Supplementary Materials for Shock Synthesis of Decagonal Quasicrystals J. Oppenheim¹, C. Ma¹, J. Hu¹, L. Bindi^{2,3}, P. J. Steinhardt^{4,5}, and P. D. Asimow¹* ¹Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd. M/C170-25, Pasadena, CA 91125, U.S.A. ²Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, I-50121 Firenze, Italy ³CNR-Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via La Pira 4, I-50121 Firenze, Italy ⁴Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544, U.S.A. ⁵Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, U.S.A. ^{*} Corresponding author: Asimow@gps.caltech.edu, +1(626)395-4133, FAX +1(626)395-1995 Fig. S1. Example diffraction patterns to distinguish space groups and recognize superlattices. Left: Superlattice diffraction pattern of a non-stoichiometric V_6C_5 ceramic ¹⁴. The pattern is comparable to the superlattice diffraction of the Al-alloy in Figs. 6 and 7. Middle: the [110] zone diffraction pattern of NaCl-type face-centered cubic structure (top) and of Steinhardtite-type body-centered cubic structure (bottom). Right: the [110] zone diffraction pattern of CsCl-type primitive lattice, which most closely matches the Al-alloy in Fig. 6. **Fig. S2. Distance-time plot showing estimated wave propagation and interactions in shot S1235**. The Al2024 layer experienced four shocks (two from the SS304 driver and two from the permalloy 80 layer behind it) before the release wave overtook the sample chamber. The Al2024-permalloy interface was at high pressure for about 0.6 μs. Key: Red squares = first shock in driver; cyan diamonds = first shock in flyer; purple asterisks = release in flyer; orange circles = forward-going release in driver; light green x's = rear-going partial release in driver; yellow triangles = first shock in Al2024; olive dashes = second shock in Al2024; lavender circles = third shock in Al2024; brown pluses = second shock in driver; ochre = third shock in Al2024; sky blue em-dashes = first shock in permalloy 80; dark purple triangles = release in Al2024; dark blue pluses = release in permalloy 80. Additional reflections shown in permalloy 80 layer are negligible due to small impedance contrast with back wall of 304SS.