, 2H), 1.25 (d, *J* = 6.3 Hz, 3H)

 ^{13}C NMR (125 MHz, CDCl₃) δ 134.8, 134.7*, 130.63*, 130.62, 72.04*, 72.01, 69.0*, 68.97, 62.0*, 61.8, 38.4, 38.38*, 37.3*, 37.2, 32.1, 31.05*, 25.1, 23.6

HRMS (ESI) m/z calcd. for C₁₀H₁₉O₂ [M – OH]⁺ 171.1380, found 171.1379

 $\begin{array}{c} \textbf{2-((2R,6S)-6-((E)-Prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)ethan-1-ol} \\ \textbf{(15):} \\ \textbf{General cyclization protocol A was followed with 14 (17 mg, 0.090 mmol) and} \\ \textbf{Re}_2O_7 (10\% \text{ w/w on SiO}_2, 22 mg, 4.5 \mu\text{mol}) \text{ in CH}_2\text{Cl}_2 (0.9 \text{ mL}). \text{ The residue was} \\ \textbf{purified via silica gel flash column chromatography (10\% to 40\% EtOAc in hexanes) to yield alcohol 15 as an oil (13 mg, 85\%, dr > 30:1 cis:trans).} \end{array}$

IR (ATR, cm⁻¹) 3427 (broad), 2935, 2858, 1721, 1440, 1377, 1308, 1197, 1078, 1036, 967, 935; ¹H NMR (400 MHz, CDCl₃) δ 5.65 (dqd, J = 15.4, 6.4, 1.1 Hz, 1H), 5.47 (ddq, J = 15.4, 6.0, 1.5 Hz, 1H), 3.85-3.75 (m, 3H), 3.79 (dd, J = 6.0, 4.9 Hz, 1H) 3.62 (dddd, J = 11.0, 8.7, 3.3, 2.0 Hz, 1H), 2.94 (s, broad, 1H), 1.89-1.81 (m, 1H), 1.81-1.74 (m, 1H), 1.74-1.69 (m, 1H), 1.68 (ddd, J = 6.4, 1.4, 0.9 Hz, 3H), 1.64-1.58 (m, 1H), 1.58-1.48 (m, 2H), 1.39-1.24 (m, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 132.4, 126.6, 78.8, 78.5, 61.9, 38.2, 31.7, 31.4, 23.5, 17.9

¹³C NMR (100 MHz, CDCl₃) δ 132.4, 126.6, 78.8, 78.5, 61.9, 38.2, 31.7, 31.4, 23.5, 17.9 HRMS (ESI) *m*/*z* calcd. for C₁₀H₁₉O₂ [M + H]⁺ 171.1380, found 171.1382.

Reagents and conditions a) CH₃NO₂, KO*t*Bu, THF, *t*BuOH, 54%. b) 2,5-Hex-3-enediol, Grubbs-Hoveyda second generation catalyst, CH₂Cl₂, 63%.

Scheme 6. Synthesis of 16.

O₂N OH

(*E*)-9-Nitronon-3-en-2-ol (16) IR (ATR, cm⁻¹) 3357, 2925, 1548, 1421, 1382, 1207, 1139, 1058, 967, 935, 886, 723, 684

¹H NMR (500 MHz, CDCl₃) δ 5.62 (dt, *J* = 15.4, 6.5 Hz, 1H), 5.54 (dd, *J* = 15.4, 6.3 Hz, 1H), 4.44 (dd, *J* = 13.0, 3.0 Hz, 1H), 4.41-4.36 (m, 1H), 4.36-4.30 (m, 1H), 4.27 (p, *J* = 6.3 Hz, 1H), 2.72 (br. s, 1H), 2.13-2.03 (m, 2H), 1.62-1.45 (m, 4H), 1.26 (d, *J* = 6.4 Hz, 3H) ¹³C NMR (125 MHz, CDCl₃) δ 135.2, 129.9, 80.8, 68.9, 68.6, 33.2, 31.8, 24.8, 23.6 HRMS (ESI) *m*/*z* calcd. for C₉H₁₆O₄N [M-H]⁺ 202.1074, found: 202.1050

(E)-2-(Nitromethyl)-6-(prop-1-en-1-yl)tetrahydro-2H-pyran (17)

General cyclization protocol B was followed with **16** (105 mg, 0.51 mmol), Re_2O_7 (12.5 mg, 0.026 mmol, 10% on SiO₂) and CH_2Cl_2 (5 ml). The reaction

mixture was directly loaded onto silica gel, then purified by flash chromatography (6% to 12% ethyl acetate in hexane) to give the product (81 mg, 84% yield, dr = 13:1) as colorless oil. IR (ATR, cm⁻¹) 2941, 2861, 1552, 1439, 1377, 1338, 1267, 1223, 1201, 1103, 1073, 1032, 966, 947, 896, 881, 733, 702

¹H NMR (400 MHz, C₆D₆) δ 5.53 (dqd, *J* = 15.4, 6.4, 1.2 Hz, 1H), 5.49 (ddq, *J* = 15.4, 5.4, 1.6 Hz, 1H), 3.90 (dd, *J* = 12.3, 8.8 Hz, 1H), 3.73 (ddt, *J* = 11.4, 8.8, 2.8 Hz, 1H), 3.52-3.46 (m, 1H), 3.45 (dd, *J* = 12.3, 3.4 Hz, 1H), 1.46 (dt, *J* = 6.4, 1.2 Hz, 3H), 1.40-1.33 (m, 1H), 1.26-1.20 (m, 1H), 1.06-0.99 (m, 2H), 0.84-0.77 (m, 1H), 0.71-0.60 (m, 1H)

¹³C NMR (125 MHz, C₆D₆) δ 132.8, 126.5, 80.1, 78.5, 74.6, 31.9, 28.2, 23.5, 18.3 HRMS (ESI) m/z calcd. for C₉H₁₄O₃N [M-H]⁺ 184.0974, found: 184.0973

Reagents and conditions a) AcCl, *i*Pr₂NEt, trimethylsilyl quinidine, LiClO₄, Et₂O, CH₂Cl₂, -78 °C, 60%, dr = 92:8. b) NaOEt, EtOH, 55%. c) 2,5-Hex-3-enediol, Grubbs-Hoveyda second generation catalyst, CH₂Cl₂, 56%.

Scheme 7. Synthesis of 18.

(d, J = 6.7 Hz, 0.51 H)

Ethyl (3*R*,6*S*,*E*)-3,9-dihydroxy-6-methyldec-7-enoate (18)
IR (ATR, cm⁻¹) 3396, 2966, 2928, 2871, 1716, 1453, 1371, 1294, 1249, 1164,
1029, 971, 939, 853
¹H NMR (500 MHz, CDCl₃) (including both major diastereomers)
$$\delta$$
 5.53-5.45
(m, 2H), 4.30-4.23 (m, 1H), 4.18 (t, *J* = 7.1 Hz, 2H), 4.02-3.94 (m, 1H), 2.96 (d, *J* = 3.6 Hz, 0.51
H), 2.89 (d, *J* = 3.7 Hz, 0.49 H), 2.50 (dd, *J* = 16.4, 3.1 Hz, 1H), 2.42 (dd, *J* = 16.5, 3.1 Hz, 0.51
H), 2.39 (dd, *J* = 16.5, 3.1 Hz, 0.49 H), 2.16-2.08 (m, 1H), 1.53-1.33 (m, 4H), 1.28 (t, *J* = 7.2 Hz,
3H), 1.26 (d, *J* = 6.5 Hz, 0.49 H), 1.26 (d, *J* = 6.5 Hz, 0.51 H), 1.01 (d, *J* = 6.7 Hz, 0.49 H), 1.00

¹³C NMR (125 MHz, CDCl₃) (including both diastereomers) δ 173.2, 136.4, 133.2, 133.1, 69.1, 69.1, 68.2, 68.1, 60.9, 41.5, 36.3, 36.3, 34.3, 34.3, 32.6, 32.6, 23.7, 23.6, 20.7, 20.7, 14.3 HRMS (ESI) *m*/*z* calcd. for C₁₃H₂₄O₄Na [M+Na]⁺ 267.1567, found: 267.1583 [α]_D²² –2.4 (*c* 0.3, CHCl₃)

Ethyl 2-((2R,5S,6S)-5-methyl-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (19)

General cyclization protocol B was followed with **18** (76 mg, 0.31 mmol), Re₂O₇ (7.5 mg, 0.016 mmol, 10% on SiO₂) and CH₂Cl₂ (3.1 ml). The crude mixture was directly loaded onto silica gel, then purified by flash chromatography (10% to 20% ethyl acetate in hexane) to give the product diastereomers (55 mg, 77% yield, dr = 38:1). Then the mixture was purified again by flash chromatography (5% to 10% diethyl ether in hexanes) to give the pure product.

IR (ATR, cm⁻¹) 2927, 2874, 1734, 1450, 1370, 1340, 1300, 1251, 1227, 1190, 1065, 1029, 965, 934, 879

¹H NMR (500 MHz, C₆D₆) δ 5.58 (dq, J = 15.1, 6.5 Hz, 1H), 5.46 (ddq, J = 15.4, 7.3, 1.6 Hz, 1H), 3.95 (dq, J = 11.0, 7.1 Hz, 1H), 3.92 (dq, J = 10.9, 7.1 Hz, 1H), 3.84 (dddd, J = 11.1, 7.5, 5.6, 1.9, 1H), 3.28 (dd, J = 9.4, 7.5 Hz, 1H), 2.61 (dd, J = 15.1, 7.4 Hz, 1H), 2.28 (dd, J = 15.1, 5.7 Hz, 1H), 1.54 (ddd, J = 15.1, 12.9, 6.5 Hz, 1H), 1.51 (dd, J = 6.4, 1.3 Hz, 3H), 1.49-1.43 (m, 1H), 1.25-1.15 (m, 2H), 1.02-0.93 (m, 1H), 0.93 (t, J = 7.1 Hz, 3H), 0.66 (d, J = 6.6 Hz, 3H) ¹³C NMP (125 MHz, C, D) δ 171.4, 132.5, 128.3, 85.6, 74.7, 60.7, 42.5, 36.0, 33.3, 32.6, 18.5

¹³C NMR (125 MHz, C₆D₆) δ 171.4, 132.5, 128.3, 85.6, 74.7, 60.7, 42.5, 36.0, 33.3, 32.6, 18.5, 18.4, 14.8

HRMS (ESI) *m/z* calcd. for $C_{13}H_{23}O_3$ [M+H]⁺ 227.1642, found: 227.1650 [α]_D²² +9.7 (*c* 1.3, CHCl₃)

Reagents and conditions a) AcCl, iPr_2NEt , trimethylsilyl quinine, LiClO₄, Et₂O, CH₂Cl₂, -78 °C, 62%, dr = 10:1. b) NaOEt, EtOH, 67%. c) 2,5-Hex-3-enediol, Grubbs-Hoveyda second generation catalyst, CH₂Cl₂, 61%.

