

Figure S1 (Related to Figure 1, Figure 2 and Figure 3). *Effect of Drd1 antagonist and* GABA_A + GABA_B *agonist on food self-administration.* (A-B) Mean±SEM number of presses on the active and inactive levers during the 1-h test sessions after systemic or CeA SCH39166 injections (n=5-8 per group). (C) Mean±SEM number of lever presses during the 1-h test sessions of M+B injections into the AIV (n=8 per group).

E. Drd1 and Drd2 cells quantification

CeA subregion

CeL

CeM

CeA subregion

F. Double-labeled cells quantification

Figure S2 (Related to Figure 1). *Effect of systemic Drd1 antagonist injections on Fos expression and RNA scope in the CeL and CeM.* (A) Fos immunohistochemistry: Representative photomicrographs of Fos cells in lateral central (CeL) and medial central (CeM) amygdala. (B) Amygdala c-Fos expression: Number of Fos-IR nuclei per mm² in the CeL and CeM. * Different from the other conditions, p<0.05 (C). <u>RNAscope *in situ* hybridization:</u> Representative photomicrographs of CeL and CeM and *Fos* labelling in the Relapse test and No-test groups, and *Drd1* or *Drd2* labelling in the Relapse test group (*Fos*, white; *Drd1*, **green**; *Drd2*, **red**; DAPI, **blue**). Arrows indicate representative cells. (D) *Fos*-IR neurons: Number of *Fos*-IR nuclei per mm² in CeL and CeM. * Different from the No-test group, p<0.05 (E) <u>Drd1 and Drd2 positive cells</u>: Number of *Drd1* and *Drd2* cells in CeL and CeM. (F) *Fos*-IR co-expression with *Drd1* or *Drd2*: Number of double-labeled neurons per mm² in the CeL and CeM. * Different from *Fos+Drd2*, p<0.05. All the data are mean±SEM.

Figure S3 (Related to Figure 2, Figure 3 and Figure 4). *Cannula placements of the injector tips, representative plots of the spread of CTb and hM4Di injections (mm from Bregma)* for (A) Drd1 antagonist SCH39166 injection in CeA (white circles = vehicle, light blue = 0.5μ g/side and dark blue = 1.0μ g/side); (B) Drd1 antagonist SCH39166 injection in BLA (white circles = vehicle and dark blue = 1.0μ g/side); (C) Drd2 antagonist raclopride injection in CeA (white circles = vehicle, light blue = 0.5μ g/side and dark blue = 1.0μ g/side); (D) CTb injection in CeA; (E) Muscimol+Baclofen injection in AIV (white circles = vehicle and dark blue = 50η so η /s0 η /s

D. CTb+Fos expression in ventral-medial prefrontal cortex (vmPFC)

E. CTb+Fos expression in basolateral amygdala (BLA)

F. CTb+Fos expression in paraventricular nucleus of thalamus (PVT)

G. CTb+Fos expression in ventral subiculum (vSub)

Figure S4 (Related to Figure 3). Fos and CTb expression from afferent projections AID, vmPFC, BLA, PVT, and vSub to CeA. (A) <u>Number of Fos-IR nuclei per mm² for the Relapse test or No-test groups</u> (n=4 per group). (B) <u>Number of CTb-IR nuclei per mm²</u>. (C) <u>Number of double-labeled Fos+CTb neurons per</u> <u>mm²</u>. Representative photomicrographs (scale=100 µm) of Fos and CTb expression in vmPFC (D), BLA (E), PVT (F), and vSub (G) are shown below, **Green arrows**=CTb-IR neurons, **Red arrows**=Fos-IR neurons, **Green+Red** arrows=double-labeled neurons. Data are mean±SEM. * Different from the No-test group, p<0.05.

