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Supplementary Figure 1. Ranking of amino acids according to 
their in silico growth cost. The growth cost was computed as the 
reduction in growth rate of a wild-type strain upon requiring the model 
to produce 1 mmol/(gDW.h) of each amino acid.



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Supplementary Figure 2. All identified Nash equilibria (NEs) of three- 
and four-player games for (lysine, isoleucine) amino acid pair. Here, 
three- and four-player games mean the games involving the simultaneous 
encounter of three or four genotypes (as opposed to pairwise interactions) 
chosen from all possible genotypes (i.e., 11, 01, 10 and 00). 

11 = wild-type     01 = lys-    10 = ile-       00 = lys-ile- 



	

	

11 = wild-type     01 = ala-    10 = val-       00 = ala-val- 

Supplementary Figure. 3. Nash equilibria and equilibrium genotype frequencies for (alanine, 
valine) amino acid pairs. Both alanine and valine are low-cost amino acids. (A) Identified Nash 
equilibria for two-, three- and four-player games. Equilibria labeled ‘Other’ represent the integration of 
all equilibria corresponding to leakiness levels that cannot be sustained by 11 genotype. (B) to (F) show 
the equilibrium frequencies of various genotypes (11, 01, 10 and 00) using different initial genotype 
frequencies each with direct biological interpretation (see the main text and Figure 6 therein).

(A)

(B) Initial frequencies: 11 = 0.99     01 = 0.01/3    10 = 0.01/3       00 = 0.01/3

(C) Initial frequencies: 11 = 0.99/2     01 = 0.99/2    10 = 0.01/2       00 = 0.01/2

(D) Initial frequencies: 11 = 0.99     01 = 0.01/2    10 = 0.01/2       00 = 0

(E) Initial frequencies: 11 = 0.99/3     01 = 0.99/3    10 = 0.99/3       00 = 0.01

(F) Initial frequencies: 11 = 0.01     01 = 0.99/3    10 = 0.99/3       00 = 0.99/3



	

	

(A)

(B) Initial frequencies: 11 = 0.99     01 = 0.01/3    10 = 0.01/3       00 = 0.01/3

(C) Initial frequencies: 11 = 0.99/2     01 = 0.99/2    10 = 0.01/2       00 = 0.01/2

(D) Initial frequencies: 11 = 0.99     01 = 0.01/2    10 = 0.01/2       00 = 0

(E) Initial frequencies: 11 = 0.99/3     01 = 0.99/3    10 = 0.99/3       00 = 0.01

(F) Initial frequencies: 11 = 0.01     01 = 0.99/3    10 = 0.99/3       00 = 0.99/3

Supplementary Figure 4. Nash equilibria and equilibrium genotype frequencies for (histidine, 
tryptophan) amino acid pairs. Both histidine and tryptophan are high-cost amino acids. (A) Identified Nash 
equilibria for two-, three- and four-player games. Equilibria labeled ‘Other’ represent the integration of all 
equilibria corresponding to leakiness levels that cannot be sustained by 11 genotype. (B) to (F) show the 
equilibrium frequencies of various genotypes (11, 01, 10 and 00) using different initial genotype frequencies 
each with direct biological interpretation (see the main text and Figure 6 therein).

11 = wild-type     01 = his-    10 = trp-       00 = his-trp- 



	

	

	

	

(A)

(B) Initial frequencies: 11 = 0.99     01 = 0.01/3    10 = 0.01/3       00 = 0.01/3

(C) Initial frequencies: 11 = 0.99/2     01 = 0.99/2    10 = 0.01/2       00 = 0.01/2

(D) Initial frequencies: 11 = 0.99     01 = 0.01/2    10 = 0.01/2       00 = 0

(E) Initial frequencies: 11 = 0.99/3     01 = 0.99/3    10 = 0.99/3       00 = 0.01

(F) Initial frequencies: 11 = 0.01     01 = 0.99/3    10 = 0.99/3       00 = 0.99/3

Supplementary Figure 5. Nash equilibria and equilibrium genotype frequencies for (valine, lysine) 
amino acid pairs. Valine and lysine are low- and medium-cost amino acids, respectively. (A) Identified Nash 
equilibria for two-, three- and four-player games. Equilibria labeled ‘Other’ represent the integration of all 
equilibria corresponding to leakiness levels that cannot be sustained by 11 genotype. (B) to (F) show the 
equilibrium frequencies of various genotypes (11, 01, 10 and 00) using different initial genotype frequencies 
each with direct biological interpretation (see the main text and Figure 6 therein).