ЮH

Ethyl (3S,6S,E)-3,9-dihydroxy-6-methyldec-7-enoate (20)

IR (ATR, cm⁻¹) 3388, 2966, 2929, 2870, 1716, 1453, 1371, 1291, 1248, 1164, 1028, 971, 938, 852

^{HO^S} ¹H NMR (400 MHz, CDCl₃) (a mixture of diastereomers) δ 5.53-5.43 (m, 2H), 4.28-4.21 (m, 1H), 4.16 (q, J = 7.1 Hz, 2H), 4.02-3.93 (br. s, 1H), 2.49 (dd, J = 16.4, 3,0 Hz, 1H), 2.39 (dd, J = 16.3, 8.8, 0.57 H), 2.39 (dd, J = 16.5, 9.0 Hz, 0.43 H), 2.16-2.06 (m, 1H), 1.54-1.38 (m, 3H), 1.36-1.29 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.24 (d, J = 6.1 Hz, 3H), 0.99 (d, J = 6.7 Hz, 0.43 H), 0.98 (d, J = 6.7 Hz, 0.57 H)

¹³C NMR (101 MHz, CDCl₃) δ 173.2, 136.3, 133.1, 133.0, 69.0, 68.3, 60.8, 41.4, 36.4, 34.3, 34.3, 32.6, 23.7, 23.6, 20.6, 20.6, 14.1

HRMS(ESI) *m*/*z* calcd. for C₁₃H₂₄O₄Na [M+Na]⁺ 267.1567, found: 267.1582 $[\alpha]_D^{22}$ +26.4 (*c* 2.02, CHCl₃)

Ethyl 2-((2S,5S,6R)-5-methyl-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (21)

General cyclization protocol was followed with **20** (27 mg, 0.11 mmol), Re₂O₇ (2.7 mg, 0.006 mmol, 10% on SiO₂) and CH₂Cl₂ (1.1 ml). The reaction mixture was directly loaded onto silica gel, then purified by flash chromatography (10% to 20% ethyl acetate in hexane) to give the crude mixture (14 mg, 55% yield, dr = 2.9:1). The mixture was purified again by flash chromatography (5% to 10% diethyl ether in hexanes) to give separable diastereomers.

Major product (2,6-*cis*-diastereomer):

IR (ATR, cm⁻¹) 2954, 2923, 2854, 1732, 1457, 1378, 1285, 1121, 1072, 1007, 967, 911, 739, 699

¹H NMR (400 MHz, CDCl₃) δ 5.66 (dqd, J = 15.5, 6.5, 1.2 Hz, 1H), 5.44 (ddq, J = 15.4, 5.8, 1.5 Hz, 1H), 4.15 (q, J = 7.1 Hz, 1H), 4.15 (q, J = 7.1 Hz, 1H), 3.96 (d, J = 5.6 Hz, 1H), 3.81 (dddd, J = 10.1, 6.7, 6.7, 3.6 Hz, 1H), 2.61 (dd, J = 15.0, 6.7 Hz, 1H), 2.41 (dd, J = 15.0, 6.4 Hz, 1H), 1.86-1.75 (m, 1H), 1.69 (dt, J = 6.4, 1.3, 3H), 1.73-1.63 (m, 2H), 1.52-1.40 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H)

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 131.1, 126.4, 80.9, 74.9, 60.5, 41.9, 31.9, 30.7, 25.8, 18.0, 14.4, 12.0

HRMS (ESI) m/z calcd. for C₁₃H₂₃O₃ [M+H]⁺ 227.1642, found: 227.1650

 $[\alpha]_{D}^{22} - 8.1 \ (c \ 1.0, \text{CHCl}_{3})$

Minor product (2,6-*trans*-diastereomer)

IR (ATR, cm⁻¹) 2927, 2855, 1731, 1459, 1377, 1264, 1179, 1030, 732, 703

¹H NMR (400 MHz, CDCl₃) δ 5.68 (dqd, J = 15.4, 6.5, 0.8Hz, 1H), 5.44 (ddq, J = 15.4, 7.0, 1.5 Hz, 1H), 4.41-4.33 (m, 1H), 4.15 (q, J = 7.2 Hz, 1H), 4.15 (q, J = 7.2 Hz, 1H), 3.70 (t, J = 7.4 Hz, 1H), 2.76 (dd, J = 14.4, 8.1 Hz, 1H), 2.49 (dd, J = 14.4, 6.5 Hz, 1H), 1.84-1.76 (m, 1H), 1.74-1.69 (m, 1H), 1.71 (dd, J = 6.4, 1.0 Hz, 3H), 1.57-1.45 (m, 2H), 1.40-1.29 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H)

¹³C NMR (101 MHz, CDCl₃) δ 171.7, 131.2, 129.1, 77.9, 69.2, 60.6, 37.9, 34.1, 27.8, 26.5, 18.3, 18.0, 14.4

HRMS (ESI) *m*/*z* calcd. for C₁₃H₂₁O₃ [M-H]⁺ 225.1491, found: 225.1514 $[\alpha]_D^{22}$ +35.0 (*c* 0.3, CHCl₃)

(S)-4-Methylhex-5-enal (24)

Ozone was bubbled into a solution of (+)- β -citronellene (4.7 g, 34 mmol) in CH₂Cl₂ (200 mL) at -78 °C until starting material was consumed as monitored by TLC (eluent: 100% hexanes, stained with I₂, then anisaldehyde). Me₂S (5 mL) was added, and the resulting solution was warmed to rt slowly, and stirred for 7 h. The reaction mixture was concentrated directly and the residue was purified by flash chromatography (10% to 20% Et₂O in pentane) to afford aldehyde **24** (3.2 g, 84%).

IR (ATR, cm⁻¹) 3078, 2956, 2929, 2867, 1716, 1640, 1456, 1418, 1373, 1127, 994, 909, 681 ¹H NMR (300 MHz, CDCl₃) δ 9.78 (t, 1H, *J* = 1.7 Hz), 5.64 (ddd, *J* = 16.9, 10.5, 7.8 Hz, 1H), 5.05 - 4.90 (m, 2H), 2.44 (t, *J* = 7.4 Hz, 2H), 2.16 (sep, *J* = 6.0 Hz, 1H), 1.76 - 1.52 (m, 2H), 1.03 (d, *J* = 6.6 Hz, 3H)

¹³C NMR (101 MHz, CDCl₃) δ 202.4, 143.3, 113.8, 41.8, 37.5, 28.5, 20.2

These data match literature values.¹

(R)-4-((S)-3-methylpent-4-en-1-yl)oxetan-2-one (25)

A stirred solution of *O*-trimethylsilylquinidine² (1.27g, 3.20 mmol) and LiClO₄ (1.18g, 11.1 mmol) in CH₂Cl₂ (44.0 mL) and diethyl ether (22.0 mL) was cooled to - 78 °C. To this mixture was added *N*, *N*-diisopropylethylamine (freshly distilled from

NaOH, 7.16g, 55.4 mmol) followed by aldehyde **22** (2.49 g, 22.2 mmol). A solution of freshly distilled acetyl chloride (3.48g, 44.3 mmol) in CH₂Cl₂ (11 mL) was then added over 3 hours via syringe pump, taking care to place the tip of the needle in the reaction solution. Following addition of the acyl chloride, the reaction was stirred for 12 h at -78 °C until TLC showed complete consumption of the starting aldehyde. The reaction mixture was diluted with diethyl ether (200 mL) and allowed to warm to rt. The mixture was filtered through a plug of silica gel and concentrated *in vacuo* to give a clear oil. The oil was purified by silica gel column chromatography (0 to 15% EtOAc in hexanes) and concentrated to give β -lactone **23** as a clear colorless oil (2.50 g, 16.2 mmol, dr > 10:1, 73%).

IR (ATR, cm⁻¹) 3076, 2962, 2927, 2870, 1828, 1640, 1457, 1414, 1127, 996, 911

¹H NMR (300 MHz, CDCl₃) δ 5.67 (ddd, J = 17.4, 10.1, 7.6 Hz, 1H) 5.01 (m, 1H), 4.97 (m, 1H), 4.50 (dddd, J = 7.5, 4.3, 5.8, 5.8 Hz, 1H), 3.51 (dd, J = 5.8, 16.2 Hz, 1H), 3.07 (dd, J = 4.3, 16.2 Hz, 1H), 2.18 (septet, J = 6.9 Hz, 1H), 1.87 (dddd, J = 13.9, 10.5, 7.6, 5.3 Hz, 1H), 1.74 (dddd, J = 14.0, 10.5, 5.8, 5.8 Hz, 1H), 1.42 (m, 2H), 1.04 (d, J = 6.7 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃) δ 168.4, 143.6, 113.7, 71.3, 43.0, 37.5, 32.5, 31.5, 20.4 HRMS (ESI) m/z calcd. for C₉H₁₅O₂ [M + H]⁺ 155.1067, found 155.1062

 $[\alpha]_{D}^{22} + 37.7$ (c 0.56, CHCl₃)

(*S*,*E*)-2,4-dimethyl-6-((*R*)-4-oxooxetan-2-yl)hex-2-enal (26)

To a solution of β -lactone 23 (198 mg, 1.28 mmol) in CH₂Cl₂ (4 mL) under a nitrogen atmosphere was added freshly distilled methacrolein (1.79 g, 25.5 mmol, 1% w/w hydroquinone added) followed by Hoveyda Grubbs 2nd generation catalyst (7.9 mg, 0.013 mmol). A reflux condenser was then placed on the flask and the solution was heated to 50 °C with stirring for 18 h. The mixture was concentrated under reduced pressure and purified twice by silica gel flash column chromatography (once with 5% to 30% EtOAc in hexanes to separate the starting material from the product and homodimer, then with 0% to 3% EtOAc in CH₂Cl₂ to separate the product from the homodimer) to give aldehyde 26 as a viscous semi-solid (79 mg, 31%), recovered 25 (91 mg, leading to a 59% BRSM), and the homodimer of 25 (40 mg).

