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Supplementary Figure 1. Schematic of ALARM NMR counter-screen. The La antigen (green
backbone) contains two cysteines, C232 (cyan) and C245 (red), that can react with electrophilic
screening compounds, which can consequently perturb the conformation of three nearby leucine
residues, L249, L294, and L296 (magenta), as observed by 2D NMR spectroscopy. PDB ID
10WX'. Upper left: representative ['H-">C]-HMQC spectra of the human La antigen showing the
chemical shifts for "*C-labelled L249, L294, and L296 in the presence of DMSO. Signal intensities
(z-axis, relative units) normalized. Note the chemical shifts and intensities are independent of DTT.
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Supplementary Figure 2. Several reported HAT inhibitors form adducts with CoA in vitro.
Test compounds were incubated in ALARM NMR buffer with excess CoA and analyzed by UPLC-
MS. Shown are ESI-negative mode spectra for proposed compound-CoA adducts (denoted by
double apostrophe) with arrowheads representing the proposed parent peak. Note for compound
3, the parent compound and the compound detected after treatment with CoA elute at different
retention times (see inset). Insets: proposed chemical structures of compound-CoA adducts. Data
are representative results from at least two independent experiments. R, CoA. See Table 1 for

additional results.
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Supplementary Figure 3. Reported HAT inhibitors inhibit multiple targets in vitro.

phosphatases at 10 uM final compound concentrations. Data are expressed as mean + SD from

Compounds 1-3 were tested for activity modulation versus a panel of kinases, proteases, and
one experiment performed with three technical replicates.
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Supplementary Figure 4. Compound 1 inhibits multiple unrelated kinases in vitro.
Compound 1 was tested for kinase activity modulation at 10 uM final compound concentrations
in vitro. The kinase panel consisted of 200 kinases. Data are expressed as mean from one
experiment performed with three technical replicates. Kinases with greater than 50% mean
inhibition by 1 are individually labelled. lllustration reproduced courtesy of Cell Signaling
Technology, Inc. (cellsignal.com)®*.
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Supplementary Figure 5. Most reported HAT inhibitors are not redox-active. Compounds
were tested at 250 yM final concentrations in ALARM NMR assay buffer (25 mM sodium
phosphate, pH 7.0; plus 0.01% Triton X-100) using an HRP-PR surrogate assay for H,O,
production. Assay was performed with either (top) 1 mM DTT or (bottom) 0 mM DTT in the assay
buffer (final concentrations). DMSO and 100 uM H,O,, negative and positive plate controls,
respectively. NSC-663284 (PC1) and 4-amino-1-naphthol (PC2), redox-active positive control
compounds. Fluconazole (NC), negative control compound. Data are expressed as mean + SD
pooled from three independent experiments each performed with three technical replicates. See
Table 1 for summary.
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Supplementary Figure 6. Several reported HAT inhibitors have potential for absorbance
interference. Compound absorbance spectra were obtained at the indicated compound
concentrations in ALARM NMR assay buffer (25 mM sodium phosphate, pH 7.0) at room
temperature. Data are representative results from two independent experiments.
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Supplementary Figure 7. Most reported HAT inhibitors do not show significant
autofluorescence. Fluorescence intensity of test compounds was measured at the respective
fluorophore settings. Compounds were tested in ALARM NMR assay buffer (25 mM sodium
phosphate, pH 7.0). Fluorescence signal is expressed in ‘fluorophore-equivalent concentrations’
(FEC), which are derived from the respective fluorophore standard curves. Data are expressed
as mean = SD from one experiment performed with three technical replicates.
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Supplementary Figure 8. Many reported HAT inhibitors exhibit fluorescence quenching
behavior. Test compounds were incubated with 10 uM of the respective fluorophore standard,
and the fluorescence intensity at the respective fluorophore settings was compared to control.
Compounds were tested in ALARM NMR assay buffer (25 mM sodium phosphate, pH 7.0).
Fluorescence signal is expressed as FEC. BHQ-1, positive fluorescence quenching control
compound. Data are expressed as mean %