Figure S5 (Related to Figure 3). *Fos and CTb expression at different bregma levels in AIV*. <u>Number</u> of Fos-IR (**A**), <u>CTb-IR</u> (**B**), and <u>CTb+Fos-IR</u> double-labeled (**C**) neurons per mm². Representative photomicrographs (scale=100 μm) of Fos and CTb expression at different Bregma levels of AIC (for the Relapse test condition) are shown in the middle. **Green arrows**=CTb-IR neurons, **Red arrows**=Fos-IR neurons, **Green+Red** arrows=double-labeled neurons. Schematic drawing of CTb expression in AI is shown on the left: We normalized the mean data obtained from the total CTb-IR counting at different Bregma levels, adapted from Paxinos and Watson (2008). We assigned 1 to the highest values (**dark yellow**) and 0 to the lowest value (**light yellow**/white). Data are mean±SEM. * Different from the No-test group, p<0.05.

Table S1 (Related to Figure 1, 2, 3, 4, 5, 6, S1, S2, S3, S4 and S5). Statistical analysis. (SPSS GLM repeated-measures module). Partial Eta^2 = proportion of explained variance.

Figure number	Factor name	F-value	<i>p</i> -value	Partial Eta ²
Figure 1B. Self-	Session (Food) (within)	F _{5,265} =26.1	<0.001*	0.52
administration RM-ANOVA	Session (Meth) (within)	F _{14,742} =30.9	<0.001*	0.37
Figure 1C. Choice test	Reward (within)	F _{1 53} =428.6	<0.001*	0.89
RM-ANOVA	Session (within)	F _{1.53} =1.3	0.27	0.02
	Reward X Session interaction	F _{1.53} =31.6	< 0.001*	0.37
		. 1,00		
Figure 1D. Voluntary	Reward (within)	F _{1,53} =19020.1	<0.001*	1.00
abstinence	Session (within)	F _{13,689} =1.6	0.09	0.03
RM-ANOVA	Reward X Session interaction	F _{13,689} =7.4	<0.001*	0.12
Figure 1E. Relapse test	SCH39166 dose (between)	F _{1.25} =13.5	0.001*	0.35
Mixed ANOVA	Lever (within)	F _{1.25} =83.5	<0.001*	0.77
	Dose X lever interaction	F _{1,25} =13.5	0.001*	0.35
Figure 1G. Fos neuron	Test (between)	F _{1.39} =7.5	0.009*	0.16
counting	SCH39166 dose (between)	F _{1.39} =8.0	0.007*	0.17
Mixed ANOVA	Amygdala sub-region (within)	F _{1.39} =50.4	<0.001*	0.56
	Test X SCH39166 dose interaction	F _{1.39} =6.3	0.02*	0.14
	Test X Amygdala sub-region interaction	F _{1.39} =10.7	0.002*	0.22
	SCH39166 dose X Amygdala sub-region interaction	F _{1.39} =14.3	0.001*	0.27
	Test X SCH39166 dose X Amygdala sub-region interaction	F _{1.39} =7.0	0.01*	0.15
