
S1	Appendix.		Additional	details	on	forecast	methods.	1	
	2	

1	Model	structures	3	

SIR	model	structure:	4	
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SEIR	model	structure:	6	
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where	E	is	the	number	of	exposed	people,	and	Z	is	the	mean	latent	period.	7	
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SEIRS	model	structure:	9	
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We	assume	a	fixed	α	of	0.1	infections	per	day,	and	use	a	population	size	of	100,000	people.		10	

	11	



2	Filter	methods	12	

Each	of	the	model-filter	forecast	systems	described	in	the	main	text	uses	one	of	the	four	13	

possible	mathematical	models	of	disease	transmission	(SIR,	SEIR,	SIRS	or	SEIRS),	and	one	of	14	

five	filter,	or	data	assimilation,	methods.		The	main	features	of	the	five	filter	methods	are	15	

described	here.		For	full	descriptions	of	the	filter	algorithms	and	implementations,	we	refer	16	

readers	to	the	original	publications.		17	

	18	

2.1	Ensemble	filter	methods	19	

Ensemble	filter	methods	use	an	ensemble	of	model	simulations,	in	this	study	300,	with	20	

parameters	and	state	variables	randomly	initialized	and	iteratively	optimized	following	21	

each	weekly	ILI+	observation	in	a	prediction-update	cycle.		In	the	prediction	step,	state	22	

variables	are	propagated	forward	in	time	by	the	disease	transmission	model	until	the	next	23	

ILI+	observation	becomes	available.		In	the	update	step,	the	filter	algorithms	adjust	24	

ensemble	members	in	order	to	better	match	the	observation.	The	updates	applied	to	25	

unobserved	state	variables	are	linear	mappings	from	the	update	applied	to	the	observed	26	

variable	based	on	the	prior	ensemble	covariance	between	the	observed	and	unobserved	27	

variables.	28	

The	three	ensemble	filter	methods	differ	in	the	calculation	of	the	update	of	the	observed	29	

variable	(ILI+).		In	the	ensemble	Kalman	filter	(EKF)[1],	the	posterior	of	each	model	30	

ensemble	member	is	computed	as	the	weighted	average	between	the	ensemble	member	31	

and	the	ILI+	observation,	with	Gaussian	random	noise	around	the	observation	consistent	32	

with	the	observational	error	variance.		The	weights	are	determined	according	to	the	ratio	of	33	

the	overall	ensemble	prior	variance	to	the	observational	error	variance.			34	

The	ensemble	adjustment	Kalman	filter	(EAKF)[2]	deterministically	computes	the	update	35	

step	such	that	the	posterior	ensemble	mean	and	variance	match	the	mean	and	variance	36	

predicted	by	Bayes	theorem,	assuming	a	Gaussian	distribution.			37	

While	the	EKF	and	the	EAKF	assume	a	Gaussian	structure	in	prior	and	posterior	ensemble	38	

distributions	and	observations,	the	rank	histogram	filter	(RHF)[3]	relaxes	these	39	

assumptions	and	allows	for	non-Gaussian	structures.		Instead,	an	approximate	continuous	40	

prior	distribution	is	constructed	using	a	rank	histogram	of	ensemble	prior	values	of	ILI+.		41	



This	non-Gaussian	prior	is	multiplied	by	the	observational	likelihood	at	each	point	and	42	

normalized,	resulting	in	a	continuous	non-Gaussian	posterior	distribution.				43	

A	multiplicative	inflation	factor	of	1.02	is	added	to	the	three	ensemble	filters	to	counter	44	

filter	divergence.	[2]	45	

	46	

2.2	Particle	filter	methods	47	

Particle	filters	represent	state	space	with	a	set	of	particles,	in	this	case	10,000.		As	with	the	48	

ensemble	filters,	we	couple	the	filter	with	a	disease	transmission	model,	which	propagates	49	

the	particles	forward	in	time	in	a	prediction	step.		The	filter	then	assimilates	the	next	ILI+	50	

observation	in	an	update	step.		The	update	step	in	the	basic	particle	filter	(PF)[4]	weights	51	

particles	according	to	their	likelihood.		Resampling	and	regularization	improve	the	52	

performance	of	the	PF	by	expanding	the	range	of	parameter	and	state	space,	and	decreasing	53	

redundancies.	54	

The	second	particle	filter	is	the	particle	Markov	Chain	Monte	Carlo	filter	(pMCMC),	55	

specifically	the	particle	marginal	Metropolis-Hasting	sampler	described	in	Andrieu	et	al.[5],	56	

which	combines	Markov	Chain	Monte	Carlo	(MCMC)	and	sequential	Monte	Carlo	(SMC)	57	

methods.		While	traditional	SMC	methods	require	sampling	the	entire	state-parameter	58	

space	of	a	model,	the	pMCMC	simplifies	the	problem	to	sampling	only	parameter	space.		The	59	

pMCMC	proposes	a	set	of	set	of	parameters,	and	then	estimates	state	variables	given	the	60	

parameter	proposal.		The	acceptance	probability	of	the	proposal	is	a	function	of	the	joint	61	

likelihood	of	the	observed	ILI+	data.		Unlike	the	other	four	filters,	in	which	parameters	may	62	

be	non-stationary	in	time,	the	pMCMC	optimizes	a	fixed	set	of	parameters	over	the	entire	63	

observational	time	series.	64	
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