IR (ATR, cm⁻¹) 3060, 2963, 2929, 2858, 2718, 1826, 1684, 1640, 1457, 1414, 1124, 823, 737 cm⁻¹

¹H NMR (300 MHz, CDCl₃) δ 9.40 (s, 1H), 6.24 (dd, broad, J = 10.0, 1.2 Hz, 1H), 4.49 (dddd, J = 6.3, 6.3, 6.1, 4.5 Hz, 1H), 3.53 (dd, J = 16.3, 5.8 Hz, 1H), 3.06 (dd, J = 16.3, 4.3 Hz, 1H), 2.75 (dddq, J = 9.9, 9.9, 6.7, 6.7 Hz, 1H), 1.80-1.76 (m, 2H), 1.75 (d, J = 1.3 Hz, 3H), 1.59-1.52 (m, 2H), 1.11 (d, J = 6.7 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 195.3, 167.9, 158.5, 138.8, 70.9, 43.0, 33.2, 32.8, 31.9, 19.9, 9.6

¹ A. Fürstner, F. Feyen, H. Prinz, H. Waldmann, *Tetrahedron* **2004**, *60*, 9543.

² M. A. Calter, J. Org. Chem. **1996**, 61, 8006.

HRMS (ESI) *m*/*z* calcd. for C₁₁H₁₇O₃ [M + H]⁺ 197.1172, found 197.1170 $[\alpha]_D^{22}$ +18.7 (*c* 0.94, CHCl₃)

Ethyl (*R*)-2-((triisopropylsilyl)oxy)propanoate (S1)

To a stirred solution of (+)-D-ethyl lactate (7.64 g, 64.7 mmol) in DMF (65 mL) was added imidazole (8.9 g, 130 mmol) and the solution was cooled to 0 °C. To this mixture was added dropwise triisopropylsilyl chloride (13.8 g, 71.5 mmol) and the reaction was stirred for 12 h at rt. The mixture was diluted with water (50 mL) and hexane (300 mL). The organic layer was separated and the aqueous layer was extracted with hexanes (2 x

200mL). The organic layer was separated and the aqueous layer was extracted with nexanes (2 x 200mL). The combined organic layers were washed with water (3x) and brine, dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (0% to 10% EtOAc in hexanes) to afford the desired silyl ether **S1** (16.15 g, 91%).

IR (ATR, cm⁻¹) 2942, 2893, 2866, 1756, 1734, 1463, 1371, 1272, 1142, 1061, 970, 881, 677 ¹H NMR (500 MHz, CDCl₃) δ 4.42 (q, J = 6.7 Hz, 1H), 4.21 (dq, J = 10.8, 7.1 Hz, 1H), 4.16 (dq,

J = 10.8, 7.1 Hz, 1H), 1.43 (d, J = 6.9 Hz, 3H), 1.28 (t, J = 7.1 Hz, 1H), 1.16-1.00 (m, 21H)

¹³C NMR (125 MHz, CDCl₃) δ 174.4, 68.7, 60.8, 21.9, 18.0, 17.99, 14.3, 12.3

HRMS (ESI) m/z calcd. for C₁₄H₃₁O₃Si [M + H]⁺ 275.2037, found 275.2051

 $[\alpha]_{D}^{21}$ +17.5 (*c* 2.24, CHCl₃)

These data match literature values.³

(R)-2-((Triisopropylsilyl)oxy)propanal (28)

Dry toluene (125 mL) was charged with diisobutylaluminium hydride (1.2 M in other toluene, 36.8 mL, 44.2 mmol) and cooled to -78 °C while stirring under a nitrogen atmosphere. A solution of ethyl ester S1 in toluene (35 mL) was added dropwise over 90 minutes via syringe pump. Following addition, the reaction was allowed to stir for 1 h before quenching with 10 mL MeOH at -78 °C. After 10 minutes sat aq. Rochelle's salt solution (100 mL) was added and the mixture was allowed to warm to rt and stirred until the organic layer was clear. The layers were separated, and the aqueous layer was extracted with Et₂O (2x 50 mL). The combined organic layers were washed with sat. aq. NaHCO₃ and brine, dried over Na₂SO₄, filtered and concentrated to yield crude aldehyde 26 as a clear colorless oil (7.60 g, 94%).

¹H NMR (500 MHz, CDCl₃) δ 9.66 (d, J = 1.7 Hz, 1H), 4.18 (dq, J = 6.8, 1.7 Hz, 1H), 1.31 (d, J = 6.8 Hz, 3H), 1.16-1.04 (m, 21H)

¹³C NMR (125 MHz, CDCl₃) δ 204.7, 74.0, 19.1, 18.0, 12.3

 $[\alpha]_{D}^{22}$ +9.1 (*c* 2.80, CHCl₃)

These data match literature values.⁴

(S,E)-4-Isopropyl-3-(2-methylpent-2-enoyl)oxazolidin-2-one (S2)

To a stirred solution of (*E*)-methyl-2-pentenoic acid (8.32 g, 72.8 mmol) in THF (350 mL) was added triethylamine (19.66 g, 194.3 mmol) and the mixture was cooled to -78 °C. Trimethyl acetyl chloride (9.15 g, 75.9 mmol) was added slowly

³ For the enantiomer, see: K. C. Nicolaou, H. J. Mitchell, N. F. Jain, T. Bando, R. Hughes, N. Winssinger, S. Natarajan, A. E. Koumbis, *Chem. Eur. J.* **1999**, *5*, 2648.

⁴ E. Richmond, K. B. Ling, N. Duguet, L. B. Manton, N. Celebi-Olcum, Y.-H. Lam, S. Alsancak, A. M. Z. Slawin, K. N. Houk, A. D. Smith, *Org. Biomol. Chem.* **2015**, *13*, 1807.

over ten minutes. The mixture was allowed to warm to rt and was stirred for 60 min. LiCl (3.69 g, 84.99 mmol) and (S)-4-isopropyloxazolidin-2-one (7.84 g, 60.70 mmol) were added in a single portion along with additional THF (50 mL). The mixture was stirred until TLC indicated consumption of starting material (65 h) and was guenched with 1:1 water:sat. aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (0% to 30% EtOAc in hexanes) to afford the desired oxazolidinone S2 (12.8 g, 94%).

¹H NMR (400 MHz, CDCl₃) δ 6.08 (tq, J = 10.7, 1.2 Hz, 1H), 4.55-4.49 (m, 1H), 4.32 (t, J = 8.9 Hz, 1H), 4.18 (dd, J = 8.9, 5.5 Hz, 1H), 2.43-2.31 (m, 1H), 2.21 (p, J = 7.5 Hz, 1H), 1.90 (d, J = 0.78 Hz, 3H), 1.06 (t, J = 7.5 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.4 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 172.1, 153.8, 141.3, 130.4, 63.5, 58.4, 28.3, 21.8, 18.0, 15.1, 13.6, 12.9

 $[\alpha]_D^{21}$ +75.2 (*c* 5.11, CHCl₃)

These data match literature values.⁵

(S)-3-((1E,3E)-1-((tert-Butyldimethylsilyl)oxy)-2-methylpenta-1,3-dien-1-yl)-4isopropyloxazolidin-2-one (27)

To a stirred solution of oxazolidinone S2 (5.62 g, 25.0 mmol) in THF (166 mL) at -78 °C was added NaHMDS (37.4 mL, 37.4 mmol, 1.0 mol/L in THF) slowly over five minutes. The solution was stirred for 135 min, then TBSCI (freshly distilled,

11.28 g, 74.85 mmol) in THF (20 mL) was added via cannula over ten minutes at -78 °C and the mixture was stirred for an additional 120 min. The reaction was quenched with sat. aq. NH₄Cl and warmed to rt. The layers were separated and the aqueous layer was extracted 2x with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified via flash column chromatography (0% to 5% to 10% EtOAc in hexanes). The product co-eluted with unidentified silane impurities, which were removed with a Kugelrohr at 70 to 80 °C under high vacuum (3-5 mmHg) to vield vinvlketene silvl N,O-acetal (25) as a viscous clear oil (6.47 g, 76%).

¹H NMR (400 MHz, CDCl₃) δ 6.22 (d, broad, J = 15.5 Hz, 1H), 5.64 (dq, J = 15.5, 6.7 Hz, 1H), 4.32 (t, broad, J = 9.0 Hz, 1H), 4.13 (t, broad, J = 8.4 Hz, 1H), 4.05-3.95 (m, 1H), 2.01-1.89 (m, 1H), 1.83-1.75 (m, 6H), 0.98 (s, 9H), 0.95-0.92 (m, 6H), 0.20 (s, 3H), 0.15 (s, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 156.0, 134.8, 128.2, 124.4, 115.1, 64.5, 59.5, 29.5, 26.6, 25.8, 18.9, 18.4, 16.4, 12.4, -3.5, -4.8

These data match literature values.⁵

(S)-3-((4S,5R,6R,E)-5-Hydroxy-2,4-dimethyl-6-

((triisopropylsilyl)oxy)hept-2-enoyl)-4-isopropyloxazolidin-2-one (29) A stirred solution of aldehyde **28** (4.79 g, 20.8 mmol) in CH₂Cl₂ (50 mL)

was cooled to -78 °C and TiCl₄ (10.4 mL, 10.4 mmol, 1.0 mol/L in CH₂Cl₂) was added dropwise. Vinylketene silyl N,O-acetal (27) (3.52 g, 10.4 mmol) was dissolved in CH₂Cl₂ (50 mL) and cooled to -78 °C. This solution was added dropwise via

⁵ C. Jahns, T. Hoffmann, S. Müller, K. Gerth, P. Washausen, G. Höfle, H. Reichenbach, M. Kalesse, R. Müller, Angew. Chem. Int. Ed. 2012, 51, 5239.

cannula to the aldehyde/TiCl₄ solution. The resulting mixture was allowed to warm to -40 °C. After stirring for 20 h, sat. aq. potassium sodium tartrate and sat. aq. NaHCO₃ were added in a 1:1 ratio and the mixture was stirred until the organic layer was clear. The layers were separated, and the aqueous layer was extracted 2x with diethyl ether. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified via silica gel flash column chromatography (5% to 20% EtOAc in hexanes) to afford **29** as a clear oil (3.38 g, 71%).