Figure 1H. Relapse test	Lever (within)	F _{1.5} =45.2	<0.001*	0.90
for RNAscope RM-ANOVA		.,-		
Figure 1J. Fos neurons	Test (between)	F _{1.8} =13.7	0.006*	0.63
counting	Amvadala sub-region (within)	F _{1.8} =23.8	0.001*	0.75
Mixed ANOVA	Extinction test X Amygdala sub-region interaction	F _{1 e} =14.5	0.005*	0.64
		1,0 110		
Figure1K. Drd1 and	Test (between)	F _{1,8} =0.0	0.94	0.001
Drd2 cell counting	Amygdala sub-region (within)	F _{1,8} =0.3	0.59	0.04
Mixed ANOVA	Cell type (within)	F _{1,8} =33.0	<0.001*	0.81
	Test X Amygdala sub-region interaction	F _{1,8} =0.0	0.86	0.004
	Test X Cell type interaction	F _{1,8} =0.0	0.85	0.005
	Test X Amygdala sub-region X Cell type interaction	F _{1,8} =0.0	0.95	0.001
	Amygdala sub-region X Cell type interaction	F _{1,8} =38.5	<0.001*	0.83
Figure 1L. Double	Test (between)	F _{1 8} =8.9	0.02*	0.87
labeled cells counting	Amygdala sub-region (within)	F1 8=38.6	<0.001*	0.83
Mixed ANOVA	Cell type (within)	F _{1 №} =16 1	0.004*	0.67
	Test X Amyadala sub-region interaction	F _{1 8} =8.0	0.02	0.50
	Test X Cell type interaction	F _{1.8} =7.8	0.02	0.49
	Test X Amyodala sub-region X Cell type interaction	F _{1.8} =3.4	0.10	0.30
	Amvadala sub-region X Cell type interaction	F _{1.8} =0.1	0.82	0.01
		. 1,0		
Figure 2B. Self-	Session (Food) (within)	F _{5,300} =45.5	<0.001*	0.43
administration	Session (Meth) (within)	F _{14,840} =49.7	<0.001*	0.45
RM-ANOVA	Descend (s. ithin)	E 045.0	10.001*	0.00
Figure 2C. Choice tests	Reward (within)	$F_{1,60} = 815.0$	<0.001*	0.93
RIVI-ANOVA	Session (within)	$F_{1,60} = 12.9$	<0.001*	0.18
	Reward X session interaction	F _{1,60} =0.0	0.01"	0.10
Figure 2D. Voluntary	Reward (within)	F _{1,60} =8069.4	<0.001*	0.99
abstinence	Session (within)	F _{13,780} =0.3	0.99	0.01
RM-ANOVA	Reward X session interaction	F _{13,780} =17.1	<0.001*	0.22
Figure 2E. Relapse test	SCH39166 dose (between)	F _{2,21} =8.4	0.002*	0.44
for CeA-Drd1	Lever (within)	F _{1,21} =158.4	<0.001*	0.88
antagonist injection	Dose X lever interaction	F _{2.21} =8.2	0.002*	0.44
Mixed ANOVA				
Figure 2F. Relapse test	SCH39166 dose (between)	F _{1,16} =0.0	0.94	0.00
for BLA-Drd1	Lever (within)	F _{1,16} =110.9	<0.001*	0.87
antagonist injection	Dose X lever interaction	F _{1,16} =0.0	0.98	0.00
Mixed ANOVA		1		1