11 = wild-type     01 = val-    10 = lys-       00 = val-lys- 



	

	

(A)

(B) Initial frequencies: 11 = 0.99     01 = 0.01/3    10 = 0.01/3       00 = 0.01/3

(C) Initial frequencies: 11 = 0.99/2     01 = 0.99/2    10 = 0.01/2       00 = 0.01/2

Initial frequencies: 11 = 0.99     01 = 0.01/2    10 = 0.01/2       00 = 0(D)

(E) Initial frequencies: 11 = 0.99/3     01 = 0.99/3    10 = 0.99/3       00 = 0.01

(F) Initial frequencies: 11 = 0.01     01 = 0.99/3    10 = 0.99/3       00 = 0.99/3

Supplementary Figure 6. Nash equilibria and equilibrium genotype 
frequencies for (arginine, glutamate) amino acid pairs. (A) Identified Nash 
equilibria for two-, three- and four-player games (see also Fig. 4A of the main 
text). Equilibria labeled ‘Other’ represent the integration of all equilibria 
corresponding to leakiness levels that cannot be sustained by 11 genotype. (B) to 
(F) show the equilibrium frequencies of various genotypes (11, 01, 10 and 00) 
using different initial genotype frequencies each with direct biological 
interpretation (see the main text and Figure 6 therein).

11 = wild-type     01 = arg-    10 = glu-       00 = arg-glu- 



	

	

(A)

(B) Initial frequencies: 11 = 0.99     01 = 0.01/3    10 = 0.01/3       00 = 0.01/3

(C) Initial frequencies: 11 = 0.99/2     01 = 0.99/2    10 = 0.01/2       00 = 0.01/2

Initial frequencies: 11 = 0.99     01 = 0.01/2    10 = 0.01/2       00 = 0(D)

(E) Initial frequencies: 11 = 0.99/3     01 = 0.99/3    10 = 0.99/3       00 = 0.01

(F) Initial frequencies: 11 = 0.01     01 = 0.99/3    10 = 0.99/3       00 = 0.99/3

Supplementary Figure 7. Nash equilibria and equilibrium genotype frequencies for (glycine, 
threonine) amino acid pairs. (A) Identified Nash equilibria for two-, three- and four-player games 
(see also Figure 3F of the main text). Equilibria labeled ‘Other’ represent the integration of all 
equilibria corresponding to leakiness levels that cannot be sustained by 11 genotype. (B) to (F) show 
the equilibrium frequencies of various genotypes (11, 01, 10 and 00) using different initial genotype 
frequencies each with direct biological interpretation (see the main text and Figure 6 therein).

11 = wild-type     01 = gly-    10 = thr-       00 = gly-thr- 



	

	

lys and ile leakiness levels = 10% lys and ile leakiness levels = 20%

(B)

(A)

(C)