¹H NMR (500 MHz, CDCl₃) δ 6.00 (dd, broad, J = 9.7, 1.3 Hz, 1H), 4.52 (ddd, J = 8.8, 5.2, 4.5 Hz, 1H), 4.31 (t, J = 8.9 Hz, 1H), 4.17 (dd, J = 9.0, 5.5 Hz, 1H), 4.04 (dq, J = 6.1, 4.5 Hz, 1H), 3.20 (ddd, J = 6.3, 6.3, 4.3 Hz, 1H), 2.72-2.63 (m, 1H), 2.66 (d, J = 6.6 Hz, 1H), 2.36 (dqq, J = 7.0, 7.0, 4.5 Hz, 1H), 1.92 (d, J = 1.3 Hz, 3H), 1.25 (d, J = 6.1 Hz, 3H), 1.11-1.06 (m, 21H), 1.08-1.05 (m, 3H), 0.93 (d, J = 7.4 Hz, 3H), 0.91 (d, J = 7.4 Hz, 3H) These data match literature values.⁶

ОН

(S)-4-Isopropyl-3-((4S,5R,6R,E)-5-methoxy-2,4-dimethyl-6-((triisopropylsilyl)oxy)hept-2-enoyl)oxazolidin-2-one (S3)

To a stirred solution of **29** (1.48 g, 3.07 mmol) and 4 Å molecular sieves (2 g) in CH₂Cl₂ (30 mL) was added Proton-sponge® (1.97 g, 9.20 mmol) and

Me₃OBF₄ (1.36 g, 9.20 mmol). The reaction was stirred at room temperature while being protected from light for 28 h. Aqueous NaHCO₃ was added and the reaction was stirred for 10 min before filtering through Celite. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with 1 N aq HCl solution and brine, dried over MgSO₄, filtered and concentrated. The resulting residue was suspended in EtOAc and filtered through Celite, and concentrated again, and purified via silica gel flash column chromatography (0% to 20% EtOAc in hexanes) to yield methyl ether **S3** as an oil (1.25 g, 87%).

IR (ATR, cm⁻¹) 2963, 2940, 2866, 1784, 1681, 1463, 1365, 1298, 1200, 1093, 1010, 881, 679 ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, broad, J = 9.9, 1.4 Hz, 1H), 4.47 (ddd, J = 8.7, 4.4, 4.4 Hz, 1H), 4.30 (dd, J = 8.9, 8.9 Hz, 1H), 4.18 (dd, J = 8.9, 4.8 Hz, 1H), 4.08 (dq, J = 6.2, 6.1 Hz, 1H), 3.46 (s, 3H), 3.03 (dd, J = 3.8, 5.3 Hz, 1H), 2.76 (dqd, J = 9.6, 6.9, 4.0 Hz, 1H), 2.42 (dqq, J = 7.0, 7.0, 4.2 Hz, 1H), 1.92 (d, J = 1.4 Hz, 3H), 1.18 (d, J = 6.2 Hz, 3H) 1.10-1.05 (m, 21H), 1.03 (d, J = 6.9 Hz, 1H), 0.93 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 172.1, 153.6, 142.4, 128.7, 87.9, 69.6, 63.5, 60.5, 58.7, 34.1, 28.5, 19.8, 18.4, 18.3, 18.1, 15.1, 14.4, 13.8, 12.8

HRMS (ESI) m/z calcd. for C₂₅H₄₈O₅NSi [M + H]⁺ 470.3296, found 470.3301 [α]_D²¹ +31.1 (*c* 0.63, CHCl₃)

OMe (4S,5R,6R,E)-5-Methoxy-2,4-dimethyl-6-((triisopropylsilyl)oxy)hept-2-en-1-ol (S4)

 I_{OTIPS} To a stirred solution of **S3** (3.42 g, 7.27 mmol) in Et₂O (30 mL) was added MeOH (0.35 g, 11 mmol) and the solution was cooled to 0 °C. LiBH₄ (5.5 mL, 11 mmol, 2.0 mol/L in THF) was added slowly over five min. The reaction was stirred for 45 min at which

⁶ M. Shinoyama, S.-i. Shirokawa, A. Nakazaki, S. Kobayashi, Org. Lett. 2009, 11, 1277.

time TLC indicated starting material consumption. Sat. aq. NH₄Cl was added along with some water to dissolve any solid. The layers were separated and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified via silica gel flash column chromatography (5% EtOAc in hexanes) to yield alcohol (S4) as an oil (2.38 g, 95%).

IR (ATR, cm⁻¹) 3420, 2961, 2945, 2859, 1458, 1379, 1263, 1093, 1034, 927, 734, 680

¹H NMR (400 MHz, CDCl₃) δ 5.46 (dq, J = 9.6, 1.2 Hz, 1H), 4.06 (dq, J = 6.3, 4.8 Hz, 1H), 3.99 (d, J = 6.2 Hz, 2H), 3.44 (s, 3H), 2.91 (dd, J = 6.3, 4.7 Hz, 1H), 2.64 (ddq, J = 9.5, 6.7, 6.6 Hz, 1H), 1.69 (d, J = 1.2 Hz, 3H), 1.22 (t, J = 6.3 Hz, 1H), 1.16 (d, J = 6.3 Hz, 3H), 1.11-1.06 (m, 21H), 0.99 (d, J = 6.8 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 132.4, 130.8, 89.2, 69.5, 69.4, 60.1, 33.6, 19.4, 18.3, 18.3, 16.6, 13.8, 12.7

HRMS (ESI) m/z calcd. for C₁₉H₄₁O₃Si [M + H]⁺ 345.2820, found 345.2803 [α]_D²² +7.4 (*c* 7.87, CHCl₃)

((triisopropylsilyl)oxy)non-4-enoyl)oxazolidin-2-one (S5)

^{OTIPS} In a round bottom flask, alcohol **S4** (0.900 g, 2.61 mmol) was dissolved in diethyl ether (28 mL) and CH₃CN (7 mL) and cooled to 0 °C. Triphenylphosphine (1.025 g, 3.91 mmol), imidazole (0.266 g, 3.91 mmol) were added and the solution was stirred until all reagents had solubilized. Iodine (0.861 g, 3.39 mmol) was added to the solution in two portions over 10 minutes. The reaction was allowed to warm to rt, and stirred for 45 min, until alcohol **S4** was consumed as determined by TLC. Saturated aqueous Na₂S₂O₃ was added and the mixture was stirred for 15 min. The layers were separated and the aqueous layer was extracted twice with EtOAc. The organic layers were combined, washed with sat. aq. NH₄Cl and brine, dried over MgSO₄, filtered and concentrated. The crude oil-solid mixture was loaded onto a silica plug and eluted with hexanes:EtOAc (98:2, v:v). The fractions were concentrated and allylic iodide **28** was used immediately in the next reaction.

A solution of NaHMDS (3.9 mL, 3.9 mmol, 1 mol/L in THF) in THF (4 mL) at -78 °C was slowly added via cannula a solution of (*R*)-4-benzyl-3-propionyloxazolidin-2-one (0.913 g, 3.92 mmol) in THF (4 mL) at -78 °C. The solution was stirred for 30 min and then to it was added via cannula a solution of allylic iodide (~2.61 mmol) in THF (5 mL). The solution was stirred at -78 °C for 135 min and then warmed to -40 °C and stirred for an additional 105 min. The reaction was quenched with sat. aq. NH₄Cl and warmed to rt. The layers were separated and the aqueous layer was extracted with EtOAc (3x). The organic layers were washed with sat. aq. Na₂S₂O₃ and brine, dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified via silica gel flash column chromatography (0% to 20% EtOAc in hexanes) to yield **S5** as a viscous oil (0.897 g, 61% over two steps).

IR (ATR, cm⁻¹) 2964, 2939, 2866, 1777, 1698, 1455, 1383, 1208, 1090, 882, 734, 701

¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.3 Hz, 2H), 7.28 (t, *J* = 6.7 Hz, 1H), 7.22 (d, *J* = 7.1 Hz, 2H), 5.32 (d, broad, *J* = 9.4 Hz, 1H), 4.69 (dddd, *J* = 9.7, 7.6, 3.3, 2.9 Hz, 1H), 4.23-4.15 (m, 1H), 4.19-4.10 (m, 1H), 4.06-3.99 (m, 1H), 4.02-3.93 (m, 1H), 3.45 (s, 3H), 3.31 (dd, *J* = 13.4, 3.2 Hz, 1H), 2.89 (t, *J* = 5.1 Hz, 1H), 2.70 (dd, *J* = 13.3, 9.9 Hz, 1H), 2.67-2.58 (m, 1H), 2.55 (dd, *J* = 13.1, 6.2 Hz, 1H), 2.01 (dd, *J* = 13.1, 8.2 Hz, 1H), 1.69 (d, *J* = 0.9 Hz, 3H), 1.17 (d, *J* = 6.4 Hz, 3H), 1.14 (d, *J* = 6.8 Hz, 3H), 1.10-1.05 (m, 21H), 0.93 (d, *J* = 6.8 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 177.3, 153.3, 135.6, 132.6, 130.1, 129.6, 129.1, 127.5, 89.7, 69.9, 66.1, 60.5, 55.6, 44.2, 38.3, 35.9, 33.8, 20.0, 18.4, 18.3, 16.6, 16.0, 15.7, 12.8 HRMS (ESI) m/z calcd. for C₃₂H₅₄O₅NSi [M + H]⁺ 560.3766, found 560.3744 $[\alpha]_{D}^{21}$ -20.5 (c 8.08, CHCl₃)

(2S,6S,7R,8R,E)-7-Methoxy-2,4,6-trimethyl-8-((triisopropylsilyl)oxy)non-4-en-1-ol (S6)

To a stirred solution of S5 (0.897 g, 1.60 mmol) in Et₂O (6.4 mL) was added MeOH (0.076 g, 2.4 mmol). The mixture was cooled to 0 °C then LiBH₄ (1.2 mL, 2.4 mmol, 2.0 mol/L in THF) was added slowly over five min. The reaction was stirred for 105 min until TLC indicated consumption of the starting material. NaOH (2.8 mL, 3M) was added and the solution was warmed slowly to rt. The mixture was diluted with EtOAc and water. The layers were separated and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was purified via silica gel flash column chromatography (1% to 10% EtOAc in hexanes) to yield alcohol (S6) as an oil (0.55 g, 88%).