Figure 2G. Relapse	Raclopride dose (between)	F _{2,16} =0.0	0.99	0.002
test for CeA-Drd2	Lever (within)	F _{1,16} =387.3	<0.001*	0.71
antagonist injection	Dose X lever interaction	F _{2,16} =0.1	0.91	0.01
Mixed-ANOVA				
Figure 3B. Self-	Session (Food) (within)	F _{5 225} =34.8	< 0.001*	0.44
administration	Session (Meth) (within)	F14 630=32.6	< 0.001*	0.42
RM-ANOVA		14,030		
Figure 3C Choice test	Reward (within)	E	<0.001*	0.70
DM ANOVA	Session (within)	$\Gamma_{1,45} = \Gamma_{1,2}$	<0.001 0.09	0.73
RIVI-ANOVA	Session (within)	F1,45-3.1	0.00	0.07
	Reward X session interaction	F _{1,45} =5.9	0.02"	0.12
Figure 3D. Voluntary	Reward (within)	F1 45=793.0	<0.001*	0.95
abstinence	Session (within)	$F_{40,505}=20.6$	<0.001*	0.31
RM-ANOVA	Reward X session interaction	F 13,585 2010	<0.001*	0.13
		13,585-0.0	-0.001	0.10
Figure 3E. Relapse test	Lever (within)	$x^{2}(1)=4.0$	0.046*	
CeA-CTb				
Friedman Test				
Figure 3E Fos CTh	Test (between)			
and East CTh nourons	Foo	11-0.0	0.02*	
		0-0.0	0.02	
counting AIV (also see		0=4.0	0.25	
54)	FOS+CID	0=0.0	0.02"	
Mann-Whitney				
Figure 3G. Relapse	M+B dose (between)	F _{1,20} =9.1	0.007*	0.31
test for AIV-M+B	Lever (within)	F _{1,20} =102.1	<0.001*	0.84
injection	Dose X lever interaction	F _{1,20} =13.0	0.002*	0.39
Mixed-ANOVA				
Figure 3H. Relapse test	M+B dose (between)	F _{1 14} =0.1	0.77	0.01
for OEC-M+B injection	Lever (within)	$F_{1,14}=24.8$	<0.001*	0.64
	Dose X lever interaction	$F_{1,14} = 0.3$	0.60	0.02
Figure 4B. Solf	Session (Food) (within)	F _107	<0.001*	0.02
Figure 4B. Sell-	Session (Poou) (within)	F 5,235-10.7	<0.001	0.20
administration	Session (Meth) (Within)	F _{14,658} =22.0	<0.001	0.32
RM-ANOVA				
Figure 4C. Choice test	Reward (within)	F _{1,47} =198.8	<0.001*	0.81
RM-ANOVA	Session (within)	F _{1,47} =0.8	0.39	0.01
	Reward X session interaction	F _{1,47} =17.4	<0.001*	0.27
Firmer AD Malantana		F 000 4	10.004*	0.05
Figure 4D. Voluntary	Reward (within)	F _{1,47} =968.1	<0.001*	0.95
abstinence	Session (within)	$F_{13,611} = 1.4$	0.14	0.03
RM-ANOVA	Reward X session interaction	F _{13,611} =9.5	<0.001*	0.17
Figure /E Loft Polanso	CNO dose (between)	E73	0.01*	0.21
tost AIV	Lover (within)	F 107 2	<0.01*	0.21
	Level (within)	F 1,28-127.3	<0.001	0.02
DREADD/CEA-CNO		F1,28-7.3	0.01	0.21
Mixed ANOVA		=	0.00/#	
Figure 4E Right. Fos	CNO dose (between)	F _{1,28} =28.4	0.001*	0.75
neurons counting in				
CeA with CeA-CNO				
One-way ANOVA				
Figure 4F Left. Relapse	CNO dose (between)	F _{1.15} =0.0	0.89	0.001
test CeA-CNO injection	Lever (within)	F _{1.15} =159.9	< 0.001*	0.91
Mixed ANOVA	Dose X lever interaction	F _{1 15} =0.3	0.62	0.02
Figure 4F Right Fos	CNO dose (between)	F1 15=0 0	0.91	0.001
neurons counting in		1,13 010	0.01	0.001
Figure FA Jabibition of				
Figure 5A. Inhibition of	Observation (habitation)	F 0.00		0.004
	mCherry expression (between)	F _{1,14} =0.02	0.9	0.001
AIV terminals in CeA	mCherry expression (between) CNO dose (within)	F _{1,14} =0.02 F _{1,14} =4.6	0.9 0.05	0.001 0.25
AIV terminals in CeA with CNO: evoked	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction	F _{1,14} =0.02 F _{1,14} =4.6 F _{1,14} =6.7	0.9 0.05 0.02*	0.001 0.25 0.32