Supplementary Figure 8. Equilibrium genotype frequencies in a two-step 
loss of the leaky functions does not depend on the order of losing 
functions. (A) A small population of 00 and 01 genotypes invades an 
incumbent population of 11 and 10 genotypes (see also the main text and 
Figure 6B therein): 11 genotype is first converted to 10 by losing its second 
leaky function. Upon equilibrating, both 10 and 11 may lose their first leaky 
function converting to 00 and 01. (B) The frequency profiles of various 
genotypes for two representative low (10%) and high (20%) leakiness levels 
for both lysine and isoleucine. (C) Equilibrium frequencies of various 
genotypes for leakiness levels sustainable by 11 genotype (green region in 
Figure 4C of the main text). A comparison with Figure 6B of the main text 
shows that the equilibrium frequencies of the four genotypes do not depend 
on which leaky function is lost first. Assessing the evolutionary dynamics at 
low/moderate in (B) leakiness levels shows that even though cross-feeding 
emerges initially, it is eventually driven to extinction by non-producers. This 
pattern reveals an evolutionary path toward cross-feeding: Once a cross-
feeding association is established at low/moderate leakiness levels, cross-
feeders may evolve to increase their level of secreted amino acids to help 
their partner’s growth in exchange for the amino acid they need. This increase 
can be so severe that even prototrophs (11) are driven to extinction (i.e., 
moving from the green to red region in Figure 4C of the main text). 
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Supplementary Figure 9. Cross-feeders are resistant to invasion by 
non-producers once established. First, two mutant genotypes arise 
from 11, where one has lost its first leaky function (01) and the second 
has lost its second one (10). Next, 00 originates from 01 and/or 10 by 
losing their remaining leaky function. (A) and (B) show the initial and 
equilibrium genotypes frequencies for first step, respectively, and (C) 
and (D) show those for the second step for (lysine, isoleucine) amino 
acid pair. The equilibrium frequencies are shown only for leakiness 
levels that are sustainable by 11 genotype (green region in Figure 4C in 
the main text). These figures show that cross-feeding can emerge in the 
first step and can resist exploitation by 00 genotypes in the second step.
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lys and ile leakiness levels = 10% lys and ile leakiness levels = 20%

(B)

(A)

(C)

Supplementary Figure 10. Analysis of the outcome of a prototrophic 
genotype (11) invading a resident population of 00, 01 and 10 genotypes. 
Results are shown for (lysine, isoleucine) as a representative amino acid pair. 
(A) Initial genotype frequencies. (B) Genotype frequencies profiles for two 
representative low (10%) and high (20%) leakiness levels for both lysine and 
isoleucine. (C) Equilibrium genotype frequencies for leakiness levels 
sustainable by 11 genotype (green region in Figure 4C of the main text). 

00 = lys-ile-10 = ile-11 = wild-type 01 = lys-

00 = lys-ile-10 = ile-11 = wild-type 01 = lys-
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Supplementary Figure 11. A schematic representation of the 
metabolic network-driven evolutionary game theory approach 
used for E. coli leaking one amino acid. This same procedure 
can be applied to any system with one leaky trait such as sucrose 
hydrolysis by S. cerevisiae (see the main text).
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Supplementary Figure 12. A schematic representation of the 
metabolic network-driven evolutionary game theory approach 
used for E. coli leaking two amino acid. This same procedure can 
be applied to any system with two leaky traits.
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Supplementary Figure 13. Metabolic inter-dependencies in invertase-producing S. cerevisiae system 
using a histidine auxotroph strain. (A) Interactions between non-producer and histidine auxotroph producer 
strains of S. cerevisiae.  and  denote the histidine uptake rate and glucose/fructose capture efficiency, 
respectively. (B) Nash equilibria and (C) the equilibrium frequency of producers. Histidine uptake rate is shown 
in the reverse order on the horizontal axes as lowering the histidine uptake rate corresponds to increasing the 
cooperation cost. (D) Interactions between non-producer and histidine auxotroph producer strains of S. 
cerevisiae when additional glucose is provided in the growth medium. (E) Nash equilibria and (F) the equilibrium 
frequency of the producer in the presence of additional glucose in the growth medium. A Harmony game in (E) 
is a game where the optimal strategy is to take the same strategy as the opponent and corresponds to two Nash 
equilibria, namely, (Non-producer, Non-producer) and (Producer, Producer). Addition of glucose to the 
extracellular environment increases the average fitness of non-producers and makes producers more difficult to 
sustain regardless of how the cooperation cost is modeled.



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(A) (B)