IR (ATR, cm⁻¹) 3417, 2943, 2868, 1463, 1382, 1265, 1093, 883, 740

¹H NMR (500 MHz, CDCl₃) δ 5.25 (d, broad, J = 9.4 Hz, 1H), 4.04 (dq, J = 6.3, 5.9 Hz, 1H), 3.54-3.48 (m, 1H), 3.45 (s, 3H), 3.45-3.39 (m, 1H), 2.89 (t, J = 5.3 Hz, 1H), 2.62 (ddg, J = 9.4, 6.7, 6.3 Hz, 1H), 2.05 (dd, J = 12.4, 6.4 Hz, 1H), 1.91-1.82 (m, J = 6.6 Hz, 1H), 1.83 (dd, J = 12.4, 7.1 Hz, 1H), 1.63 (d, J = 1.1 Hz, 3H), 1.43-1.37 (m, broad, 1H), 1.17 (d, J = 6.4 Hz, 3H), 1.12-1.04 (m, 21H), 0.96 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 131.7, 131.1, 89.7, 69.7, 68.7, 60.4, 44.7, 33.9, 33.8, 19.8, 18.4, 18.3, 17.1, 16.3, 16.1, 12.8

HRMS (ESI) m/z calcd. for C₂₂H₄₇O₃Si [M + H]⁺ 387.3289, found 387.3291 $[\alpha]_{D}^{22}$ +6.2 (*c* 4.13, CHCl₃)

H ((triisopropylsilyl)oxy)non-4-enal (S7) To a solution of alcohol S6 (0.37 g, 1.0 mmol) in CH₂Cl₂ (10 mL) was added NaHCO₃ (1.01 g, 12.0 mmol) and the mixture was cooled to 0 °C. Dess-Martin periodinane (0.721 g, 1.70 mmol) was added and the reaction was stirred until TLC showed consumption of the starting alcohol (1.5 h). The mixture was filtered through a silica gel plug eluting with (10% EtOAc in hexanes). The fractions were concentrated to give aldehyde (S7) (0.28 g, 76%)

IR (ATR, cm⁻¹) 2936, 2866, 1727, 1459, 1382, 1092, 1000, 911, 882, 732, 677

¹H NMR (500 MHz, CDCl₃) δ 9.62 (d, J = 2.1 Hz, 1H), 5.28 (dq, J = 9.3, 1.2 Hz, 1H), 4.04 (dq, J = 6.2, 5.3 Hz, 1H), 3.44 (s, 3H), 2.88 (t, J = 5.2 Hz, 1H), 2.61 (ddq, J = 9.6, 6.7, 6.3 Hz, 1H), 2.53 (dqd, J = 13.8, 7.2, 2.1 Hz, 1H), 2.42 (dd, broad, J = 13.8, 6.9 Hz, 1H), 1.99 (dd, broad, J = 13.8, 7.2, 2.1 Hz, 1H), 2.42 (dd, broad, J = 13.8, 6.9 Hz, 1H), 1.99 (dd, broad, J = 13.8, 1H), 1.99 (dd, broad J = 6.9 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 205.3, 132.4, 129.3, 89.6, 69.7, 60.4, 44.7, 41.2, 33.9, 19.7, 18.4, 18.3, 16.3, 16.1, 13.5, 12.8

HRMS (ESI) m/z calcd. for C₂₂H₄₅O₃Si [M + H]⁺ 385.3133, found 385.3148 $[\alpha]_{D}^{22}$ +13.2 (*c* 0.82, CHCl₃)

Triisopropyl(((2R,3R,4S,8S,E)-3-methoxy-4,6,8-trimethyldec-5-en-9-yn-OMe 2-yl)oxy)silane (31) **OTIPS** Ohira-Bestmann reagent The (dimethyl (1-diazo-2oxopropyl)phosphonate)⁷ (0.56 g, 2.9 mmol) was dissolved in THF (9.6 mL) and cooled to -78 °C.⁸ To this solution was added freshly made sodium methoxide (1.95 mL, 2.89 mmol, 1.48 mol/L solution in MeOH). The solution was stirred for 15 min and then aldehyde S7 (0.28 g, 0.76 mmol) in THF (3.3 mL) was added via cannula at -78 °C. The resulting solution was allowed to slowly warm to -40 °C over 45 min until TLC showed consumption of the aldehyde. The reaction was quenched with sat. aq. NH₄Cl and the layers were separated. The aqueous layer was extracted 3x with EtOAc, and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The resulting residue was purified via silica gel flash column chromatography (0% to 5% EtOAc in hexanes) to yield the desired alkyne 31 (0.268 g, 96%).

IR (ATR, cm⁻¹) 3313, 2932, 2866, 1460, 1381, 999, 882

¹H NMR (500 MHz, CDCl₃) δ 5.28 (dq, *J* =9.4, 1.2 Hz, 1H), 4.04 (dq, *J* = 6.3, 5.3 Hz, 1H), 3.45 (s, 3H), 2.89 (t, *J* = 5.3 Hz, 1H), 2.65-2.58 (m, 1H), 2.63-2.56 (m, 1H), 2.19 (ddd, *J* = 13.4, 7.7, 0.8 Hz, 1H), 2.06 (ddd, *J* = 13.3, 7.2, 0.7 Hz, 1H), 2.03 (d, *J* = 2.4 Hz, 1H), 1.63 (d, *J* = 1.3 Hz, 3H), 1.17 (d, *J* = 6.3 Hz, 3H), 1.16 (d, *J* = 6.9 Hz, 3H), 1.10-1.06 (m, 21H), 0.97 (d, *J* = 6.8 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 132.0, 130.1, 89.7, 89.3, 69.8, 68.4, 60.4, 47.0, 33.8, 24.5, 20.7, 19.8, 18.4, 18.3, 16.3, 16.1, 12.8

HRMS (ESI) m/z calcd. for C₂₂H₄₅O₃Si [M + H]⁺ 381.3183, found 381.3163 [α]_D²¹ +4.7 (*c* 0.55, CHCl₃)

Ethyl (3*R*,6*S*,7*E*,10*E*,12*S*,14*E*,16*S*,17*R*,18*R*)-3,9dihydroxy-17-methoxy-6,8,12,14,16-pentamethyl-18-((triisopropylsilyl)oxy)nonadeca-7,10,14-trienoate (32)

PS To a solution of alkyne **31** (0.248 g, 0.651 mmol) in CH_2Cl_2

(2.2 mL) under argon at rt was added zirconocene hydrochloride (0.192 g, 0.745 mmol). The mixture was stirred at rt for 15 min until a homogenous solution formed, then was placed in a -78 °C bath for 5 min. Dimethyl zinc (0.65 mL, 0.78 mmol, 1.2 M in toluene) was added slowly over 5 min. The reaction mixture was stirred for 20 min and warmed slightly, before being placed back in the -78 °C bath. Aldehyde **26** (0.169 g, 0.861 mmol) in CH₂Cl₂ (2.2 mL) was added and the reaction was placed in a 0 °C ice bath 1 h. The reaction was placed in a -15 °C freezer for 16h, then placed in a 0 °C ice bath for an additional 5.5 h. The reaction mixture was transferred slowly via cannula at 0 °C to a freshly prepared solution of sodium ethoxide (0.045 g Na, 1.95 mmol in 13 mL EtOH). the reaction was allowed to stir for 10 min before being quenched with 10 mL sat. aq. NH₄Cl solution. The mixture was warmed to rt and diluted with 10 mL EtOAc and 3 mL H₂O. The reaction mixture was filtered through silica gel eluting with EtOAc to clear an emulsion, and the layers were separated. The aqueous layer was extracted 3x with EtOAc. The combined organic

⁷ S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, *Synlett* **1996**, *1996*, 521

⁸ Low temperature protocol: B. M. Trost, J. D. Sieber, W. Qian, R. Dhawan, Z. T. Ball, *Angew. Chem. Int. Ed.* **2009**, *48*, 5478-5481.

layers were washed with brine, dried over MgSO₄, filtered and concentrated. The resulting residue was purified via silica gel column chromatography (0 to 15 to 30% EtOAc in hexanes) to yield as allylic alcohol **32** (0.294 g, 72%) as a mixture of two diastereomers.

IR (ATR, cm⁻¹) 3446, 2961, 2929, 2868, 1720, 1458, 1375, 1216, 1095

¹H NMR (500 MHz, CDCl₃) *denotes signals with distinct diastereomer peaks δ 5.59 (dd, broad, J = 15.5, 7.3 Hz, 1H), 5.41 (dd, broad, J = 15.5, 6.4 Hz, 1H), 5.22 (2* d, broad, J = 9.5 Hz, 1H), 5.19 (d, broad, J = 9.4 Hz, 1H), 4.42 (d, J = 6.3 Hz, 1H), 4.18 (g, J = 7.1 Hz, 2H), 4.02 (dg, J = 7.1 5.7, 6.2 Hz, 1H), 4.00-3.94 (m, 1H), 3.44 (s, 3H), 2.93 (m, broad, 1H), 2.87 (2^* t, J = 5.2 Hz, 1H), 2.64-2.54 (m, 1H), 2.52-2.44 (m, 1H), 2.44-2.37 (m, 1H), 2.40-2.29 (m, 2H), 2.04-1.97 (m, 1H), 1.93-1.86 (m, 1H), 1.60-1.56 (m, 6H), 1.54-1.45 (m, 2H), 1.44-1.38 (m, 2H), 1.38-1.34 (m,1H), 1.28 (t, J = 7.1 Hz, 3H), 1.16 (2* d, J = 6.3 Hz, 3H), 1-10-1.05 (m, 21H), 0.99-0.96 (m, 3H), 0.96-0.94 (m, 3H), 0.94-0.92 (m, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 173.2, 138.2*, 138.1, 135.7, 135.6*, 132.1, 131.9*, 131.22, 131.21*, 131.17, 129.16*, 129.0, 89.8, 78.3, 78.2*, 69.8, 68.2, 60.8, 60.4, 47.7, 41.4, 34.6, 34.5, 34.4*, 33.7, 33.3*, 33.2, 32.1*, 32.0, 21.2*, 21.17, 20.16, 20.07*, 19.9*, 19.8, 18.4, 18.3, 16.34*, 16.31, 16.12, 16.10*, 14.3, 12.8, 12.6*, 12.5