AIV terminals in CeA with CNO: evoked EPSC amplitude	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction	F _{1,14} =0.02 F _{1,14} =4.6 F _{1,14} =6.7	0.9 0.05 0.02*	0.001 0.25 0.32
AIV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction	F _{1,14} =0.02 F _{1,14} =4.6 F _{1,14} =6.7	0.9 0.05 0.02*	0.001 0.25 0.32
AIV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left.	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between)	F _{1,14} =0.02 F _{1,14} =4.6 F _{1,14} =6.7 F _{1,14} =0.05	0.9 0.05 0.02* 0.82	0.001 0.25 0.32 0.004
AlV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left. Spontaneous EPSC	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within)	F _{1,14} =0.02 F _{1,14} =4.6 F _{1,14} =6.7 F _{1,14} =0.05 F _{1,14} =5.3	0.9 0.05 0.02* 0.82 0.04*	0.001 0.25 0.32 0.004 0.28
AIV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left. Spontaneous EPSC frequency	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction	$F_{1,14}=0.02$ $F_{1,14}=4.6$ $F_{1,14}=6.7$ $F_{1,14}=0.05$ $F_{1,14}=5.3$ $F_{1,14}=9.6$	0.9 0.05 0.02* 0.82 0.04* 0.008*	0.001 0.25 0.32 0.004 0.28 0.41
AIV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left. Spontaneous EPSC frequency Mixed-ANOVA	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction	$F_{1,14}=0.02$ $F_{1,14}=4.6$ $F_{1,14}=6.7$ $F_{1,14}=0.05$ $F_{1,14}=5.3$ $F_{1,14}=9.6$	0.9 0.05 0.02* 0.82 0.04* 0.008*	0.001 0.25 0.32 0.004 0.28 0.41
AlV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left. Spontaneous EPSC frequency Mixed-ANOVA Eigure 5B Middle	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction	$F_{1,14}=0.02$ $F_{1,14}=4.6$ $F_{1,14}=6.7$ $F_{1,14}=0.05$ $F_{1,14}=5.3$ $F_{1,14}=9.6$ $F_{1,14}=0.06$	0.9 0.05 0.02* 0.82 0.04* 0.08*	0.001 0.25 0.32 0.004 0.28 0.41
AIV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left. Spontaneous EPSC frequency Mixed-ANOVA Figure 5B Middle. Spontaneous EPSC	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within)	$F_{1,14}=0.02$ $F_{1,14}=4.6$ $F_{1,14}=6.7$ $F_{1,14}=0.05$ $F_{1,14}=5.3$ $F_{1,14}=9.6$ $F_{1,14}=0.06$ $F_{1,14}=0.06$ $F_{1,14}=0.06$	0.9 0.05 0.02* 0.82 0.04* 0.008* 0.81 0.62	0.001 0.25 0.32 0.004 0.28 0.41 0.004 0.02
AIV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left. Spontaneous EPSC frequency Mixed-ANOVA Figure 5B Middle. Spontaneous EPSC amplitude	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within)	$F_{1,14}=0.02$ $F_{1,14}=4.6$ $F_{1,14}=6.7$ $F_{1,14}=0.05$ $F_{1,14}=5.3$ $F_{1,14}=9.6$ $F_{1,14}=0.06$ $F_{1,14}=0.26$ $F_{1,14}=0.03$	0.9 0.05 0.02* 0.82 0.04* 0.008* 0.81 0.82 0.81 0.82 0.85	0.001 0.25 0.32 0.004 0.28 0.41 0.004 0.02 0.002
AlV terminals in CeA with CNO: evoked EPSC amplitude Mixed-ANOVA Figure 5B Left. Spontaneous EPSC frequency Mixed-ANOVA Figure 5B Middle. Spontaneous EPSC amplitude Mixed ANOVA	mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose X mCherry expression interaction mCherry expression (between) CNO dose (within) CNO dose X mCherry expression interaction	$F_{1,14}=0.02$ $F_{1,14}=4.6$ $F_{1,14}=6.7$ $F_{1,14}=0.05$ $F_{1,14}=5.3$ $F_{1,14}=9.6$ $F_{1,14}=0.06$ $F_{1,14}=0.26$ $F_{1,14}=0.03$	0.9 0.05 0.02* 0.82 0.04* 0.008* 0.81 0.62 0.86	0.001 0.25 0.32 0.004 0.28 0.41 0.004 0.02 0.002

