
Supplementary Notes  

Validation of the inference of DrAS-Net 

We used three independent methods to validate the inferences of the DrAS-Net (Figure S3B). First, we did a cross-

validation based on 33 datasets in TCGA (Figure S3B, left panel). For each pair of these 33 datasets (in total 528 

pairs), we derived the mutation-AS pairs in each dataset by the proposed method, DrAS-Net. For 216 pairs of 

datasets with common mutations, we investigated whether the same mutation-AS pairs were significantly 

overlapped with each other in each pair of dataset. As a result, we found that 83.6% pairs significantly (p<0.05, 

hypergeometric test) share common mutation-AS relationships (Figure S3C). These results suggest that the 

inferences derived from our study are robust across different datasets. 

Second, we validated the inferences using 506 cell lines from The Cancer Cell Line Encyclopedia (CCLE) 

project. We obtained the somatic mutations in each cell line which were measured by hybrid capture sequencing. 

The mutations were mapped to TCGA tumor samples to find common mutations. In addition, we also used the 

RNA-seq dataset to explore whether the cell lines with mutations show perturbed expression of corresponding 

exons. If the mutation and perturbed expression of exon occurred in the same cell line, we regarded this as a 

validation (Figure S3B, middle panel). Overall, we observed a significant validation rate compared to random 

controls (p<1.0e-4). For instance, the mutation REL-R219C and the AS event MAGOHB: exon 2.1-2.2 skipping 

was validated in the HCT116 cell line (Figure S3D). 

Third, we validated the inferences by literature mining. We used the /gene, mutation, cancer/ or /gene, splicing, 

cancer/ as keywords to search the entire Pubmed literature by data mining. We found that a significant fraction of 

mutations and alternative splicing in DrAS-Net could be validated in literature, providing evidence of their roles in 

cancer (Figure S3E and Table S6). Together, all these results validated the inferences of DrAS-Net. 

Network-based model identifies somatic driver mutations with deleterious effects 

Our analyses have demonstrated the functional importance of the identified driver genes. Several methods for 

assessing the effects of mutations on protein function have been developed over the years, and these methods are 

complementary to each other. We therefore used Combined Annotation–Dependent Depletion (CADD) (Kircher et 

al., 2014), which is a framework that integrates multiple annotations into one metric, to explore the functional 

impact of mutations in these driver genes. For each cancer type, we randomly selected the same number of 

mutations as background controls. We then compared the scores of our identified driver mutations with those of 

randomly selected mutations. In the majority (63.6%; 21/33) of cancer types, our identified driver mutations had 

significantly higher scores (Wilcoxon rank-sum test p<0.05) than controls (Figure S3F), suggesting that the 

identified driver mutations have deleterious effects in cancer.  

Evolutionary conservation of a mutated residue has also been demonstrated to reflect the importance of the 

mutational event (Watson et al., 2013). We therefore explored the conservation feature of the identified mutations. 

We found that positions harboring driver mutations were more likely to be conserved than positions harboring 

randomly selected mutations in most (87.9%; 29/33) cancer types (Figure S3G). Moreover, we investigated the 



proportion of driver mutations that were located in protein domains. We observed that different types of cancer 

exhibited variable patterns. In 48.5% (16/33) of cancer types, driver mutations were depleted in protein domains 

(Figure S3J). To further evaluate the functional impact of these candidate driver mutations, we examined whether 

they affect intrinsically disordered regions (IDRs), which had been demonstrated to play critical roles in cancer 

signaling regulation (Latysheva et al., 2016). We computed the probabilities of these driver mutations to reside in 

IDRs using the IUPred program (Dosztanyi et al., 2005). We found that they were more likely to reside in IDRs than 

random controls in the majority (93.9%; 31/33) of cancer types (Figure S3H). To further investigate if the driver 

mutations affect functional motifs within IDRs (Sebestyen et al., 2016; Tompa et al., 2014), we implemented the 

ANCHOR algorithm to identify protein-binding sites that reside in disordered regions. We observed that the 

proportion of driver mutations located in putative motifs were significantly higher (p<0.05, Fisher’s exact test) than 

other mutations in most (78.8%; 26/33) cancer types (Figure S3I). Together, we have delineated a network-based 

framework to identify driver mutations that likely play roles across a wide range of cancer types.   