HRMS (ESI) m/z calcd. for C₃₆H₆₈O₆SiNa [M + Na]⁺ 647.4677, found 647.4663 $[\alpha]_{D}^{22}$ -4.1 (c 0.86, CHCl₃)

14,15-Desoxy (+)-herboxidiene ethyl ester (33)

 $\begin{array}{c} \text{OMe} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{methylene chloride (5.4 mL) at rt was added Re₂O₇ (13.1 mg, 10.1 mmode) \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{methylene chloride (5.4 mL) at rt was added Re₂O₇ (13.1 mg, 10.1 mmode) \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a solution of bis allylic alcohol 30 (0.170 g, .272 mmol) in} \\ \text{To a$ 2.72 µmol, 10% w/w on SiO₂) and the mixture was stirred for

68 h. At the 22 h and 48 h mark, additional portions of Re₂O₇ (13.1 mg 6.56 µmol, 10% w/w on SiO₂) were added to increase the rate of silvl ether cleavage. The mixture was filtered through a short path of silica gel (~2 cm) eluting with DCM. The solvent was removed under vacuum, and the resulting crude material was purified by silica gel column chromatography (5% to 30%) EtOAc in hexanes) to yield **33** as a clear oil (0.101 g, 82%).

IR (ATR, cm⁻¹) 3475, 2968, 2927, 2871, 1735, 1455, 1371, 1194, 1091, 1069, 1031, 966, 737 ¹H NMR (500 MHz, CDCl₃) δ 6.18 (ddd, J = 15.1, 10.8, 0.9 Hz, 1H), 5.90 (d, J = 10.7 Hz, 1H), 5.53 (dd, J = 14.9, 7.3 Hz, 1H), 4.97 (dd, J = 9.6, 0.9 Hz, 1H), 4.14 (dq, J = 10.9, 7.1, Hz, 1H), 4.11 (dg, J = 10.9, 7.1, Hz, 1H), 3.79-3.74 (m, 1H), 3.72 (gd, J = 6.4, 4.3 Hz, 1H), 3.51 (s, 3H), 3.33 (d, J = 9.9 Hz, 1H), 2.71 (dd, J = 6.8, 4.1 Hz, 1H), 2.69-2.61 (m, 1H), 2.58 (dd, J = 15.1, 6.2)Hz, 1H), 2.43-2.36 (m, 1H), 2.39 (dd, J = 15.1, 6.9 Hz, 1H), 2.21-2.06 (s, broad, 1H), 2.02 (dd, J = 13.2, 7.3 Hz, 1H), 1.92 (dd, J = 13.3, 7.5 Hz, 1H), 1.84 (qd, J = 12.8, 3.4 Hz, 1H), 1.71 (d, J =1.0 Hz, 3H), 1.69-1.66 (m, 1H), 1.61 (d, J = 1.6 Hz, 3H), 1.59-1.48 (m, 1H), 1.39-1.28 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H), 1.24-1.17(m, 1H), 1.20 (d, J = 6.5 Hz, 3H), 0.96 (d, J = 6.7, 3H), 0.95 (d, J = 6.7 Hz, 3H), 0.69 (d, J = 6.7 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 171.6, 140.4, 134.5, 133.8, 129.8, 128.5, 124.2, 90.7, 89.9, 74.08, 68.1, 61.6, 60.4, 47.8, 41.8, 35.1, 35.0, 32.5, 32.3, 31.8, 20.6, 20.2, 17.8, 16.7, 16.4, 14.4, 12.2 HRMS (ESI) m/z calcd. for C₂₇H₄₇O₅ [M + H]⁺ 451.3418, found 451.3400 $[\alpha]_{D}^{22}$ +11.9 (c 1.23, CHCl₃)

the mixture was cooled to -78 °C. *t*-BuOOH (0.150 mL, 0.83 mmol, 5.5 mol/L in decane) was added and the mixture was put in a -15 °C freezer for 15 h. The reaction was placed in an ice bath and quenched with 1 mL Me₂S, and was stirred for 1 h. The mixture was concentrated under reduced pressure and the residue was purified via silica gel flash column chromatography (10% to 50% EtOAc in hexanes) to yield herboxidiene ethyl ester as an oil (83 mg, 64%).

IR (ATR, cm⁻¹) 3516, 3051, 2973, 2929, 2872, 2852, 1735, 1456, 1384, 1272, 1195, 1158, 1092, 1068, 1032, 968, 737, 703

¹H NMR (500 MHz, CDCl₃) δ 6.23 (dd, J = 15.0, 10.9 Hz, 1H), 5.88 (d, J = 10.8 Hz, 1H), 5.43 (dd, J = 15.0, 8.8 Hz, 1H), 4.13 (dq, J = 10.9, 7.1 Hz, 1H), 4.10 (dq, J = 10.9, 7.1 Hz, 1H), 3.85 (p, J = 6.2 Hz, 1H), 3.80-3.72 (m, 1H), 3.53 (s, 3H), 3.32 (d, J = 9.8 Hz, 1H), 2.97 (t, J = 5.4 Hz, 1H), 2.57 (dd, J = 15.2, 6.1 Hz, 1H), 2.55 (d, J = 9.7 Hz, 1H), 2.55 (m, OH, 1H), 2.45-2.37 (m, 1H), 2.38 (dd, J = 15.1, 6.9 Hz, 1H), 1.89 (dd, J = 13.6, 4.7 Hz, 1H), 1.84 (dq, J = 13.1, 3.4 Hz, 1H), 1.70 (s, 3H), 1.69-1.66 (m, 1H), 1.60-1.50 (m, 1H), 1.55-1.46 (m, 1H), 1.41-1.28 (m, 1H), 1.28 (s, 3H), 1.27-1.21 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.21-1.19 (m, 1H), 1.18 (d, J = 6.5 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H), 0.66 (d, J = 6.6 Hz, 3H) ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 139.3, 135.4, 128.2, 125.3, 90.7, 87.7, 74.0, 68.4, 66.2,

C NMR (125 MHz, CDCl₃) 6 1/1.5, 139.3, 135.4, 128.2, 125.3, 90.7, 87.7, 74.0, 68.4, 60.2, 61.4, 61.4, 60.4, 47.0, 41.7, 35.4, 35.2, 32.4, 32.2, 31.8, 22.2, 19.1, 17.7, 16.7, 14.3, 12.0, 12.0 HRMS (ESI) m/z calcd. for C₂₇H₄₇O₆ [M + H]⁺ 467.3367, found 467.3338 [α]_D²² +4.9 (*c* 2.21, CHCl₃)

(+)-Herboxidiene (22)

To a solution of herboxidiene ethyl ester (S8) (26 mg, 0.055 mmol) in MeOH (4 mL) and water (1 mL) was added powdered potassium carbonate (46 mg, 0.33 mmol). The

mixture was heated to reflux for 1.5 h, then cooled to rt. The mixture was diluted with EtOAc and water, and carefully acidified with a few drops of 10% aq. HCl. The layers were separated and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were dried over MgSO₄, filtered and concentrated. The resulting residue was purified via silica gel column chromatography (gradient elution, 0% to 30% acetone in dichloromethane, then 2% MeOH and 30% acetone in dichloromethane) to yield (+)-herboxidiene as a clear oil (21 mg, 85%).

IR (ATR, cm⁻¹) 3463, 2965, 2927, 2873, 2852, 1715, 1456, 1383, 1309, 1246, 1198, 1154, 1069, 1018, 968, 905, 798, 736

¹H NMR (500 MHz, MeOD) δ 6.30 (dd, J = 15.0, 10.8 Hz, 1H), 5.92 (d, J = 11.0 Hz, 1H), 5.48 (dd, J = 15.0, 9.1 Hz, 1H), 3.79 (p, J = 6.4 Hz, 1H), 3.79-3.74 (m, 1H), 3.53 (s, 3H), 3.35 (d, J = 9.9 Hz, 1H), 2.98 (dd, J = 6.3, 4.2 Hz, 1H), 2.66 (d, J = 9.5 Hz, 1H), 2.47 (dd, J = 15.0, 7.7 Hz, 1H), 2.50-2.42 (m, 1H), 2.39 (dd, J = 15.3, 5.6 Hz, 1H), 1.93 (dd, J = 13.5, 4.3 Hz, 1H), 1.86 (dq, J = 12.3, 3.3 Hz, 1H), 1.75-1.70 (m, 1H), 1.70 (s, 3H), 1.60-1.53 (m, 1H), 1.53-1.45 (m, 1H), 1.41-1.30 (m, 1H), 1.28 (s, 3H), 1.31-1.22 (m, 1H), 1.19 (dd, J = 13.4, 10.8 Hz, 1H), 1.11 (d, J = 6.5 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 7.2 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H) ¹³C NMR (100 MHz, MeOD) δ 175.2, 140.7, 136.2, 129.6, 126.5, 92.2, 88.5, 75.5, 69.9, 67.9, 62.6, 61.9, 48.1, 42.3, 36.5, 36.4, 33.4, 33.4, 32.8, 22.7, 19.8, 18.1, 16.8, 12.1, 11.6 HRMS (ESI) *m*/*z* calcd. for C₂₅H₄₃O₆ [M + H]⁺ 439.3054, found 439.3047 [α]_D²² +4.2 (*c* 0.95, MeOH)

(((2R,3R,4S,E)-7-Chloro-3-methoxy-4,6-dimethylhept-5-en-2-OMe yl)oxy)triisopropylsilane (34) OTIPS

To a solution of alcohol **S6** (0.559 g, 1.62 mmol) in 2,6-lutidine (0.260 g, 2.43 mmol) at 0 °C was added a sonicated solution of dried LiCl (0.096 g, 2.3 mmol) in DMF (2 mL). The reaction was stirred for 20 min, then methanesulfonyl chloride (0.250 g, 2.18 mmol) was added and the mixture was allowed to warm to rt. After 4 h TLC showed incomplete conversion to the desired chloride, and an additional 0.80 mmol of each LiCl, 2,6-lutidine, and MeSO₂Cl were added to the reaction. After an additional 3 h, the reaction was quenched with water and diluted with diethyl ether. The layers were separated and the aqueous layer was extracted 3x with diethyl ether. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified via silica gel flash column chromatography (0% to 5% EtOAc in hexanes) to yield allylic chloride (34) as an oil (0.54 g, 92%).