FIGURE DA	Amvodala sub-region (within)	$y^{2}(1)=3.0$	0.08	
vGluT1+mCherry		X (1) 0.0	0.00	
quantification				
Friedman Test				
Figure 6P TTV offect	Baseline hefere TTV ve. ofter TTV (within)	E =0.4	0.52	0.05
Figure 6B. TTA effect	Daseline belore TTA vs. alter TTA (within)	г _{1,8} –0.4	0.55	0.05
on light-evoked EPSCs				
in CeA				
RM-ANOVA				
Figure S1A. Systemic	SCH39166 dose (between)	F _{4,20} =3.3	0.03*	0.40
Drd1 antagonist	Lever (within)	F _{1,20} =133.2	<0.001*	0.87
Mixed-ANOVA	SCH39166 dose x Lever interaction	F _{4,20} =3.7	0.02*	0.43
Figure S1B. CeA-Drd1	SCH39166 dose (between)	F _{2.19} =0.9	0.42	0.09
antagonist	Lever (within)	F _{1 19} =155.3	<0.001*	0.89
Mixed-ANOVA	SCH39166 dose x Lever interaction	F _{2.19} =1.0	0.37	0.10
Figure S1C AIV-M+B	M+B dose (between)	E4 44=0.3	0.62	0.02
Mixed_ANO\/A	Lever (within)	F=115	<0.02	0.75
MIXEd-ANOVA	M+B does x Lover interaction	F 0 3	0.60	0.75
Figure COD Fee		$\Gamma_{1,14} = 0.3$	0.00	0.02
Figure SZB. Fos		$F_{1,39}=04.0$	<0.001	0.62
neuron counting	Dose (between)	F _{1,39} =23.4	<0.001*	0.38
Mixed-ANOVA	CeA sub-region (within)	F _{1,39} =4.2	0.046*	0.10
	Test x Dose interaction	F _{1,39} =34.2	<0.001*	0.47
	Test x CeA sub-region interaction	F _{1,39} =0.1	0.77	0.002
	Dose x CeA sub-region interaction	F _{1,39} =1.2	0.28	0.03
	Test x Dose x CeA sub-region interaction	F _{1.39} =0.1	0.77	0.002
Figure S2D Fos	Test (between)	F _{1 e} =23 4	0.001*	0.75
neuron counting	CeA sub-region (within)	F _{1,0} =0.1	0.82	0.007
Mixed ANOVA	Test x CeA sub region interaction	F0.2	0.66	0.007
Figure S2E Drd1 and	Test (between)	F =0.1	0.00	0.03
Figure SZE. Drd I and	Pest (between)	$F_{1,8}=0.1$	0.73	0.02
Drd2 cell counting	CeA sub-region (within)	$F_{1,8}=2.7$	0.14	0.25
Mixed-ANOVA	Cell type (within)	F _{1,8} =0.3	0.61	0.03
	Test x CeA sub-region interaction	F _{1,8} =0.5	0.49	0.06
	Test x Cell type interaction	F _{1,8} =0.03	0.87	0.004
	CeA sub-region x Cell type interaction	F _{1,8} =1.7	0.23	0.18
	Test x CeA sub-region x Cell type interaction	F _{1.8} =0.1	0.81	0.007
Figure S2F. Double-	Test (between)	F _{1.8} =22.4	0.001*	0.74
labeled cells counting	CeA sub-region (within)	$F_{1,8}=0.2$	0.70	0.02
		. 1,0 0.2	<0.001*	0.01
MIXED-ANU/VA	Cell type (within)	E ₄₀ =75.9	SUUUI	0.91
MIXed-ANOVA	Cell type (within)	F _{1,8} =75.9 F _{1,8} =0.2	0.001	0.91
MIXEd-ANOVA	Cell type (within) Test x CeA sub-region interaction	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=20.7$	0.70	0.02
MIXED-ANOVA	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$	0.70	0.91 0.02 0.79
MIXED-ANOVA	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$ $F_{1,8}=0.5$	0.70 0.001* 0.51	0.91 0.02 0.79 0.06
Mixed-ANOVA	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$	0.70 0.001* 0.51 0.51	0.02 0.79 0.06 0.06
Figure S3A. Fos	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between)	F _{1,8} =75.9 F _{1,8} =0.2 F _{1,8} =30.7 F _{1,8} =0.5 F _{1,8} =0.5	0.70 0.001* 0.51 0.51	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$	0.001 0.70 0.001* 0.51 0.51 0.04*	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$	0.001* 0.001* 0.51 0.51 0.04* 0.02*	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$	0.001* 0.001* 0.51 0.51 0.04* 0.02* 1.0	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$	0.001 0.70 0.001* 0.51 0.04* 0.02* 1.0 0.04*	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$	