To investigate whether these mutations led to specific alternative splicing outcomes, we transfected HEK293T 

cells with plasmids encoding for either wild-type genes or identified mutants. Analysis of cis-regulated splicing in 

CASP6, BCL6, and PDE9A found 7 mutants that showed significant reduction in transcription of the respective 

exons relative to their matching wild-type controls (Figure S3K). Furthermore, profiling of trans-regulated cases 

mediated by mutations in the FXR2 RNA-binding protein revealed both gain of exons in TRAF2 (exon 6.2) as well 

as loss of exons in PAF1 (exon 2) and the DNA damage response gene RBBP8 (exon 19.2) (Figure S3K). Together, 

our results suggest that different genetic mutations likely influence distinctly different AS events in cancer. 

 

Supplemental Experimental Procedures 

Identification of the differential AS landscape across cancer types 

To investigate the landscape of AS across cancer types, we obtained the genome wide AS datasets from the 

TCGASpliceSeq database (Ryan et al., 2016), which is a compendium of AS events in cancer. The Percent Spliced 

In (PSI) value was used for quantifying splicing events, which is defined as the number of reads indicating that a 

transcript element is present divided by the total number of reads covering the AS event. In total, the PSIs for 10,699 

samples across 33 types of cancer were obtained, including 749 normal samples for 23 types of cancer (Table S1). 

Seven types of AS events were considered in our analysis, including exon skipping, alternative donor site, 

alternative acceptor site, retained intron, mutually exclusive exons, alternative terminator and alternative promoter. 

We required the percentage of samples with PSI values to be greater than 75% and the missing values were imputed 

with the mean of all samples. Next, Wilcoxon rank-sum test was used to identify the differential AS events in each 

cancer. We only analyzed the cancer types with more than five normal samples. P-values were corrected by BH 

method. The AS events with adjusted p-values less than 0.01 and the fold-changes greater than two-fold were 

identified as differential AS in each cancer.  

 



Analysis of the cancer similarity based on differential AS patterns 

We computed the paired similarity for 18 types of cancer based on the differential AS patterns. For each pair of 

cancer types, we computed the similarity score (Sim) based on the differential AS events as follows:  

 

 

 

where DSa indicates the differential AS events in cancer type Ca while DSb indicates the differential AS events in 

cancer type Cb. Cancer types were clustered based on this similarity matrix. In addition, cancer types were also 

clustered based on the similarity of AS subtype patterns. 

 

Gene Set Enrichment Analysis comparing tumors with and without perturbed AS events 

To compare the expression difference of tumor samples with perturbed AS events and those without such events, we 

applied Wilcoxon rank-sum test for RNA-seq expression profiles for each type of cancer. Genes were ranked by a 

score in each cancer type, which was defined as the negative log10 of the Wilcoxon rank-sum test analysis-derived 

false discovery rate (FDR) multiplied by the sign of the logFC (log fold change). The score was normalized to 

relative rank in each type of cancer and we used the average relative rank in all cancer types for Gene Set 

Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005). GSEA was performed by applying 

the “weighted” enrichment statistics on the relative rank for enrichment or depletion. Here, we utilized pathways 

included in KEGG, REACTOME, BIOCARTA, and PID databases. The gene sets containing between 20 and 500 

genes were analyzed and 1,000 permutations were performed to get the significance levels.  

 

Immune signature score, cell cycle signature score and copy number variation analysis 

We aimed to determine whether the tumor samples with perturbed AS events exhibited distinct immune features. 

The immune signature score, cell cycle signature score and somatic copy number alteration (SCNA) level for cancer 

samples were calculated as described (Davoli et al., 2017). Wilcoxon rank-sum test was used to test the difference of 

these scores between tumor samples with/without perturbed AS events. 

 

Prioritization of mutated genes and genomic mutations in cancer 

After assembling all the mutated gene-AS associations in each patient, we constructed a bipartite network for each 

cancer. Next, we prioritized the mutated genes by identifying genes with the largest extent of AS disruption in 

cancer. The mutated genes in each bipartite network were ranked by degree and then for each iteration, we chose a 



mutated gene that covered the largest number of uncovered AS. The greedy algorithm was stopped when all the AS 

events were covered. Then the mutations in the identified genes in the corresponding sample were assembled as 

driver mutations in each cancer. This prioritization was only applied to trans-regulations. All the cis-regulated 

mutations were added to the driver list.  

