## **Computational Investigation of Homologous Recombination DNA Repair Deficiency in Sporadic Breast Cancer**

Yue Wang<sup>1,2</sup>, Matthew H. Ung<sup>2</sup>, Sharon Cantor<sup>3</sup> and Chao Cheng<sup>2,4,5,\*</sup>

<sup>1</sup>School of Electronic Information and Communications at Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

<sup>2</sup>Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA. <sup>3</sup>Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, MA 01605, USA.

<sup>4</sup>Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03766, USA.

<sup>5</sup>Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03766, USA.

## Contents

Figure S1. BRCA scores correlate with genomic features.

Figure S2. BRCA scores correlate with different breast cancer phenotypes.

Figure S3. BRCA scores correlate with patients' prognosis.

Figure S4. BRCA scores correlate with patients' prognosis in additional datasets.

Figure S5. BRCA scores correlate with neoadjuvant chemotherapy.

Figure S6. Kaplan-Meier plots for the Yoshihara dataset.

Figure S7. BRCA scores correlate with BRCA1 and BRCA2 protein sequence.

Figure S8. BRCA scores are consistent using different BRCAness profiles.

Table S1. Pathways enriched in different gene groups.

Table S2. The result for multivariate Cox regression model.

Table S3. Summarization of datasets used in our study.

**Supplementary Figure S1. BRCA scores correlate with genomic features.** We ranked BRCA scores of TCGA breast cancer patients from high to low. By comparing the difference of BRCA scores of genes in different status (mutation vs. wild-type), we found three genes, *TP53* (P=2e-30), *PIK3CA* (P=1e-16) and *CHD1* (P=2e-17), are significant correlated with the calculated BRCA scores. Patients with higher BRCA scores were more likely to carry *TP53* mutations while *PIK3CA* and *CHD1* wild-type. Moreover, we found that the calculated BRCA score were associated with overall copy number variation (CNV) and DNA methylation. Specifically, patients with high BRCA scores were more likely to have CNV.



**Supplementary Figure S2. BRCA scores correlate with different breast cancer phenotypes.** We correlated our BRCA scores with different breast cancer phenotypes in the METABRIC dataset. Specifically, we compared BRCA scores in A) *P53* mutation vs. wild-type, B) ER+ vs. ER-, C) PR+ vs. PR-, D) HER2+ vs. HER2-, E) triple negative breast cancer (TNBC) vs. non-TNBC and F) molecular subtypes. Mann–Whitney Wilcoxon test P-values were listed. For F), the p-value perpendicular to each box means that this subtype vs. the rest patients, *e.g.* the p-value (P=2e-40) under the Basal-like box means the difference of BRCA scores between Basal-like patients vs. non-Basal-like patients.



**Supplementary Figure S3. BRCA scores correlate with patients' prognosis.** Kaplan-Meier plots for the METABRIC discovery and validation datasets. Patients were divided into low and high BRCA score groups. Median of BRCA scores was applied as the cutoff. Red curves were patients with high BRCA scores and green curves were patients with low BRCA scores. Hazard ratio (HR) and log-rank test P-values were listed.



**Supplementary Figure S4. BRCA scores correlate with patients' prognosis in additional datasets.** Kaplan-Meier plots for the Ur-Rehman and Vijver datasets. Patients were divided into low and high BRCA score groups. Median of BRCA scores was applied as the cutoff. Red curves were patients with high BRCA scores and green curves were patients with low BRCA scores. Hazard ratio (HR) and log-rank test P-values were listed.



**Supplementary Figure S5. BRCA scores correlate with neoadjuvant chemotherapy.** We compared the BRCA scores for pathologic complete response (pCR) and residual disease (RD) patients with ER+, ER- and triple negative breast cancer (TNBC) samples. Mann–Whitney Wilcoxon test P-values were listed.



**Supplementary Figure S6. Kaplan-Meier plots for the Yoshihara dataset.** Patients were divided into non-BRCA-like and BRCA-like groups. Median of BRCA scores was applied as the cutoff. Red curves were BRCA-like patients with high BRCA scores and green curves were non-BRCA-like patients with low scores. Hazard ratio (HR) and log-rank test P-values were listed.