0.001* 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) Test (between)	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$	0.001* 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04*	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$	0.001* 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06 0.25 0.31	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID DLA	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$	0.001 0.70 0.001* 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.04* 0.04* 0.04* 0.02* 1.0 0.04* 0.02* 0.31 0.98	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA DVT	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=4.5$ $U=4.5$ $U=4.5$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.04* 0.06 0.25 0.31 0.08 0.08	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=4.5$ $U=2.0$	0.001 0.70 0.001* 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06 0.25 0.31 0.08 0.08 0.08 0.08	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=2.0$ $U=2.0$	0.001 0.70 0.001* 0.51 0.51 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) Test (between) VmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=30.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=4.5$ $U=2.0$ $U=2.0$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.04* 0.04* 0.04* 0.04* 0.04* 0.04* 0.001 0.001 0.001* 0.00* 0.001* 0.004* 0.004* 0.008	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=4.5$ $U=2.0$ $U=6.5$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.02* 0.04* 0.06 0.25 0.31 0.08 0.08 0.08 0.66	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=2.0$ $U=6.5$ $U=7.5$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06 0.25 0.31 0.08 0.08 0.08 0.08 0.66 0.89	0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=4.5$ $U=2.0$ $U=2.0$ $U=6.5$ $U=7.5$ $U=7.5$	0.001* 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06 0.25 0.31 0.08 0.08 0.08 0.08 0.08 0.89 0.88	0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=2.0$ $U=2.0$ $U=6.5$ $U=7.5$ $U=4.0$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06 0.25 0.31 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.25 0.31	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=2.0$ $U=6.5$ $U=7.5$ $U=4.0$ $U=3.0$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.02* 1.0 0.04* 0.04* 0.06 0.25 0.31 0.08 0.08 0.08 0.08 0.08 0.08 0.25 0.15	0.91 0.02 0.79 0.06 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.7$ $F_{1,8}=0.5$	0.001 0.70 0.001* 0.51 0.51 0.02* 1.0 0.04* 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08 0.89 0.88 0.25 0.15 0.004*	0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$\begin{array}{c} F_{1,8}{=}75.9 \\ F_{1,8}{=}0.2 \\ F_{1,8}{=}0.7 \\ F_{1,8}{=}0.5 \\ F_{1,8}{=}0.5 \\ F_{1,8}{=}0.5 \\ \end{array}$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08 0.88 0.25 0.15	0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test Figure S4A. Fos neuron counting Figure S4A. Fos	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$\begin{array}{c} F_{1,8}=75.9\\ F_{1,8}=0.2\\ F_{1,8}=0.7\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ \end{array}$	0.001 0.70 0.001* 0.51 0.51 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08 0.88 0.25 0.15 0.004*	0.91 0.02 0.79 0.06 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test Figure S4A. Fos neuron