 

Functional analyses of the driver genes and mutations 

To investigate the functional importance of the driver genes and mutations, we compared the mutation frequency, 

the proportion of cancer genes in their network neighbors for the driver genes. All the cancer genes were obtained 

from Cancer Gene Census (n=609). Moreover, functional enrichment analysis of the driver genes was carried out to 

investigate whether they were enriched in cancer hallmarks. The gene list of each cancer hallmark was obtained 

from one of the previous studies (Plaisier et al., 2012). We used hypergeometric test for exploring the statistical 

significance and the p-value was computed as follow: 
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Where N is the number of genes in the whole genome, of which K genes were involved in the functional category 

under investigation (such as cancer genes and cancer hallmarks), and the number of candidate driver genes is M, of 

which x genes were involved in the functional category.  

In addition, the CADD score was computed to evaluate the deleteriousness of single nucleotide variants as well 

as insertion/deletions variants identified in this study (Kircher et al., 2014). As driver mutations have been 

demonstrated to be conserved, we also computed conservation score for each mutation. The same number of 

mutations were randomly selected as background in each cancer type. This procedure was repeated for 100 times. 

The difference was tested by Wilcoxon rank-sum test. For Pfam domain analysis, PfamScan was used to search a 

FASTA sequence against a library of Pfam HMM. Somatic mutations were marked with 1 if the altered protein 

residues were located in protein domains, otherwise with 0. 

 

Validation of DrAS-Net  

We used three methods to validate the inferences of DrAS net. Firstly, we did a dataset cross-validation based on 33 

datasets of various types of cancer. For each pair of dataset, we firstly identified the common mutations and the 

perturbed AS events in each dataset. Hypergeometric test was used to explore whether the same mutations were 

likely to mediate the same AS events in two datasets. Dataset pairs with p-value less than 0.05 were regarded as 

dataset cross-validated. Second, we validated the inferences based on cell lines data from The Cancer Cell Line 

Encyclopedia (CCLE) project (Barretina et al., 2012). Somatic mutations of cell lines were mapped to the same 

cancer type and the common mutations were identified. In total, we screened 506 cell lines that can be mapped to 



corresponding cancer type. We next analyzed the cell lines with three driver mutations and the cancer type (COAD) 

with more than five cell lines was analyzed. The RNA-Seq dataset of 12 COAD cell lines were investigated to 

compute the expression of exons. The expression was measured as reads per million (RPM). This process was 

performed by bedtools (Quinlan, 2014). The exon with outlier expression were regarded as perturbed AS event. The 

mutation-AS pair was regarded as validated if the mutation and AS event was occurred in the same cell line. To 

investigate whether the validated proportion is significantly larger, we randomly selected the same number of 

mutation-AS pairs as DrAS-Net from all possible pairs. This process was repeated 10,000 times. Thirdly, we 

searched the literature to test whether the identified mutated genes and perturbed AS genes were significantly co-

occurred with cancer. The same number of genes as mutated genes or AS genes were randomly selected and we also 

get the proportion of genes co-occurred with cancer. This process was repeated 10,000 times. 

 

Disorder analysis of driver mutations 

For each residue affected by a genomic mutation, we assessed the likelihood that the residue was located in an 

intrinsically disordered region of a protein. Protein sequences were subjected to the IUPred program (Dosztanyi et 

al., 2005) and for each mutation we obtained a predicted disorder probability. We used Wilcoxon rank-sum test to 

compare the difference between candidate driver mutations and background control for statistical significance. We 

used ANCHOR to predict disordered binding regions (Meszaros et al., 2009). If mutations were located in predicted 

disordered binding regions, we labeled them with 1, otherwise with 0. 

 

Functional consequence of AS in cancer 

Protein structures were downloaded from the Protein Data Bank (PDB) database (http://www.rcsb.org/) and were 

shown using the PyMOL tool. The protein domain and sequence annotation were obtained from the Uniprot 

database (The UniProt, 2017).  

