Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells

Esther Imperlini^{1,2}, Massimiliano Gnecchi^{3,4,5}, Paola Rognoni⁶, Eduard Sabidò^{7,8}, Maria Chiara Ciuffreda³, Giovanni Palladini⁶, Guadalupe Espadas^{7,8}, Francesco Mattia Mancuso^{7,8}, Margherita Bozzola⁶, Giuseppe Malpasso³, Veronica Valentini⁶, Giuseppina Palladini⁹, Stefania Orrù^{1,2,10}, Giovanni Ferraro⁶, Paolo Milani⁶, Stefano Perlini⁹, Francesco Salvatore^{2,11,*}, Giampaolo Merlini^{6,*}, Francesca Lavatelli⁶

¹IRCCS SDN, Naples, Italy

²CEINGE–Biotecnologie Avanzate, Naples, Italy

³ Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.

⁴ Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.

⁵ Department of Medicine, University of Cape Town, Cape Town, South Africa

⁶Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione

IRCCS Policlinico San Matteo and University of Pavia, Italy

⁷Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology,

Barcelona, Spain

⁸Universitat Pompeu Fabra (UPF), Barcelona, Spain

⁹Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Italy

¹⁰Department of Movement Sciences, "Parthenope" University, Naples, Italy

¹¹Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Italy

*Correspondence and requests for materials should be addressed to F.S. (e-mail: salvator@unina.it) and G.M. (e-mail: <u>gmerlini@unipv.it</u>)

Supplementary Tables

Table S1. Proteins identified as specific component of the proteome of CardioLC-treated cells by shotgun analysis, in comparison with control cells.

Gene name	Protein name	UniProt	Control hCF	CardioLC
IGLL5	Immunoglobulin lambda-like polypeptide 5	B9A064	absent	present
ICAM1	Intercellular adhesion molecule 1	P05362	absent	present
BPGM	Bisphosphoglycerate mutase	P07738	absent	present
IGLC2	Ig lambda-2 chain C regions	P0CG05	absent	present
VCAN	Versican core protein	P13611	absent	present
SNRPB	Small nuclear ribonucleoprotein-associated proteins B and B'	P14678	absent	present
M6PR	Cation-dependent mannose-6-phosphate receptor	P20645	present	absent

Gel	Cy3	Cy5	Cy2
	(50 µg of protein lysate)	(50 µg of protein lysate)	(50 µg of protein lysate)
1	Control	CardioLC	Pooled standard
	replicate 1	replicate 3	
2	Control	CardioLC	Pooled standard
	replicate 2	replicate 4	
3	CardioLC	MMLC	Pooled standard
	replicate 1	replicate 3	
4	CardioLC	MMLC	Pooled standard
	replicate 2	replicate 4	
5	MMLC	Control	Pooled standard
	replicate 1	replicate 3	
6	MMLC	Control	Pooled standard
	replicate 2	replicate 4	

 Table S2. 2D DIGE Experimental Design.

Table S3. Proteins differentially represented both in hCF treated with CardioLC and in adipose tissue of patients affected by AL amyloidosis.

Gene	Protein	Localization	Direction	Comparison*
TLN1	Talin-1	CT	\downarrow	1
FLNA	Filamin-A	CT	\downarrow	1
ANXA5	Annexin A5	CY	\downarrow	1
SERPINH1	Serpin H1	ER	\downarrow	2
AHNAK	AHNAK protein	Ν	\downarrow	1
ATP5A1	ATP synthase subunit alpha	М	\downarrow	2
EHD2	EH domain-containing protein 2	СМ	\downarrow	2
CLTC	Clathrin heavy chain 1	СМ	\downarrow	1
MYH9	Myosin-9	CT	1	2
LMNA	Prelamin-A/C	Ν	\downarrow	3
FN1	Fibronectin	ECM	\neq (\uparrow in tissue; \downarrow in hCF)	1
VCL	Vinculin	CT	≠(↑ in tissue; ↓in hCF)	2
VIM	Vimentin	CT	\neq (\uparrow in hCF; \downarrow in tissue)	1
HADHB	Trifunctional enzyme subunit beta, mitochondrial	Μ	\neq (\uparrow in tissue; \downarrow in hCF) **	2
COL1A2	Collagen alpha-2(I) chain	ECM	\neq (\uparrow in tissue; \downarrow in hCF)	1

* Comparison 1: CardioLC vs Control and vs MMLC; Comparison 2: CardioLC vs Control only; Comparison 3: CardioLC versus MMLC only ** HADHA subunit in fat tissue CY: cytoplasm; ER: endoplasmic reticulum; N: nucleus; M: mitochondrion; CM: cell membrane; ECM: extracellular matrix; CT: cytoskeleton.

Supplementary Figures

a

CardioLC-treated cells *versus* control cells Cancer, Cell Death and Survival, Organismal Injury and Abnormalities

b

CardioLC-treated cells *versus* control cells Cell Morphology, Cellular Assembly and Organization, Cellular Function and Maintenance

CardioLC-treated cells *versus* MMLC-treated cells Developmental Disorder, Hereditary Disorder, Organismal Injury and Abnormalities

Figure S1. Multidirectional interaction networks according to IPA software. (a) and (b) Proteins identified as differentially represented in the CardioLC *vs* control comparison, by taking into account the results of both the shotgun and the 2D DIGE analysis. Red: proteins identified as differential only in the CardioLC *vs* control comparison; blue: proteins identified as differential both in the CardioLC *vs* control and in the CardioLC *vs* MMLC comparison. The differential proteins belong to two high-score biological networks, associated to (a) "Cancer, Cell Death and Survival, Organismal Injury and Abnormalities" (score=78) and (b) "Cell Morphology, Cellular Assembly and Organization, Cellular Function and Maintenance" (score=67). (c) Proteins identified as differential in the CardioLC *vs* MMLC comparison. The differential proteins belong to one high-score biological network associated to (c) "Developmental Disorder, Hereditary Disorder, Organismal Injury and Abnormalities. Green: proteins identified as differential only in the CardioLC *vs* MMLC comparison; blue: proteins identified as differential only in the CardioLC *vs* MMLC comparison; blue: proteins identified as differential only in the CardioLC *vs* MMLC comparison.

Figure S2. Full length digital images of the western blots displayed in Fig 4. Each image refers to the replicate displayed in the text (boxed) for each indicated protein. The appearance of multiple bands in some images is due to the sequential evaluation of multiple proteins on the same membrane.

Figure S3. Evaluation of effects on cell viability by different LCs. Cell viability was significantly reduced in hCFs exposed for 24 h to 3 different CardioLCs, compared to hCFs exposed to 2 different MMLC and to untreated ones. *p value <0.001 versus CardioLC-2, CardioLC-3, CardioLC-4; #p value <0.01 versus MMLC-3; °p value <0.05 versus MMLC-3; †p value <0.01 versus MMLC-3.

Figure S4. Verification of differentially represented proteins in hCFs incubated with other LCs using western blot. Data referred to each LC are individually presented. The graphs display the ratio (average values; bars represent standard deviations) between the signal of each protein and the corresponding β -actin, normalized against the average of the corresponding control cells. Results were statistically evaluated by 2-tailed unpaired Student's t-test. **p* value < 0.05 *versus* Untreated; #*p* value < 0.05 *versus* MMLC.