**Supplementary Figure S7. BRCA scores correlate with BRCA1 and BRCA2 protein sequence.** We mapped 13 and 14 mutations of BRCA1 and BRCA2 enrolled in TCGA dataset to the protein sequence of BRCA1 and BRCA2 and examined the BRCA score of corresponding samples. The red lines represent positive BRCA scores inferring HR pathway deficiency. In contrast, the green lines represent negative BRCA scores inferring higher HR pathway activity. Then length of line was proportional to the absolutely value of BRCA score. The colored squares represent different mutation types offered by TCGA.



**Supplementary Figure S8. BRCA scores are consistent using different BRCAness profiles.** For each dataset, we calculated the sample-specific BRCA scores based on BRCA1-, BRCA2- and BRCA1/2-based BRCAness profiles, respectively. The BRCA scores showed highly consistency.



**Supplementary Table S1. Pathways enriched in different gene groups.** We investigated pathways enriched in genes up-regulated by BRCA1, BRCA2 and BRCA1/2-mutated samples but not for genes down-regulated in these patients.

| Gene group  | REACTOME Pathways                                                                                        | #Gene in pathwa | v #Shared gene | s P-value            | Adiusted P-val |
|-------------|----------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------------|----------------|
| Conce Brook | DNA STRAND FLONGATION                                                                                    | 30              | 5              | 9.17F-05             | 2.78F-02       |
| BRCA1 up    | DNA REPLICATION                                                                                          | 182             | 11             | 1.38E-04             | 2.78E-02       |
|             |                                                                                                          | 298             | 14             | 2.57E-04             | 2.78E-02       |
|             | CELL CYCLE                                                                                               | 386             | 16             | 3.89E-04             | 2.78E-02       |
|             | PROCESSING OF CAPPED INTRONLESS PRE MRNA                                                                 | 23              | 4              | 4.04E-04             | 2.78E-02       |
|             | TAK1 ACTIVATES NEKB BY PHOSPHORYLATION AND ACTIVATION OF IKKS COMPLEX                                    | 23              | 4              | 4.04E-04             | 2.78E-02       |
|             |                                                                                                          | 27              | 4              | 7.63E-04             | 4.50E-02       |
|             |                                                                                                          | 102             | 20             | 0.575.42             | 3.545.00       |
|             |                                                                                                          | 162             | 20             | 0.045 11             | 5.54E-09       |
|             | MILOTIC_M_M_GL_PHASES                                                                                    | 162             | 18             | 8.04E-11             | 1.66E-08       |
|             |                                                                                                          | 298             | 22             | 1.82E-09             | 2.50E-07       |
|             | CELL_CYCLE                                                                                               | 386             | 22             | 1.89E-07             | 1.95E-05       |
|             | REGULATION_OF_MITOTIC_CELL_CYCLE                                                                         | 77              | 10             | 3.16E-07             | 2.61E-05       |
|             | SYNTHESIS_OF_DNA                                                                                         | 84              | 10             | 7.22E-07             | 4.97E-05       |
|             | MITOTIC_PROMETAPHASE                                                                                     | 86              | 10             | 9.00E-07             | 5.31E-05       |
|             | ORC1_REMOVAL_FROM_CHROMATIN                                                                              | 59              | 8              | 3.51E-06             | 1.67E-04       |
|             | S_PHASE                                                                                                  | 100             | 10             | 3.63E-06             | 1.67E-04       |
|             | CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6                                                         | 46              | 7              | 6.59E-06             | 2.72E-04       |
|             | HIV_INFECTION                                                                                            | 191             | 13             | 9.81E-06             | 3.68E-04       |
|             | M_G1_TRANSITION                                                                                          | 72              | 8              | 1.59E-05             | 5.47E-04       |
|             | CELL_CYCLE_CHECKPOINTS                                                                                   | 105             | 9              | 3.89E-05             | 1.23E-03       |
|             | APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AND_OTHER_APC_C_CDH1_TARGETED_PROTEINS_IN_LATE_MITOSIS_EARLY_G1 | 64              | 7              | 6.02E-05             | 1.78E-03       |
|             | APC C CDC20 MEDIATED DEGRADATION OF MITOTIC PROTEINS                                                     | 65              | 7              | 6.66E-05             | 1.83E-03       |
|             | CDT1 ASSOCIATION WITH THE CDC6 ORC ORIGIN COMPLEX                                                        | 48              | 6              | 9.61E-05             | 2.48E-03       |