 

Site-directed mutagenesis of driver mutation candidates 

To generate cancer mutations, we developed a new site-directed mutagenesis pipeline. For a given mutation, we 

performed two “primary PCRs” to generate gene fragments using Entry clones in human ORFeome v8.1 as 

template, and one “fusion PCR” to obtain the mutant allele. For the primary PCRs, two universal primers, Tag1-

M13F (GGCAGACGTGCCTCACTACTTGTAAAACGACGGCCAGT) and Tag2-M13R 

(CTGAGCTTGACGCATTGCTACAGGAAACAGCTATGACC), and two mutation-specific primers were employed 

(sequences shown in Table S3). The two DNA fragments flanking the mutation of a gene were amplified using the 

primer pair Tag1-M13F and Mut-Rev, and the primer pair Mut-Fwd and Tag2-M13R, respectively. For the fusion 

PCR, the two primary PCR fragments were fused together using the primer pair Tag1 

(GGCAGACGTGCCTCACTACT) and Tag2 (CTGAGCTTGACGCATTGCTA) to generate the mutant allele. To 



transfer the mutant allele into the pcDNA3-EGFP destination vector, we performed a Gateway LR reaction using the 

mutant allele fusion PCR products. After bacterial transformation, single colonies were isolated. The correct mutant 

clones were verified by sequencing. 

 

Quantification of alternative splicing by qRT-PCR 

HEK 293T cells were plated twenty fours before transfection in six well plates. For transfections, 3 µg of DNA was 

mixed with 9 µg of polyethylenimine (PEI) and incubated for 20 minutes before application to cells. Cells were 

incubated with PEI/DNA mixture for 8 hours before replacing with fresh growth media. RNA was isolated 36 hours 

after transfection using a QIAgen RNeasy kit (Qiagen, Hilden, Germany), and cDNA was synthesized using the 

iScript cDNA synthesis kit (BioRad, Hercules, CA). To determine relative levels of alternative splicing, primers 

specific for the “gain or loss” region of the AS were designed. Quantitative reverse transcriptase PCR (qRT-PCR) 

was performed with Power SYBR Green Master Mix (Applied Biosytems, Foster City, CA) per manufacturer’s 

instructions. Results were quantified using the comparative Ct (ΔΔCt) method, normalizing the splice variants to the 

total transcript level, and each mutant was normalized to its respective wild-type control. Experiments were 

conducted with two repeats. Primers are given in Table S3.  

 

cis-regulation enrichment analysis 

We computed the proportion of cis-regulations in all cancer types, and random tests were performed to get the 

statistical significance of this ratio. We randomly selected the same number of interactions from the original network 

and then recalculated the proportion of cis-regulations. This process was repeated for 1,000 times, and the p-value 

was defined as the probability of obtaining a larger proportion than what was actually observed. 

 

Identification of RBP target genes 

UV crosslinking and immunoprecipitation (CLIP) of ribonucleoprotein complexes is a commonly used approach to 

identify the RNA binding sites. To identify the RBP-RNA interactions in cancer, we integrated enhanced CLIP 

(eCLIP) sequencing datasets with shRNA-Seq datasets in HepG2 and K562 cell line. Firstly, 136 eCLIP-Seq 

datasets for 68 diverse RBPs in HepG2 and 172 datasets for 86 RBPs in K562 cell lines were downloaded from the 

ENCODE website. Each RBP had two biological replicates. The peak files were directly downloaded. All the peaks 

were mapped to gene annotation.  Next, we downloaded 450 shRNA-Seq experiment datasets for 225 diverse RBPs 

in HepG2 and 466 datasets for 233 RBPs in K562 cell line from ENCODE. Moreover, ten normal RNA-Seq datasets 

for HepG2 and K562 were also downloaded. Gene expression levels were measured by Fragments Per Kilobase of 

transcript per Million mapped reads (FPKM). Only genes with average FPKM greater than one in normal and RBP 

knockout datasets were used for further analysis. Our hypothesis is that if an RBP binds to a specific RNA, it may 

affect the expression of that gene. We thus identified the RBP-gene pairs that showed two-fold expression changes 



after knocking out the specific RBP. By integration with eCLIP-Seq results, we identified the genes not only with 

RBP binding peaks but also showing expression changes as RBP target genes.  