technical replicates.
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Supplementary Figure 9. Representative gel images. Shown are representative uncropped
gels for Fig. 4D. Molecular weight markers (MW) are indicated in kDa.
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Supplementary Figure 10. Select reported HAT inhibitors induce caspase 3/7 activity and
cause cytotoxicity. (a) Select reported HAT inhibitors 8 and 12, the redox active compound
NSC-663284, and the previously characterized nonspecific thiol-reactive compounds 24 and 26
induce caspase activity in HEK293T and MCF7 cells, consistent with apoptosis. Cells were
assessed 24 h after compound addition using live-cell caspase 3/7-cleavable fluorescent
substrate. Data are from a single experiment. (b) The same compounds increase membrane
permeability in HEK293T and MCF7 cells, consistent with cytotoxicity. Cell membrane integrity
was assessed by Sytox green dead-cell dye uptake. Only cells with compromised membrane
integrity take up the dye that becomes fluorescent inside cells. Data are from a single experiment.
(c) Kinetic quantitation of caspase 3/7 activity and cell membrane permeability for compounds 8
and 26 in MCF7 cells. Data are expressed as mean = SD and are from one experiment performed
with three technical replicates.
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Supplementary Figure 11. Reported HAT inhibitors are cytotoxic and induce apoptosis at
micromolar compound concentrations. Shown are representative images of cell confluence,
apoptosis, and cell permeability data reported in Fig. 4 and Supplementary Fig. 10 for cells
treated with 30 uM compound, final concentration. (a) The reported HAT inhibitor compound 8
causes cell death in MCF7 and HEK293T cells as shown by cell confluence studies. Data are
from a single experiment. (b) Compound 8 and 24 (a previously characterized nonspecific thiol-
reactive compound) are cytotoxic in MCF7 cells as determined by membrane integrity studies.
Data are from a single experiment.
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Supplementary Figure 12. Reported HAT inhibitors show variable effects on tubulin
acetylation in HEK293T and MCF7 cells. Western blots of a-tubulin and a-tubulin-K40ac in (a)
HEK293T and (b) MCF7 cells treated with 10 or 30 yM test compounds final concentration.
Western blots were normalized to a-tubulin. C, DMSO control; N, NSC-663284; R, Rottlerin. Data
are from a single experiment. Molecular weights of protein analytes are indicated in kDa as
verified by molecular weight markers (MW). (¢) Representative uncropped gel images from panels
(a) and (b). MW are indicated in kDa.
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Supplementary Figure 13. Reported HAT inhibitors do not significantly perturb H3K27 and
tubulin acetylation in MCF7 cells co-treated with 2.5 uM SAHA. (a) Western blots of H3K27ac,
H3K27, actin, p300, a-tubulin and a-tubulin-K40ac in MCF7 cells treated for 24 h with 10 uM test
compounds final concentration. Note: compare to Fig. 4 for analogous non-SAHA experiment.
Western blots for H3K27ac and a-tubulin-K40ac were normalized to actin and a-tubulin,
respectively. C, DMSO control; C', DMSO control with no SAHA; N, NSC-663284; R, Rottlerin.
Data are from a single experiment. Molecular weights of protein analytes are indicated in kDa as
verified by molecular weight markers (MW). (b) Representative uncropped gel images from panel
(a). MW are indicated in kDa.
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Supplementary Table 1. Original references and associated target activities for reported

HAT inhibitors.

ICso (M)
Aggregation
mitigation
Trapping/ (detergent,
reducing decoy
Cpd Reference p300/CBP GCN5 PCAF Tip60 Other HATs agents protein)
SAS (< 10%
inhibition @
10 uM); MOZ
<10% < 10% - (<10% 40-50 _ng/pL
1 5 16 inhibiion @ inhibition @ '”q'g't'?\’ﬂ” @  ismmorr  BSA
10 uM 10 uM uM); 0.01% viv
Rtt109 (< Triton X-100
10%
inhibition @
10 uM)
2 6 59 > 100 33 ~2 None None
130 (H3
peptide 0.1% wiv
3 7 substrate); None BSA; 0.8%
35.5 (H4 v/v Triton X-
peptide 100
substrate)
8 p300 (2.9); "practically "practically
4 CBP(11) inactive" inactive” 1mMDTT None
MYST2 (1%
gano 1.8
e)(;&?éoo 33.9 34.7 i h'zt;%;' Hgt%god'
9 s . . inhibition ’
5 HotSpot):  (HotSpot)  (HotSpot) @ 100 MYZ?J/“ - 1mMDTT None
CBP (32% uM A
inhibition @ '”’1""'“0” @
100 uM) H°° HM,
otSpot)
6 10 CBP (500) 100 Unknown Unknown
7 " ~500 1 mMDTT None
~50%
8 2 25 inhibition @ Unknown Unknown
50 uM
25% 25%
9 A inhibition @ 7.2 inhibition Unknown Unknown
25 uM @ 25 uM
10 “ pg’é)g gg; 60 70 None Unknown
<10%
1 s R ((:22)) inhibition @ None None
100 uM
30% <1%
12 1 5 inhibition @  inhibition @ 1mMDTT None
5uM 5uM
13 v 5 7 1mMDTT None
14 1 8.5 5 1mMDTT None
0,
15 ' inhibition @ inhibition @ 74 MOF (47) 1 mMDTT 1o
200 uM 200 uM 100; 0-50
ng/uL BSA
<10%
20 p300 (~25); inhibition
16 CBP (~25) ~50 @ 100 1 mMDTT None
uM
40%
17 21 inhibition @ 2 mM DTT TO.'°5% viv
riton X-100
40 uM
22 p300 (4.2); KAT5 (>
18 CBP (51.3) > 100 >100 100); MYST2 1mMDTT None
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100)

Rtt109
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UM Kg); MOZ
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MOF (> 100
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1mMDTT

1mMDTT
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DTT
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assay

1mMDTT

1mMDTT
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0.0005% v/v
Pluronic F-68
0.01% or viv
Triton X-100

depending
on assay; 0.1
mg/mL BSA
or 0.01%
NEM-treated
BSA
depending
on assay
0.01% viv
Tween-20;
0.02% m/w
chicken egg
white
albumin

None



Supplementary Table 2. Compound sources and miscellaneous notes.