|             | HOST INTERACTIONS OF HIV FACTORS                                                                         | 120             | 9              | 1.10F-04             | 2.68E-03       |
|             | P53 DEPENDENT G1 DNA DAMAGE RESPONSE                                                                     | 53              | 6              | 1.68F-04             | 3.51F-03       |
|             | SCESKP2 MEDIATED DEGRADATION OF P27 P1                                                                   | 53              | 6              | 1.68F-04             | 3.51F-03       |
|             |                                                                                                          | 100             | s<br>s         | 1 70F-04             | 3 51F-03       |
|             |                                                                                                          | ±00<br>E7       | ٥<br>د         | 2 535 0/             | 3.31E-03       |
|             |                                                                                                          | 57              | 6              | 2.331-04             | 4.37E-03       |
|             |                                                                                                          | 56              | 6              | 2.76E-04             | 5.222-05       |
| BRCA2_up    | ACTIVATION_OF_INF_KAPPAB_IN_B_CELLS                                                                      | 110             | 6              | 3.67E-04             | 6.36E-03       |
|             |                                                                                                          | 112             | 8              | 3.69E-04             | 6.36E-03       |
|             | CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_                                                       | 62              | 6              | 4.01E-04             | 6.63E-03       |
|             | DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR                                                       | 92              | 7              | 5.86E-04             | 9.32E-03       |
|             | CROSS_PRESENTATION_OF_SOLUBLE_EXOGENOUS_ANTIGENS_ENDOSOMES                                               | 46              | 5              | 7.20E-04             | 1.07E-02       |
|             | MITOTIC_G1_G1_S_PHASES                                                                                   | 124             | 8              | 7.29E-04             | 1.07E-02       |
|             | AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1                                                          | 47              | 5              | 7.96E-04             | 1.13E-02       |
|             | ANTIGEN_PROCESSING_CROSS_PRESENTATION                                                                    | 71              | 6              | 8.32E-04             | 1.13E-02       |
|             | P53_INDEPENDENT_G1_S_DNA_DAMAGE_CHECKPOINT                                                               | 48              | 5              | 8.77E-04             | 1.13E-02       |
|             | REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC                                                                | 48              | 5              | 8.77E-04             | 1.13E-02       |
|             | MITOCHONDRIAL_PROTEIN_IMPORT                                                                             | 49              | 5              | 9.64E-04             | 1.14E-02       |
|             | SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1                                                               | 49              | 5              | 9.64E-04             | 1.14E-02       |
|             | VIF MEDIATED DEGRADATION OF APOBEC3G                                                                     | 49              | 5              | 9.64E-04             | 1.14E-02       |
|             | DESTABILIZATION OF MRNA BY AUF1 HNRNP DO                                                                 | 50              | 5              | 1.06E-03             | 1.21E-02       |
|             | P75 NTR RECEPTOR MEDIATED SIGNALLING                                                                     | 79              | 6              | 1.46E-03             | 1.62E-02       |
|             | REGULATION OF APOPTOSIS                                                                                  | 56              | 5              | 1.77F-03             | 1.87E-02       |
|             | AUTODEGRADATION OF CHHI BY CHHI APC C                                                                    | 56              | 5              | 1 77E-03             | 1.87E-02       |
|             |                                                                                                          | 121             | 7              | 2 89E-03             | 2 98E-02       |
|             |                                                                                                          | 63              | 5              | 2.052.05<br>2.98E-03 | 3 00E-02       |
|             |                                                                                                          | 122             | 10             | 2.502 05             | 2 625 02       |
|             |                                                                                                          | 233             | 10             | 3.082-03             | 3.022-02       |
|             |                                                                                                          | 197             | 9              | 5.65E-05             | 3.062-02       |
|             | MICRONNA_MINNA_BIOGENESIS                                                                                | 21              | 3              | 4.04E-03             | 3.79E-02       |
|             | GO_AND_EARLY_G1                                                                                          | 23              | 3              | 5.26E-03             | 4.72E-02       |
|             | ABORTIVE_ELONGATION_OF_HIV1_TRANSCRIPT_IN_THE_ABSENCE_OF_TAT                                             | 23              | 3              | 5.26E-03             | 4.72E-02       |