 

Clustering samples based on transcriptional and AS profiles 

Median absolute deviation (MAD) was used to select 1,500 most variable genes. Consensus ward linkage 

hierarchical clustering of the samples and 1,500 genes identified the subtypes with the stability of the clustering 

increasing from k = 2 to k = 10. For each iteration, we selected 80% of the cancer samples and this process was 

repeated for 100 times. In addition, we identified the AS events in each cancer and clustered the samples based on 

PSI profile of these AS events. This process was performed by using the R package-‘ConsensusClusterPlus’ 

(Wilkerson and Hayes, 2010). 

 

Survival analysis 

The clinical information for 33 types of cancer were downloaded from TCGA website via the TCGAbiolinks R 

package (Colaprico et al., 2016). The function ‘survdiff’ in the ‘survival’ package was used for exploring the 

difference in survival time among different cancer subtypes.  

 

DATA AND SOFTWARE AVAILABILITY 

The identified mutation-AS pairs and detailed information for mutation and AS across 33 types of cancer can be 

downloaded from Tables S1-S6. 

  



KEY RESOURCES TABLE 

Deposited Data   

AS profiles TCGASpliceSeq http://bioinformatics.mdanderson.org/TCGASpliceSeq/ 

Somatic mutations National Cancer 

Institute Genomic 

Data Commons 

https://gdc.cancer.gov/ 

Cancer genes Cancer Gene Census http://cancer.sanger.ac.uk/census/ 

Protein-protein 

interactions 

HI-II-14 http://dx.doi.org/10.1016/j.cell.2014.10.050 

RNA-binding proteins (Sebestyen et al., 

2016) 

http://genome.cshlp.org/content/early/2016/04/13/gr.199935.1

15 

Cancer hallmarks (Plaisier et al., 2012) http://genome.cshlp.org/content/22/11/2302.full 

Pathways Kyoto Encyclopedia 

of Genes and 

Genomes (KEGG) 

http://www.genome.jp/kegg/ 

eCLIP-Seq data ENCODE https://www.encodeproject.org/ 

shRNA-Seq data ENCODE https://www.encodeproject.org/ 

   

Software and Algorithms 

R Comprehensive R 

Archive Network 

(CRAN) 

https://cran.r-project.org/ 

Consensus clustering  ConsensusClusterPl

us 

https://www.bioconductor.org/packages/release/bioc/html/Co

nsensusClusterPlus.html 

Survival analysis Survival https://cran.r-project.org/web/packages/survival/index.html 

ANNOVAR ANNOVAR http://annovar.openbioinformatics.org/ 

IUPred IUPred http://iupred.enzim.hu/ 

PyMOL PyMOL v1.8.4.0 https://www.pymol.org/ 

GSEA gsea2-3.0_beta_2.jar http://software.broadinstitute.org/gsea/index.jsp 
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Figure S1. Differential AS events across cancer types, related to Figure 2. 

(A) Seven AS classes analyzed in this study.  

(B) The ratio of different AS classes across 33 cancer types. 

(C) The ratio of differential AS classes when compared to normal control samples in 18 cancer types. 

(D) A pie chart shows the proportion of differential AS classes across 18 cancer types.  

(E-K) Hierarchical clustering of cancer types based on the similarity of differential AS patterns for each of the seven 

AS classes. Cancer similarity is computed as the overlap divided by the minimum number of differential AS events 

between two cancer types.  
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Figure S2. Enrichment of DNA replication and depletion of immune signature in tumors with AS perturbation, 

related to Figure 2.  

(A-C) RNA sequencing analysis was performed comparing tumor samples with driver AS events versus samples 

without driver AS events. GSEA plots, enrichment scores (ES), and false discovery rates (FDR; q) are shown for 

representative gene sets (DNA replication, cell cycle and DNA repair) enriched in tumor samples with differential AS 

events.  

(D) Distribution of immune scores for tumor samples with versus without differential AS events.  

(E) Distribution of chromosomal SNCA levels for tumor samples with versus without differential AS events.  