Supplementary Figure 14. Sensitivity of predicted growth defect (cooperation cost) using the 
yeast iAZ900 model. Sensitivities are shown with respect to (A) histidine uptake rate and (B) 
stoichiometric coefficient of ATP in the sucrose hydrolysis reaction (SUCRe). For a fixed capture 
efficiency, the growth cost in (A) was computed as the difference between the predicted growth 
under the histidine saturation conditions and that for a given histidine uptake rate. Similarly, the 
growth defect for a fixed capture efficiency in (B) was computed as the difference between the 
predicted growth rate when the ATP cost of sucrose hydrolysis is zero and that for a given ATP 
cost. As shown here, the model is not very much sensitive to histidine limitations. We found a 
similar pattern for other models of the yeast (Supplementary References 20 and 21; results not 
shown).
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Supplementary Figure 15. Maximum production level of 
different amino acids under the anaerobic minimal conditions 
using the iJO1366 metabolic model of E. coli 25. Amino acids 
are shown here by their standard three-letter code.
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Supplementary Figure 16. Growth benefit vs. growth cost of amino acids. (A) In silico 
ranking of amino acid auxotrophic mutants according to the growth benefit per unit uptake of the 
respective amino acid. The growth benefit was quantified as the increase in growth rate (from a 
basal value of zero for the mutant) upon the uptake of 1 mmol/(gDW.h) of amino acid. (B) Growth 
benefit of amino acid auxotrophic mutant strains vs. the growth cost of the respective amino acid. 
Both growth gain and cost were computed for the uptake/production of 1 mmol/(gDW.h) of each 
amino acid.



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(A) (B)

Supplementary Figure 17. Growth cost and growth benefit of amino acids as a function of leakiness and 
uptake levels. (A) The growth cost (1/h) of each amino acid for various leakiness (secretion) levels. Leakiness levels 
are described as the percentage of a maximum of 10 mol/gDW.h (see Supplementary Method 2 of details). Growth 
cost increases for all amino acids with increasing the leakiness level. (B) The growth benefit (1/h) of amino acid 
auxotrophic mutant strains as a function of the uptake level of the respective amino acids. Uptake levels are 
described as the percentage of a maximum of 10 mol/gDW.h. The growth rate of most mutant strains reaches a 
saturation point even for taking up 1% of this maximum implying that their growth rate will not increase any further by 
increasing the uptake levels (or leakiness level of a partner WT strain) beyond this threshold.



	

	

	

	

	

	

	

	

	

Case study # of cells of the 
payoff matrix

Processor time 
(sec)

One leaky AA, Two-player game
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Supplementary Figure 18. Processor times for gurobi optimization 
solver to solve NashEqu Finder for sample case studies of various 
complexity. Runtimes are reported for a compute node with dual 
fourteen-core 2.4GHz Intel Xeon E5-2680v4 CPUs and 256GB of RAM. 
Case studies are related to E. coli leaking different amino acids. As 
shown here, the processor time for solving NashEq Finder increases 
almost linearly with the number of cells of the payoff matrix.
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Supplementary	Table	1.	A	comparison	of	the	key	parameters	of	the	Black	Queen	

Hypothesis	in	the	yeast	sucrose	hydrolysis	and	E.	coli	amino	acid	secretion	systems.	

Property	related	to	the	

Black	Queen	Hypothesis	

Sucrose	hydrolysis	by	S.	

cerevisiae	

Amino	acnid	

secretion	by	E.	coli	

Leaked	product	 Glucose/fructose	 Amino	acids	

Costly	function	 Invertase	production	 Amino	acid	synthesis	

Level	of	

publicizaiton/privatization	

Capture	efficiency	(%)	 Leakiness	level	(%)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

Supplementary	 Note	 1.	 Connections	 between	 this	 study	 and	

previous	modeling	and	experimental	work	

1.	Comparison	between	multi-species	dynamic	flux	balance	analysis	approaches	

and	the	presented	genome-driven	evolutionary	game	theory	framework	

There	are	a	number	of	differences	between	addressing	community	dynamics	using	

the	multi-species	dynamic	Flux	Balance	Analysis	(dFBA)	of	metabolic	models	1	(see	

also	 2,3	 for	 recent	 reviews	 of	 these	 methods)	 and	 that	 using	 the	 mechanistic	

evolutionary	agme	theory	framework	proposed	in	this	study.	Here,	we	aim	to	model	

only	 the	 ‘evolutionary	dynamics’	 of	 the	 system,	 that	 is,	 how	 the	 relative	 genotype	

abundances	(frequencies,	or	community	structure)	change	over	time	following	the	

evolutionary	 game	 theory	 4,	 and	 some	 microbial	 ecology	 literature	 5.	 It	 is	 worth	

noting	that	the	simulation	of	de	novo	mutations	and	subsequent	selection	processes	

(which	 have	 been	 pursued	 in	 other	 studies	 6),	 is	 not	 the	 focus	 of	 our	 study.	