IR (ATR, cm⁻¹) 2943, 2867, 1462, 1383, 1115, 1094, 1014, 883, 682

¹H NMR (400 MHz, CDCl₃) δ 5.58 (d, J = 9.8 Hz, 1H), 4.05 (dq, J = 5.1, 6.3 Hz, 1H), 4.01 (s, 2H), 3.44(2, 3H), 2.91(dd, J = 4.8, 6.2 Hz, 1H), 2.60(ddq, J = 9.6, 6.7, 6.6 Hz, 1H), 1.2(d, J = 1.0)1.2 Hz, 3H), 1.15 (d, J = 6.4 Hz, 3H), 1.10-1.05 (m, 21H), 0.99 (d, J = 6.7 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 134.9, 129.2, 89.0, 69.2, 60.2, 53.0, 34.1, 19.3, 18.4, 18.3, 16.2, 14.2, 12.7

HRMS (ESI) m/z calcd. for C₁₉H₄₀O₂ClSi [M + H]⁺ 363.2481, found 363.2507 $[\alpha]_{D}^{22}$ +11.1 (*c* 0.55, CHCl₃)

Triisopropyl(((2R,3R,4S,E)-3-methoxy-4,6-dimethyldec-5-en-9-vn-2-

yl)oxy)silane (35) To a solution of 1-(trimethylsilyl)propyne (0.16 g, 1.46 mmol) in THF (7.0 mL) at -78 °C was added "BuLi (0.9 mL, 1.44 mmol, 1.6 mol/L in hexanes) via syringe over 1 min. The mixture was stirred for 50 min at -78 °C, removed from the cooling bath for 30 min, then cooled back to -78 °C. A solution of allylic chloride 34 (0.105 g, 0.29 mmol) in THF (1.5 mL) was added via syringe. The reaction was allowed to warm slowly from -78 °C to -5 °C over 3.5 h, after which TLC showed complete consumption of the chloride. Methanol (0.92 g, 29 mmol) was added along with powdered potassium carbonate (0.40 g, 2.9 mmol) and the reaction was concentrated under reduced pressure to remove most of the THF. The resulting residue was dissolved in methanol (5.0 mL) and was stirred at rt for 3.5 h. The reaction was diluted with water (5 mL) and the mixture was extracted 3x with EtOAc, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified via silica gel flash column chromatography (0% to 5% EtOAc/hexanes) to yield the desired alkyne **35** as an oil (0.101 g, 95%).

IR (ATR, cm⁻¹) 3314, 2941, 2866, 1462, 1382, 1092, 999, 882, 626

¹H NMR (400 MHz, CDCl₃) δ 5.25 (d, broad, J = 9.4 Hz, 1H), 4.03 (dq, J = 6.3, 5.3 Hz, 1H), 3.45 (s, 3H), 2.88 (t, J = 5.3 Hz, 1H), 2.60 (ddg, J = 9.4, 6.6, 6.4 Hz, 1H), 2.32-2.24 (m, 2H), 2.23-2.17 (m, 2H), 1.94 (t, J = 2.5 Hz, 1H), 1.63 (d, J = 0.96 Hz, 3H), 1.16 (d, J = 6.3 Hz, 3H), 1.10-1.05 (m, 21H), 0.96 (d, J = 6.8 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 131.0, 130.5, 89.6, 84.6, 69.7, 68.4, 60.4, 38.7, 33.8, 19.8, 18.4, 18.3, 17.8, 16.4, 16.0, 12.8

HRMS (ESI) m/z calcd. for C₂₂H₄₃O₂Si [M + H]⁺ 367.3027, found 367.3047

 $\left[\alpha\right]_{D}^{22} + 2.8 (c \ 1.08, \text{CHCl}_3)$

Methyl (3*R*,6*S*,7*E*,10*E*,14*E*,16*S*,17*R*,18*R*)-3,9-dihydroxy-17-methoxy-6,8,14,16-tetramethyl-18-

((**triisopropylsilyl**)**oxy**)**nonadeca-7,10,14-trienoate** (**S9**) To a solution of alkyne (**35**) (0.377 g, 1.02 mmol) in CH₂Cl₂ (3.0 mL) under argon at rt was added zirconocene

hydrochloride (0.289 g, 1.12 mmol). The mixture was stirred at rt for 15 min until a homogenous solution formed, then was placed in a -78 °C bath for 5 min. Dimethyl zinc (1.0 mL, 1.2 mmol, 1.2 mol/L in toluene) was added slowly over 5 min. The reaction mixture was stirred for 30 min and warmed slightly, before being placed back in the -78 °C bath. Aldehyde **26** (0.219 g, 1.12 mmol) in CH₂Cl₂ (3.0 mL) was added and the reaction was placed in a 0 °C ice bath for 5 h. After TLC indicated that no more product formation was occurring, the reaction was transferred slowly via cannula to a freshly prepared 0 °C solution of sodium methoxide (0.070 g Na, 3.06 mmol in 20 mL MeOH). Following cannula transfer, the reaction was allowed to stir for 5 min before being quenched with 12 mL sat. aq. NH₄Cl solution. The mixture was warmed to rt and 4 mL of sat. aq. NaHCO₃ was added. The reaction mixture was filtered through silica gel to clear an emulsion and the layers were separated. The aqueous layer was extracted 3x with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The resulting residue was purified via silica gel column chromatography (10% to 40% EtOAc in hexanes) to yield as an oil bis allylic alcohol **S9** (0.391 g, 64%) as a mixture of two diastereomers.

IR (ATR, cm⁻¹) 3428, 2930, 2867, 1740, 1437, 1382, 1292, 1155, 1094, 999, 883, 680 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 5.68 (dt, broad, J = 15.4, 6.6 Hz, 1H), 5.46 (dd, broad, J = 15.5, 6.4 Hz, 1H), 5.22 (d, broad, J = 9.6 Hz, 1H), 5.19 (d, J = 9.6 Hz, 1H), 4.43 (d, broad, J = 5.9 Hz, 1H), 4.06-4.00 (m, 1H), 4.01-3.95 (m, 1H), 3.72 (s, 3H), 3.44 (s, 3H), 2.89-2.85 (m, 1H), 2.85-2.83 (m, 1H), 2.64-2.55 (m, 1H), 2.54-2.47 (m, 1H), 2.45-2.39 (m, 1H), 2.42-2.34 (m, 1H), 2.19-2.11 (m, 2H), 2.07-2.00 (m, 2H), 1.61 (s, 3H), 1.59 (s, 3H), 1.57-1.53 (m, 1H), 1.52-1.44 (m, 2H), 1.41-1.35 (m, 2H), 1.16 (d, J = 6.3 Hz, 3H), 1.10-1.00 (m, 21H), 0.96 (2, J = 6.8 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) *denotes signals with distinct diastereomer peaks δ 173.6, 135.7, 135.6*, 132.3, 132.28*, 132.1, 132.0*, 131.2, 131.17, 129.5, 89.8, 78.2, 78.1*, 69.7, 68.2*, 68.2, 60.4, 51.9, 41.2, 39.5, 34.5, 33.8, 33.3*, 33.2, 32.1*, 32.0, 31.1, 21.2, 19.8, 18.4, 18.3, 16.5, 16.22*, 16.21, 12.8, 12.6

HRMS (ESI) m/z calcd. for C₃₄H₆₃O₅Si [M – OH]⁺ 579.4439, found 579.4427 [α]_D²² –6.3 (*c* 0.68, CHCl₃)

12-Desmethyl-14,15-desoxy (+)-herboxidiene methyl ester (S10)

To a solution of bis allylic alcohol **S9** (0.391 g, 0.656 mmol) in methylene chloride (12 mL) at rt was added Re_2O_7 (31.7

mg, 6.56 μ mol, 10% w/w on SiO₂) and the mixture was stirred for 96 h. At the 48 h and 72 h mark, additional portions of Re₂O₇ (31.7 mg 6.56 μ mol, 10% w/w on SiO₂) were added to increase the rate of silvl ether cleavage. The reaction was filtered through a short path of silica gel (~2 cm) eluting with DCM. The solvent was removed under vacuum, and the resulting crude material was purified by silica gel column chromatography (0% to 20% EtOAc in hexanes) to yield 12-desmethyl-14,15-desoxy herboxidiene methyl ester **S10** as an oil (0.186 g, 67%).

IR (ATR, cm⁻¹) 3492, 2972, 2930, 2870, 2854, 1741, 1455, 1483, 1365, 1248, 1198, 1160, 1092, 1069, 1020, 993, 967, 890

¹H NMR (500 MHz, CDCl₃) δ 6.25 (dd, J = 15.0, 10.8 Hz, 1H), 5.91 (d, J = 10.8 Hz, 1H), 5.62 (dt, J = 15.0, 6.9 Hz, 1H), 5.00 (d, J = 9.5 Hz, 1H), 3.82-3.74 (m, 1H), 3.74-3.68 (m, 1H), 3.68 (s, 3H), 3.51 (s, 3H), 3.33 (d, J = 9.8 Hz, 1H), 2.71 (dd, J = 6.9, 4.3 Hz, 1H), 2.65 (ddq, J = 9.4, 6.7, 6.6 Hz, 1H), 2.60 (dd, J = 15.3, 6.5 Hz, 1H), 2.40 (dd, J = 15.2, 6.8 Hz, 1H), 2.25-2.17 (m, 2H), 2.15 (d, broad, J = 6.5Hz, 1H), 2.10-2.05 (m, 2H), 1.85 (dq, J = 13.0, 3.3 Hz, 1H), 1.71 (s, 3H), 1.64 (s, 3H), 1.70-1.61 (m, 1H), 1.56-1.48 (m, 1H), 1.38-1.29 (m, 1H), 1.29-1.21 (m, 1H), 1.19 (d, J = 6.5 Hz, 3H), 0.98 (d, J = 6.7 Hz, 3H), 0.69 (d, J = 6.7 Hz, 3H) ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 134.8, 134.6, 134.3, 128.4, 128.3, 126.5, 90.6, 89.9, 74.0, 68.1, 61.6, 51.7, 41.5, 39.7, 34.9, 32.5, 32.4, 31.8, 31.6, 20.6, 17.8, 16.7, 16.4, 12.3 HRMS (ESI) *m/z* calcd. for C₂₂H₄₃O₂Si [M + H]⁺ 423.3105 found 423.3069

 $[\alpha]_D^{22}$ +5.1 (*c* 2.59, CHCl₃)

12-Desmethyl-(+)-herboxidiene methyl ester (S11)

To a solution of **S10** (0.178 g, 0.421 mmol) in CH₂Cl₂ (4.2 OH mL) was added VO(acac)₂ (0.022 g, 0.084 mmol) and the

mixture was cooled to -78 °C. *t*-BuOOH (0.23 mL, 1.3 mmol, 5.5 mol/L in decane) was added and the mixture was put in a -15 °C freezer for 15.5 h. The reaction was placed in an ice bath and quenched with 1.5 mL Me₂S, and was stirred for 1 h. The mixture was concentrated under reduced pressure and the residue was purified via silica gel flash column chromatography (10% to 50% EtOAc in hexanes) to yield 12-desmethyl herboxidiene methyl ester as an oil (71 mg, 38%) and recovered starting material (37 mg, 21%, 48% BRSM).