|             | CELL_CYCLE_MITOTIC                                                                                       | 298             | 27             | 1.95E-13             | 8.05E-11       |
|             | DNA_REPLICATION                                                                                          | 182             | 21             | 9.77E-13             | 2.02E-10       |
|             | CELL_CYCLE                                                                                               | 386             | 29             | 2.75E-12             | 3.78E-10       |
|             | MITOTIC_M_M_G1_PHASES                                                                                    | 162             | 19             | 9.06E-12             | 9.35E-10       |
|             | MITOTIC                                                                                                  | 86              | 11             | 9.44E-08             | 7.80E-06       |
|             | CELL CYCLE CHECKPOINTS                                                                                   | 105             | 11             | 7.40E-07             | 5.09E-05       |
|             | REGULATION OF MITOTIC CELL CYCLE                                                                         | 77              | 9              | 3.05F-06             | 1.80F-04       |
|             | MITOTIC G1 G1 S PHASES                                                                                   | 124             | 10             | 2 475-05             | 1 215-03       |
|             |                                                                                                          | 124             | 10             | 2.471-05             | 1.210-03       |
|             |                                                                                                          | 100             | 9              | 4.025.05             | 2.025.02       |
|             |                                                                                                          | 04              | °              | 4.956-05             | 2.03E-03       |
|             | E22_MEDIATED_REGULATION_OF_DINA_REPLICATION                                                              | 27              | 5              | 5.40E-05             | 2.03E-03       |
|             | APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS                                                     | 65              | /              | 6.66E-05             | 2.29E-03       |
|             |                                                                                                          | 72              | /              | 1.28E-04             | 4.08E-03       |
|             | MITOTIC_G2_G2_M_PHASES                                                                                   | /4              | /              | 1.53E-04             | 4.51E-03       |
| BRCA1/2_u   | (5_PHASE                                                                                                 | 100             | 8              | 1.70E-04             | 4.67E-03       |
|             | G2_M_CHECKPOINTS                                                                                         | 35              | 5              | 1.96E-04             | 5.06E-03       |
|             | GRB2_EVENTS_IN_ERBB2_SIGNALING                                                                           | 22              | 4              | 3.38E-04             | 8.21E-03       |
|             | ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS                                                                       | 61              | 6              | 3.67E-04             | 8.35E-03       |
|             | TAK1_ACTIVATES_NFKB_BY_PHOSPHORYLATION_AND_ACTIVATION_OF_IKKS_COMPLEX                                    | 23              | 4              | 4.04E-04             | 8.35E-03       |
|             | KINESINS                                                                                                 | 23              | 4              | 4.04E-04             | 8.35E-03       |
|             | APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AND_OTHER_APC_C_CDH1_TARGETED_PROTEINS_IN_LATE MITOSIS EARLY G1 | 64              | 6              | 4.77E-04             | 9.38E-03       |
|             | DOWNSTREAM SIGNALING EVENTS OF B CELL RECEPTOR BCR                                                       | 92              | 7              | 5.86E-04             | 1.10E-02       |
|             | SIGNALING BY THE B CELL RECEPTOR BCR                                                                     | 121             | 8              | 6.20F-04             | 1.11F-02       |
|             | ADAPTIVE IMMUNE SYSTEM                                                                                   | 508             | 18             | 1.08F-03             | 1.86F-02       |
|             | SIGNALING RY IIS                                                                                         | 105             | 7              | 1 28F-02             | 2 125-02       |
|             | ASSEMBLY OF THE DRE REDUCATIVE COMDLEY                                                                   | 105<br>E7       | ,<br>E         | 1.201-03             | 3 0/E 02       |
|             |                                                                                                          | 27              | 5              | 1.310-03             | 3.04E-02       |
|             |                                                                                                          | 59              | 5              | 2.25E-U3             | 5.41E-UZ       |
|             |                                                                                                          | 91              | ь              | 2.99E-03             | 4.41E-02       |
|             | SHOT_EVENTS_IN_ENDP4_SIGNALING                                                                           | 20              | 5              | 3.30E-03             | 4.99E-UZ       |

