A new method to measure mechanics and dynamic assembly of branched actin networks

Pierre Bauer¹, Joseph Tavacoli^{1, 2}, Thomas Pujol^{1, 3}, Jessica Planade¹, Olivia du Roure^{1,*,+}, and Julien Heuvingh^{1,*,+}

 ¹ ESPCI Paris, PSL Research University, CNRS, Universite Pierre et Marie Curie, Universite Paris Diderot, Physique et Mecanique des Milieux Hterogenes, UMR 7636, Paris, 75005, France
²Present address: Technical University of Denmark, Department of Energy of Conversion and Storage, Roskilde, Denmark.
³Present address: Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra, Cell and Developmental Biology, Barcelona, Spain ^{*}olivia.duroure@espci.fr, julien.heuvingh@espci.fr

Figure 1: Relationship between force (left) or stress (right) and the diameter of the cylinders calculated by finite element analysis. The cylinder length is fixed at 12 μ m, the distance between faces at 2 μ m and the external magnetic field at 40 mT

Figure 2: Alignment of magnetic cylinders. a. image of a chain of 6 μ m wide cylinders, spaced by a growing actin network. Their is minimal sliding of each cylinder's axis from the chain axis. b. scheme of finite element analysis where one cylinder axis was shifted at a distance y from the axis of the other cylinder. c. Finite element calculation of the transversal force Fy restoring the cylinder's axis to alignment.

Figure 3: Evolution of the recorded velocities of network growth at stresses below one Pa for four different networks.

Figure 4: Actin gel length as a function of time while the magnetic field is repeatedly increased: each color represents the actin length when gel is submitted to the stepped increase of the magnetic field from 3 to 80mT. The similarity of the length variation at each repetition suggests an absence of history-dependence.