Supplementary Figures

Supplementary Figure 1 | Sensorgrams for the binding of Fabs to immobilized 115-BV and A1post proteins. Binding was measured with a Biacore X100 instrument as described in the Online Methods. Binding constants are shown in Table 1. Black traces are raw data and red traces are global fits of the data.

Supplementary Figure 2 | Electron density of glycans in the prefusion hMPV F crystal structure. (a) Side view of prefusion hMPV F as depicted in Figure 2 with gray and white protomers shown as transparent molecular surfaces. (b–d) Magnified regions of (b) N57 (c) N172 and (d) N353, colored as in (a) with glycans and proximal residues shown as sticks and with the 2Fo-Fc electron density map contoured at 1σ shown as a black mesh. GlcNAc = *N*-acetylglucosamine; Man = mannose. (e) Stereo image of N353, depicted as in (d).

Supplementary Figure 3 | Structural rearrangement of hMPV F. hMPV F sequence and secondary structure. Sites of *N*-linked glycosylation are highlighted by black triangles, antigenic sites shared with hRSV are labeled in red, and an arrow indicates the protease cleavage site. Secondary structures are shown below the sequence, with cylinders representing α -helices and arrows representing β -strands. Disordered or missing residues are indicated by an "X"; residues that move over 5 Å between prefusion and postfusion conformations are shown with a gray shadow. The prefusion sequence of 115-BV shown above has a modified cleavage site (RQSR \rightarrow RRRR) and an alanine to proline substitution (A185P).

Supplementary Figure 4 | **Comparison of pneumovirus prefusion F structures.** Superposition of one protomer of the prefusion hMPV F structure (white) with (a) hRSV F (PDB ID: 5C69) and (b) monomeric hMPV F (PDB ID: 4DAG). Domain of the corresponding structures are superposed and magnified. Domain III has been split into subdomains that are superposed based on the full domain III alignment.

Supplementary Figure 5 | The RGD motif is mostly buried in prefusion hMPV F. (a) Side view of prefusion hMPV F with (b) magnified region depicting the RGD motif in gold. (c) Fraction of accessible surface area buried by neighboring protomer for the RGD motif colored on a per-residue basis: magenta (0%, "buried") to cyan (100%, "accessible"). In the prefusion hMPV F structure, Arg329, Gly330 and Asp331 have 125, 61, and 63 Å² of accessible surface area, of which 117, 45 and 6 Å² are buried by the neighboring protomer, respectively. (d) Magnification of RGD motif showing interprotomeric hydrogen bonds.

Supplementary Figure 6 | The RGD motif is partially buried in postfusion hMPV F. (a) Side view of postfusion hMPV F with (b) magnified region depicting the RGD motif in gold. (c) Fraction of accessible surface area buried by neighboring protomer for the RGD motif colored on a per-residue basis: magenta (0%, "buried") to cyan (100%, "accessible"). In the postfusion hMPV F structure, Arg329, Gly330 and Asp331 have 114, 57, and 71 Å² of accessible surface area, of which 70, 0 and 0 Å² are buried by the neighboring protomer, respectively. (d) Magnification of RGD motif showing select hydrogen bonds.

Supplementary Figure 7 | Conserved *N*-linked glycosylation in prefusion hRSV F. (a) Side view and (b) top view of prefusion hRSV F, with complex glycans (modelled *in silico* via GlyProt¹), shown as sticks. (c) Magnified view of the apex, and (d) 90° rotation. Oxygen atoms are colored red and nitrogen atoms are colored blue.

Supplementary	Table 1	List	of hMPV	F	glycoprotein	variants
---------------	---------	------	---------	---	--------------	----------

					Supernatant volume (50% Max, µl)		olume , µl)
Name	Mechanism of stabilization	Cleavage site	Mutation	Efficiency of cleavage (WB)	MF14 (Pre & Post)	MF1 (Post)	MPE8 (Pre)
A1-post		ENPRQS KKRKRR	Δ103-111	>95%	6.80	5.14	18.32
02-MA1		ENP RQSR		< 5%	6.27	> 50	7.77
114-BV		ENP RRRR		> 95%	8.65	28.76	9.26
115-BV		ENP RRRR	A185P	> 95%	1.99	14.83	2.54
116-BV		ENP RRRR	I184P	> 95%	10.60	20.81	28.33
117-BV		ENP RRRR	D186P	> 95%	13.03	> 50	11.97
130-BV		ENP RQSR	A185P	< 5%	0.69	> 50	0.89
134-BV	α4-α5 hinge	ENPRQS KKRKRR	A185P	> 95%	6.16	30.12	11.25
135-BV		ENP RTKR	A185P	$\approx 50\%$	1.07	36.99	1.60
136-BV		TDPRTKR	A185P	pprox 75%	2.23	20.55	2.94
137-BV		ENPRQS KKRKRR	Δ103-111 A185P	> 95%	1.10	2.82	2.41
118-BV		ENP RRRR	F456W	> 95%	5.43	> 50	5.51
119-BV	Cavity filling	ENP RRRR	A161F	ND	> 50	> 50	> 50
120-BV		ENP RRRR	A161L	> 95%	33.33	> 50	25.64
121-BV		ENP RRRR	T127C/I258C	ND	> 50	> 50	> 50
122-BV	Disulfide formation	ENP RRRR	T127C/I260C	ND	> 50	> 50	> 50
123-BV	101 marton	ENP RRRR	A120C/F256C	ND	> 50	> 50	> 50