Name Vendor Catalog # Comments
Alexa Fluor 350 ThermoFisher A33076 Carboxylic acid; protect from light
Alexa Fluor 488 ThermoFisher A33077 Carboxylic acid; protect from light
Alexa Fluor 647 ThermoFisher A33084 Carboxylic acid; protect from light
4-Amino-1- .
naphthol TCI America A0366 HCI salt
Biosearch BNS- -
BHQ-1 Technologies 5051N Amidite form
. . Bovine serum albumin; lyophilized powder; crystallized; prepare
BSA Sigma-Aldrich 05470 fresh and dissolve in ALARM NMR buffer
CPM Sigma-Aldrich C1484 I%M{%dbmwamM&4mmmWammam%&wmhawﬂmmdmwa
protect from light
DTT Sigma-Aldrich D5545 DL-Dithiothreitol; prepare stock solution fresh for each experiment
(poor aqueous half-life)
FITC Sigma-Aldrich F7250 Fluorescein isothiocyanate; protect from light
Fluconazole Sigma-Aldrich F8929
H,0, Sigma-Aldrich 216763 Hydrogen peroxide; contains inhibi.tor, 30 wt. % in H,O; prepare
stock solution fresh for each experiment
4-Methyl . . .
umbelliferone Sigma-Aldrich M1381 Protect from light
NSC-663284 Sigma-Aldrich N7537
Resorufin Sigma-Aldrich 424455 Protect from light
Rhodamine B Sigma-Aldrich 79754 Protect from light
SAHA Alexis Biochemicals Suberoylanilide hydroxamic acid
Texas Red Thermo Fisher T20175 Succinimidyl ester; protect from light
Triton X-100 Sigma-Aldrich To284 Er%p?re 10% solution (v/v) fresh for each experiment (can produce
22
1 Sigma-Aldrich SML0002 C646; protect from light
2 Santa Cruz $c-397052  NU-9056
Biotechnology
3 - - PU141; synthesized in-house (NN, JBB) as previously described”
4 XcessBio M60257 EML425; protect from light
5 Tocris Bioscience 5045 L002
6 Sigma-Aldrich M2449 MB-3
7 Sigma-Aldrich C9873 CPTH2
8 Tocris Bioscience 4761 Plumbagin
9 Sigma-Aldrich E1406 Embelin
10 Sigma-Aldrich E4143 (-)-Epigallocatechin gallate
1 Sgnta Cruz sc-200509 Curcumin; protect from light
Biotechnology
12 Santa Cruz $c-397036  HAT Inhibitor II; protect from light
Biotechnology
13 Sgnta Cruz sc-200891 Garcinol; protect from light
Biotechnology
14 Sigma-Aldrich A7236 Anacardic acid
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15

16

17

18

19

20

21

22

23

24

25

26

27

Selleck Chemicals
Cayman Chemical
EMD Millipore
Sigma-Aldrich
Key Organics US
Axon

Enamine

eMolecules
eMolecules
eMolecules

eMolecules

S7476

14482

382115

SML0899

HG-0032

2339

214250979

8646152

1165100

6447334

1947931

MG149
Gossypol
CTK7A
Windorphen
LoCAM

TH1834; HClI salt

N-[(2-chloro-6-fluorophenyl)methyl]-2-(2,5-dioxo-4-phenyl-4-
propylimidazolidin-1-yl)-N-methylacetamide

CTx-1; synthesized in-house (NN, JBB; forthcoming manuscript)

Lys-CoA,; synthesized in-house (JHS, JLM) as previously
described®®

Thiol reactive, redox-active; 6a from previous study’
Thiol reactive, redox-active; 6e from previous study’
Thiol reactive; 2a from previous study’

Thiol reactive; 3a from previous study’
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Supplementary Note 1. Light-based interference of reported HAT inhibitors. We assessed
the reported HAT inhibitors for absorbance and fluorescence interference, as many HTS and
follow-up assays (both biochemical and cell-based) will either quantify a light-based signal or
utilize microscopy for phenotypic studies. Overall, 10/22 (45%) of the reported HAT inhibitors
tested were flagged for potential absorbance interference between 300 and 425 nm wavelengths
(Supplementary Fig. 6). Few reported HAT inhibitors showed significant levels of
autofluorescence when tested at eight common fluorophore wavelengths (Supplementary Fig.
7). By contrast, the majority of the reported HAT inhibitors tested (16/21, 76%) showed evidence
of fluorescence quenching by at least one fluorophore at low-to-mid micromolar compound
concentrations (Supplementary Fig. 8).
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Supplementary Note 2. Untested reported HAT inhibitors. A literature search identified
multiple other compounds reported as HAT inhibitors that were not tested in this report’**“. Based
on the chemical structure and review of the original manuscripts, many of these compounds show
weak potency, and many are also likely thiol-reactive, aggregators, and likely nonspecific in their
target engagement under common HAT assay conditions. Other, non-drug-like natural products
would benefit from additional characterization®’.
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