counting Friedman Test Eigure S4B. CTb	Cell type (within) Test x CeA sub-region interaction CeA sub-region x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=4.5$ $U=2.0$ $U=2.0$ $U=6.5$ $U=7.5$ $U=7.5$ $U=7.5$ $U=7.5$ $U=4.0$ $U=3.0$ $\chi^{2}(4)=15.4$	0.001 0.70 0.001* 0.51 0.51 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08 0.89 0.88 0.25 0.15 0.004*	0.91 0.02 0.79 0.06 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test Figure S4A. Fos neuron counting Friedman Test Figure S4B. CTb neuron counting	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Bregma coordinate (within)	$\begin{array}{c} F_{1,8}=75.9\\ F_{1,8}=0.2\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ \\ U=1.0\\ U=0.0\\ U=8.0\\ U=1.0\\ U=1.0\\ U=1.5\\ \\ U=4.0\\ U=4.5\\ U=4.5\\ U=4.5\\ U=2.0\\ \\ U=6.5\\ U=7.5\\ U=7.5\\ U=7.5\\ U=7.5\\ U=4.0\\ U=3.0\\ \chi^2(4)=15.4\\ \\ \end{array}$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08 0.89 0.88 0.25 0.15 0.004*	0.91 0.02 0.79 0.06 0.06
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test Figure S4A. Fos neuron counting Friedman Test Figure S4B. CTb neuron counting Figure S4B. CTb	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$\begin{array}{c} F_{1,8}=75.9\\ F_{1,8}=0.2\\ F_{1,8}=0.7\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ \hline \\ F_{1,8}=0.5\\ \hline$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.02* 0.04* 0.06 0.25 0.31 0.08 0.08 0.08 0.08 0.08 0.08 0.89 0.88 0.25 0.15 0.004* 0.004* 0.003*	
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test Figure S4A. Fos neuron counting Friedman Test Figure S4B. CTb neuron counting Friedman Test	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub	$F_{1,8}=75.9$ $F_{1,8}=0.2$ $F_{1,8}=0.7$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $F_{1,8}=0.5$ $U=1.0$ $U=0.0$ $U=8.0$ $U=1.0$ $U=1.5$ $U=4.0$ $U=4.5$ $U=4.5$ $U=4.5$ $U=2.0$ $U=6.5$ $U=7.5$ $U=7.5$ $U=4.0$ $U=3.0$ $\chi^{2}(4)=15.4$ $\chi^{2}(4)=16.0$	0.001 0.70 0.001* 0.51 0.51 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08 0.89 0.88 0.25 0.15 0.004*	
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test Figure S4A. Fos neuron counting Friedman Test Figure S4B. CTb neuron counting Friedman Test Figure S4C. Fos+CTb	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Bregma coordinate (within) Bregma coordinate (within)	$\begin{array}{c} F_{1,8}=75.9\\ F_{1,8}=0.2\\ F_{1,8}=0.7\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ \end{array}$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.04* 0.06 0.25 0.31 0.08 0.00	
Figure S3A. Fos neuron counting Mann-Whitney Test Figure S3B. CTb neuron counting Mann-Whitney Test Figure S3C. Fos+CTb neuron counting Mann-Whitney Test Figure S4A. Fos neuron counting Friedman Test Figure S4B. CTb neuron counting Friedman Test Figure S4C. Fos+CTb neuron counting	Cell type (within) Test x CeA sub-region interaction Test x Cell type interaction Test x CeA sub-region x Cell type interaction Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Test (between) vmPFC AID BLA PVT vSub Bregma coordinate (within) Bregma coordinate (within)	$\begin{array}{c} F_{1,8}=75.9\\ F_{1,8}=0.2\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ F_{1,8}=0.5\\ \end{array}$	0.001 0.70 0.001* 0.51 0.51 0.04* 0.02* 1.0 0.04* 0.06 0.25 0.31 0.08 0.08 0.89 0.88 0.25 0.15 0.004* 0.003* 0.01*	