IR (ATR, cm⁻¹) 3485, 3048, 2953, 2930, 2854, 1738, 1456, 1439, 1384, 1268, 1199, 1091, 1071, 1021, 899, 738, 703

¹H NMR (500 MHz, CDCl₃) δ 6.28 (dd, J = 15.1, 10.8 Hz, 1H), 5.92 (d, J = 10.7 Hz, 1H), 5.62 (dt, J = 15.1, 7.0 Hz, 1H), 3.93-3.84 (m, 1H), 3.82-3.74 (m, 1H), 3.67 (s, 3H), 3.57 (s, 3H), 3.33 (d, J = 9.9 Hz, 1H), 3.01 (t, J = 5.4 Hz, 1H), 2.63 (d, J = 9.8 Hz, 1H), 2.60 (dd, J = 15.1, 6.3 Hz, 1H), 2.54 (d, broad, J = 3.5 Hz, 1H), 2.41 (dd, J = 15.2, 6.7 Hz, 1H), 2.32-2.22 (m, 1H), 2.24-2.13 (m, 1H), 1.88-1.82 (m, 1H), 1.83-1.76 (m, 1H), 1.71 (s, 3H), 1.70-1.65 (m, 1H), 1.64-1.57 (m, 1H), 1.56-1.50 (m, 1H), 1.53-1.45 (m, 1H), 1.40-1.30 (m, 1H), 1.30 (s, 3H), 1.26-1.20 (m, 1H), 1.21 (d, J = 6.5 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.69 (d, J = 6.7 Hz, 3H)

61.8, 61.5, 51.7, 41.5, 38.8, 35.3, 32.5, 32.4, 31.8, 29.0, 19.2, 17.8, 16.6, 12.3, 12.0

HRMS (ESI) m/z calcd. for C₂₂H₄₃O₂Si [M – H]⁺ 423.3105 found 423.3069 [α]_D²² +6.1 (*c* 1.01, CHCl₃)

12-Desmethyl-(+)-herboxidiene (36)

To a solution of desmethyl herboxidiene ethyl ester (S11)

 $H \circ H$ | $I \circ H$ (23.8 mg, 0.053 mmol) in MeOH (4 mL) and water (1 mL) was added powdered potassium carbonate (47 mg, 0.34 mmol). The mixture was heated to reflux for 1 h, then cooled to rt. The mixture was diluted with EtOAc and water, and carefully acidified with a few drops of 10% aq. HCl. The layers were separated and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were dried over MgSO₄, filtered and concentrated. The resulting residue was purified via silica gel column chromatography (gradient elution, 0 to

2% to 5% to 10% MeOH in dichloromethane) to yield (+)-desmethyl herboxidiene **34** as a clear semi-solid (15.4 mg, 69%).

IR (ATR, cm⁻¹) 3444, 2962, 2928, 2853, 1715, 1456, 1383, 1262, 1197, 1158, 1092, 1070, 1019, 967, 884, 805, 757, 738

¹H NMR (600 MHz, MeOD) δ 6.33 (dd, J = 15.0, 10.9 Hz, 1H), 5.93 (d, J = 10.8 Hz, 1H), 5.66 (dt, J = 14.9, 7.1 Hz, 1H), 3.82 (p, 6.3 Hz, 1H), 3.80-3.74 (m, 1H), 3.55 (s, 3H), 3.35 (d, J = 9.8 Hz, 1H), 3.01 (dd, J = 6.1, 4.3 Hz, 1H), 2.72 (d, J = 9.4 Hz, 1H), 2.46 (dd, J = 15.3, 7.3 Hz, 1H), 2.39 (dd, J = 15.3, 5.6 Hz, 1H), 2.33-2.25 (m, 1H), 2.25-2.18 (m, 1H), 1.87 (dq, J = 12.6, 3.2 Hz, 1H), 1.82 (ddd, J = 13.7, 8.3, 5.6 Hz, 1H), 1.74-1.70 (m, 1H), 1.70 (s, 3H), 1.60-1.54 (m, 1H), 1.56-1.51 (m, 1H), 1.48 (dt, J = 13.6, 8.1 Hz, 1H), 1.38-1.30 (m, 1H), 1.29 (s, 3H), 1.29-1.22 (m, 1H), 1.14 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H), 0.69 (d, J = 6.6 Hz, 3H) ¹³C NMR (150 MHz, MeOD) δ 175.2, 135.8, 134.8, 129.4, 127.8, 92.1, 88.5, 75.5, 69.9, 67.1, 63.0, 61.9, 42.3, 39.8, 36.2, 33.45, 33.43, 32.8, 30.0, 19.8, 18.0, 16.6, 12.2, 11.2

HRMS (ESI) m/z calcd. for C₂₄H₄₁O₆ [M + H]⁺ 425.2898, found 425.2892

 $[\alpha]_{D}^{22}$ +6.8 (*c* 0.44, CHCl₃)

¹³ C NMR data for (+)-herboxidiene and 12-desmethyl analogue							
Position	Synthetic ^a δ	12 -Desmethyl ^b δ	Δδ				
C1	175.201	175.206	0.005				
C2	42.286	42.276	-0.010				
С3	75.487	75.489	0.002				
C4	32.799	32.797	-0.002				
C5	33.454	33.452	-0.002				
C6	33.385	33.433	0.048				
C6-Me	18.078	18.005	-0.073				
C7	92.166	92.069	-0.097				
C8	136.196	135.841	-0.355				
C8-Me	12.086	12.174	0.088				
С9	129.632	129.437	-0.195				
C10	126.535	127.844	1.309				
C11	140.725	134.792	-5.933				
C12	36.525	29.987	-6.538				
C12-Me	22.691	—	—				
C13	48.108	39.780	-8.328				
C14	62.628	62.978	0.350				
C14-Me	16.782	16.640	-0.142				
C15	67.859	67.117	-0.742				
C16	36.437	36.244	-0.193				
C16-Me	11.55	11.241	-0.309				
C17	88.532	88.498	-0.034				
C18	69.914	69.925	0.011				
C19	19.822	19.837	0.015				
OMe	61.883	61.923	0.040				
^a Recorded in MeOD at 125 MHz. ^b Recorded in MeOD at 150 MHz							

¹ H NMR data for (+)-herboxidiene and 12-desmethyl analogue								
Position	Synthetic ^ª δ	Multiplicity	J/Hz	12-Desmethyl ^b δ	Multiplicity	J/Hz		
H2A	2.47	dd	15.0, 7.7	2.46	dd	15.3, 7.3		
H2B	2.39	dd	15.3, 5.6	2.39	dd	15.3, 5.6		
H3	3.79-3.74	m	—	3.80-3.74	m	—		
H4A	1.75-1.70	m	—	1.74-1.70	m	—		
H4B	1.41-1.30	m	—	1.38-1.30	m	—		
H5A	1.86	dq	12.3, 3.3	1.89-1.84	dq	12.6, 3.2		
H5B	1.31-1.22	m	—	1.29-1.22	m	—		
H6	1.60-1.53	m	_	1.60-1.54	m	_		
C6-Me	0.83	d	6.7	0.69	d	6.6		
H7	3.35	d	9.9	3.35	d	9.8		
C8-Me	1.70	S	—	1.70	S	—		
H9	5.92	d	11.0	5.93	d	10.8		
H10	6.30	dd	15.0, 10.8	6.33	dd	15.0, 10.9		
H11	5.48	dd	15.0, 9.1	5.66	dt	14.9, 7.1		
H12A	2.50-2.42	m	_	2.33-2.25	m	_		
H12B	_	_	_	2.25-2.18	m	_		
C12-Me	1.05	d	6.7	-	_	_		
H13A	1.93	dd	13.5, 4.3	1.82	ddd	13.7, 8.3, 5.6		
H13B	1.19	dd	13.4, 10.8	1.48	dt	13.6, 8.1		
C14-Me	1.28	S	—	1.29	S	—		
H15	2.66	d	9.5	2.72	d	9.4		
H16	1.53-1.45	m	_	1.56-1.51	m	_		
C16-Me	0.83	d	7.2	0.92	d	7.0		
H17	2.98	dd	6.3, 4.2	3.01	dd	6.1, 4.3		
H18	3.79	р	6.4	3.82	р	6.3		
H19	1.11	d	6.5	1.14	d	6.4		
OMe	3.53	S	_	3.55	S	_		
	^a Recorded in MeOD at 500 MHz. ^b Recorded in MeOD at 600 MHz							

1H NMR (400MHz, CDC13)

13C NMR (101 MHz, CDCl3)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

1H NMR (400 MHz, CDCl3)

1H NMR (400 MHz, CDCl3)

ppm

ppm

 1H NMK (400 MHz, CDC13)

 11 NMK (400 MHz, CDC13)


```
NOESY (400 MHz, CDCl3)
```


9.78 9.78 9.77

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

1, 441, 421, 421, 301, 281, 291, 291, 201, 2

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

ppm

.....

.....

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