The names of the different hMPV F proteins used in this study are indicated. Plasmids encoding the first three proteins (which fold spontaneously into the postfusion conformation) were the basis for generating the remaining mutants that differ in the indicated cleavage site sequence and in the mutations intended to stabilize them in the prefusion conformation. Plasmids were tested for transient expression of the encoded proteins in CV-1 cells, as described in the **Methods**. The presence of the different proteins in culture supernatants was assessed by western blot (which also informed about the degree of cleavage) and by ELISA with mAb MF14 that recognizes an epitope shared by the prefusion and postfusion conformations ². ELISA with MF1 ³ and MPE8 ⁴ provided information about reactivity with postfusion and prefusion specific mAbs, respectively. Numbers indicate microliters of culture supernatant required to reach 50% of maximum value in ELISA. Those in boldface indicate proteins that have been produced and purified in this study. ND, not detected.

								ELISA EC50 (nM)				
Name	Mechanism of stabilization	Cleavage site	Mutation	Yield mg/L	Oligomerization state	Trimer Form (EM)	Efficiency of cleavage (SDS-PAGE)	MF14	MF1	MPE8	ADI- 18992	ADI- 15614
A1-post		ENPRQS KKRKRR	∆103-111	0.4	Trimers & minor aggregates	Post	>95%	2.01	2.37	18.5	6.80	26.1
115-BV	a4-a5 hinge	ENP RRRR	A185P	1.0	Trimers & minor aggregates	Pre	>95%	1.21	64.0	1.75	4.71	1.82
130-BV	u+-u5 milge	ENP RQSR	A185P	1.7	Trimers	Pre	< 5%	1.25	> 100	1.84	3.71	ND
118-BV	Cavity filling	ENP RRRR	F456W	0.3	Trimers	Pre & Post	>95%	2.56	11.6	6.13	ND	ND

Supplementary Table 2 | Characteristics of purified hMPV F glycoproteins

Proteins were produced and purified as described in the **Methods**. Purity and efficiency of cleavage was evaluated by SDS-PAGE with Coomassie blue staining, and oligomerization state was determined by gel filtration. The indicated mAbs were used to capture the proteins that were assessed by ELISA as described in the **Methods**. ADI-15614 and ADI-18992 are human mAbs specific for antigenic site III (unique to the prefusion conformation) and site IV (shared by prefusion and postfusion) of hRSV F, respectively, but that cross-react with hMPV F ⁵. Other mAbs, as in **Supplementary Table 1**. ND, not determined.

	Prefusion hMPV F					
Data collection						
Space group	<i>I</i> 2 ₁ 3					
Cell dimensions						
<i>a=b=c</i> (Å)	177.7					
α=β=γ (°)	90					
Resolution (Å)	51.3-2.6 (2.72-2.60)*					
R _{merge}	0.165 (1.42)					
$I / \sigma I$	11.2 (1.90)					
Completeness (%)	100.0 (100.0)					
Redundancy	9.9 (10.3)					
Refinement						
Resolution (Å)	51.3-2.60					
Unique reflections	28,796 (1,455)					
$R_{\rm work} / R_{\rm free}$ (%)	17.0/20.7					
No. atoms						
Protein	3,355					
Carbohydrate	92					
Ion	520					
Water	135					
<i>B</i> -factors (\AA^2)						
Protein	57.8					
Carbohydrate	116.0					
Ion	143.9					
Water	52.4					
R.m.s. deviations						
Bond lengths (Å)	0.003					
Bond angles (°)	0.56					

Supplementary Table 3 | Crystallographic data collection and refinement statistics

Data were collected from one crystal.

*Values in parentheses are for highest-resolution shell.

Supplementary References

- 1. Bohne-Lang, A. & von der Lieth, C.W. GlyProt: in silico glycosylation of proteins. *Nucleic Acids Res* **33**, W214-9 (2005).
- 2. Mas, V. et al. Engineering, Structure and Immunogenicity of the Human Metapneumovirus F Protein in the Postfusion Conformation. *PLoS Pathog* **12**, e1005859 (2016).
- 3. Rodriguez, L. et al. Generation of monoclonal antibodies specific of the postfusion conformation of the Pneumovirinae fusion (F) protein. *J Virol Methods* **224**, 1-8 (2015).
- 4. Corti, D. et al. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. *Nature* **501**, 439-43 (2013).
- 5. Gilman, M.S. et al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. *Sci Immunol* **1**(2016).