**Supplementary Table S2. The result for multivariate Cox regression model.** We constructed a multivariate Cox regression model to the METABRIC breast cancer dataset including both BRCA scores and clinical variables (*e.g.* age, ER status, Her2 status, stage and grade).

| Varaible                | Туре       | P value | HR (95% CI)          |  |  |
|-------------------------|------------|---------|----------------------|--|--|
| BRCA score high vs. low | Binary     | 3.0E-03 | 1.626 (1.180-2.241)  |  |  |
| Age                     | Continuous | > 0.1   | 0.997 (0.986-1.009)  |  |  |
| ER+ vs. ER-             | Binary     | > 0.1   | 0.831 (0.605-1.143)  |  |  |
| HER2+ vs. HER2-         | Binary     | 1.1E-03 | 1.750 (1.252-2.447)  |  |  |
| Stage 2 vs. 1           | Oridinal   | 2.0E-03 | 1.682 (1.209-2.340)  |  |  |
| Stage 3 vs. 1           | Oridinal   | 9.3E-13 | 4.692 (3.070-7.173)  |  |  |
| Stage 4 vs. 1           | Oridinal   | 1.6E-04 | 7.400 (2.621-20.898) |  |  |
| Grade 2 vs. 1           | Oridinal   | 9.0E-02 | 2.085 (0.892-4.874)  |  |  |
| Grade 3 vs. 1           | Oridinal   | 1.7E-02 | 2.835 (1.209-6.649)  |  |  |

## Supplementary Table S3. Summarization of datasets used in our study.

| Cancer<br>Type | Dataset            | Accession ID           | Briefly description                                   |
|----------------|--------------------|------------------------|-------------------------------------------------------|
|                |                    |                        |                                                       |
| Breast         | Larsen             | <u>GSE40115</u>        | 55 familial (33 BRCA1 mutation and 22 BRCA2           |
|                |                    |                        | mutation) and 128 sporadic breast tumor samples       |
|                | Lisowska           | <u>GSE50567</u>        | 12 BRCA1- and 1 BRCA2-mutated hereditary breast       |
|                |                    |                        | tumors, 8 BRCAx (non-BRCA1/2 mutations)               |
|                |                    |                        | hereditary breast tumors, 14 sporadic breast cancer   |
|                |                    |                        | samples and 6 normal samples                          |
|                | Foekens JA, M      | <u>GSE27830</u>        | 155 familial primary breast cancer samples including  |
|                | Martens JW, Smid   |                        | 47 BRCA1-, 6 BRCA2-, 26 CHEK2- mutant samples         |
|                | M, Schutte M,      |                        | and 76 samples without mutations in these three genes |
|                | Meijers-Heijboer H | ~~~~~                  |                                                       |
|                | Waddell            | <u>GSE19177</u>        | 19 BRCA1, 30 BRCA2 and 25 non-BRCA1/2 mutation        |
|                |                    |                        | familial breast cancer samples                        |
|                | METABRIC           | EGAS0000000            | 1,992 primary breast cancer samples with              |
|                |                    | 083                    | comprehensive clinical information                    |
|                | Ur-Rehman          | <u>GSE47561</u>        | 1,170 samples integrated from existed breast cancer   |
|                | ¥7                 | 1                      | datasets                                              |
|                | Vijver             | http://ccb.nk1.nl/     | 295 breast cancer patients                            |
|                | TT / '             | data/                  |                                                       |
|                | Hatzis             | <u>GSE25066</u>        | 508 patients' response for neoadjuvant taxane-        |
|                | TOOA               | 1                      | anthracycline chemotherapy                            |
|                | ICGA               | https://gdac.broa      | comprehensive data for BRCA samples                   |
| Orranian       | Ianaani            | <u>ainstitute.org/</u> | 18 PDC 41 16 PDC 42 compliant mutant complete and 27  |
| Ovarian        | Jazaeri            | <u>GSE82007</u>        | 18 BRCA1, 16 BRCA2 germline mutant sample and 27      |
|                | Donomo             | CSE26712               | 195 late stage and high grade patients                |
|                | Bonome             | <u>GSE20/12</u>        | 185 late-stage and high-grade patients                |
|                | Yoshihara          | <u>GSE32062</u>        | 260 Japanese advanced-stage samples                   |
|                | TCGA               | https://gdac.broa      | comprehensive data for OV samples                     |
|                |                    | dinstitute.org/        |                                                       |