Resveratrol modulates cocaine-induced inhibitory synaptic plasticity in VTA dopamine neurons by inhibiting phosphodiesterases (PDEs)

Yan Li^{1,2#}, Laikang Yu^{1,2#}, Li Zhao^{1*}, Fanxing Zeng¹, and Qing-song Liu^{2*}

¹ Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China

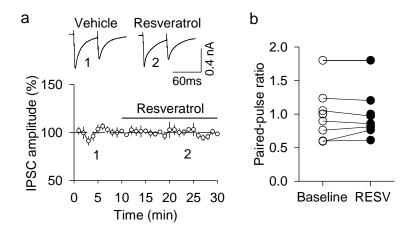
² Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown

Plank Road, Milwaukee, WI 53226, USA

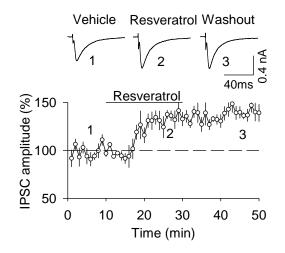
[#] Y.L. and L.Y. contributed equally to this work.

*Correspondence should be sent to:

Qing-song Liu, Ph.D., Department of Pharmacology and Toxicology, Medical College of


Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA

Email: <u>qsliu@mcw.edu</u>


Li Zhao, Ph.D., Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China

Email: zhaolispring@126.com

Supplementary Materials

Supplementary Figure S1. Resveratrol at 10 μ M had no significant effect on GABA_A receptor-IPSCs in VTA dopamine neurons. **a**, **b**. Bath application of resveratrol (10 μ M) did not alter the amplitude (**a**) and PPR (**b**) of IPSCs (*p* = 0.331, n = 6).

Supplementary Figure S2. The resveratrol-induced enhancement of IPSCs was not reversed during a 20 min washout period. Resveratrol (100 μ M) caused an increase in the amplitude of IPSCs (*p* < 0.001, n = 7). However, the potentiation was not reversed upon washout of resveratrol for 20 min (*p* = 0.110 vs. resveratrol application, n = 7).