(F) Distribution of arm SNCA levels for tumor samples with versus without differential AS events.  

(G) Distribution of normalized SCNA levels for tumor samples with versus without differential AS events. 

(H) Distribution of focal SCNA levels for tumor samples with versus without differential AS events. P-values (D-H) 

are computed by Wilcoxon rank-sum test. 
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Systematic validation of the mutation-AS pairs
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Figure S3. The distribution of functional impact scores of candidate driver mutations and random controls, 

related to Figure 3. 

(A) The work-flow of DrAS-Net. The left part shows the flowchart of the method, the middle panel shows the details 

of the scripts, and the right panel shows the mutation-AS network across 33 cancer types.  

(B) Validation of the inferences from DrAS-Net. The left part is based on 33 dataset cross-validations of TCGA, the 

middle panel is validation based on independent cell line data, and the right panel shows the validation based on 

literature.  

(C) The distribution of p-values of dataset cross-validations and the proportion of validated dataset pairs.  

(D) The validation rates of cell line dataset and random conditions.  

(E) The number of genes with literature support for mutated genes and genes with perturbed splicing.  

(F) The CADD scores of candidate driver mutations and random controls across 33 cancer types.  

(G) The conservation scores of candidate driver mutations and random controls across 33 cancer types.  

(H) The disorder probability of candidate driver mutations and random controls across 33 cancer types. Prb, 

probability. 

(I) Proportion of mutations in anchor sites. Pink, driver mutations; Gray, all mutations. 

(J) Proportion of mutations in Pfam domains. Light blue, driver mutations; Gray, all mutations. 

(K) Experimentally validated mutation-AS pairs. The upper panels show the cartoon of mutation-AS relationships, 

while the bottom panels show the expression of corresponding exons related to splicing. 

D: Driver mutations; R: Randomly selected mutations. P values by one-sided Wilcoxon rank-sum test. *** p<0.05. 
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Figure S4. Functional consequences of losing crucial protein modules due to differential AS events in cancer, 

related to Figure 4. 

The four panels introduce examples for the loss of different types of protein modules –signal transduction domains 

(A, C), regions with no known folds or interaction motifs (B), and catalytic domains (D) – due to differential AS 

events observed in samples of different cancer types. The left panels show a corresponding PDB structure for each 

protein. In the structures, the investigated protein is blue with the lost region highlighted in orange, while interaction 

partners are marked with gray. In Panel B, the indicated structure is combined from two different PDB entries. The 

lost region corresponding to the MYD88 intermediate domain is largely missing from both structures and thus it is 

indicated as a dashed line. In Panel D, ATP binding site is marked in pink, and the cyclin D binding site is marked in 

cyan. In the right panels, proteins are represented by gray bars with their annotated protein modules from UniProt 

indicated as blue boxes; For folded domains, the residue boundaries are also shown. Above the proteins a short 

functional description is provided, while below the proteins the regions corresponding to the differentially spliced 

exon(s) are marked with orange arrows. The functional consequences of the loss of these regions are also highlighted 

below. 
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Figure S5. Clinical features of AS in representative cancer types, related to Figure 5.  

(A) The number of clinical associated AS events in each cancer type. 

(B) The Cumulative Distribution Function (CDF) distribution for different number of clusters in LIHC (k=2 to 10).  

(C) The relative changes in area under CDF curve with different k in LIHC (k=2 to 10).   

(D) Distribution of tumor stage across different cancer subtypes.  

(E) Distribution of weight across different cancer subtypes. Statistical difference is calculated by Kruskal-Wallis rank 

sum test (p=0.014). 

(F) The Cumulative Distribution Function (CDF) distribution for different number of clusters in LGG (k=2 to 10).  

(G) The relative changes in area under CDF curve with different k in LGG (k=2 to 10).   

(H) Distribution of age of onset for different LGG subtypes. Statistical difference is calculated by Kruskal-Wallis rank 

sum test (p=8.94e-7). 

(I) Overlap of mutated genes that mediate AS events in four subtypes. The common top enriched functional terms by 

genes are marked. 

(J) The overlap of samples for different AS subtype and transcriptional subtype in LIHC. 

(K) The overlap of samples for different AS subtype and transcriptional subtype in LGG. 
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