Evolutionary	dynamics	 in	evolutionary	game	theory	 is	often	modeled	by	using	 the	

Replicator	 Equation	 under	 the	 assumption	 of	 a	 constant	 population	 size	 4	 and	

captures	 the	 impact	 of	 genotype	 frequencies	on	 the	 long-term	state	of	 the	 system	

(see	Equations	6-8	 in	 the	main	 text).	However,	 this	equation	 is	 typically	used	as	a	

phenomenological	 model	 with	 payoffs	 and	 reproductive	 fitness	 values	 obtained	

from	 intuition	 or	 from	 dedicated	 experiments.	 In	 this	 study,	 we	 proposed	 a	 new	

approach	 for	 the	 mechanistic	 modeling	 of	 evolutionary	 dynamics	 through	

integrating	genome-scale	metabolic	networks	and	evolutionary	game	theory,	where	

payoffs	(and	consequently	reproductive	fitness	values)	are	obtained	from	genome-

scale	metabolic	models.		

	

Multi-species	dFBA	approaches,	on	the	other	hand,	take	into	account	the	impact	of	

variations	 in	both	genotype	frequencies	and	genotype	abundances	and	thus	model	

the	 ‘eco-evolutionary’	 dynamics	 of	 the	 system	 5,7,8.	 These	 approaches,	 however,	

require	 the	 knowledge	 of	 the	 uptake	 kinetics	 for	 the	 specific	 compounds	 that	 are	

taken	up	by	each	community	member,	which	may	not	be	always	available.		



	

	

2.	 Comparison	 with	 previous	 efforts	 to	 integrate	 metabolic	 networks	 and	

evolutionary	game	theory	

While	elementary	mode	analysis	of	metabolic	networks	9	has	been	previously	used	

in	 conjunction	 with	 evolutionary	 game	 theory	 to	 assess	 rate-yield	 tradeoffs	 in	 a	

single	 species	 10,	 integrating	 constraint-based	 analysis	 of	metabolic	 networks	 (i.e.,	

COBRA-based	methods	11)	with	evolutionary	game	theory	for	the	analysis	of	 inter-

species	interactions	has	not	been	explored	before.	In	this	study	we	present	(to	our	

knowledge)	the	first	example	of	such	a	framework.	

	

3.	 Connections	 with	 previous	 experimental	 studies	 establishing	 synthetic	

cooperative	exchanges	

It	 is	 important	 to	highlight	a	key	difference	between	our	 in	silico	 analyses	and	 the	

previous	 experimental	 studies	 that	 report	 on	 establishing	 synthetic	 cross-feeding	

associations	 12-16.	 While	 these	 studies	 start	 with	 an	 initial	 population	 of	

complementary	genotypes	to	assess	whether	they	can	grow	in	a	co-culture,	here	we	

examined	 in	 silico	 the	 fundamental	 question	 of	 whether	 a	 one-way	 or	 two-way	

cooperative	 association	 can	 evolutionarily	 emerge	 from	 a	 population	 of	

prototrophic	genotypes.	In	addition,	our	analyses	show	that	cross-feeding	can	resist	

exploitation	 by	 other	 genotypes	 even	 in	 a	 homogenous	 environment,	 if	 such	 an	

association	 has	 already	 been	 established	 (see	 the	 main	 text	 and	 supplementary	

Figures.	10	and	11),	which	is	consistent	with	previous	experimental	reports	17.	

	

	



	

Supplementary	 Note	 2.	 Metabolic	 inter-dependencies	 in	

invertase-producing	 S.	 cerevisiae	 system	 using	 a	 histidine	

auxotroph	strain	
Gore	et	al	 18	used	a	histidine	auxotroph	yeast	strain	(lacking	the	gene	hisD)	as	 the	

producer	 genotype.	 This	 made	 it	 possible	 to	 increase	 the	 “cost	 of	 cooperation”	

experimentally	 by	 limiting	 the	 histidine	 concentration	 in	 the	 growth	 medium.	

However,	since	the	incorporated	ATP	in	the	sucrose	hydrolysis	reaction	(SUCRe)	in	

the	metabolic	model	serves	as	a	proxy	for	the	energetic	cost	of	invertase	production	

and	secretion,	we	modeled	variations	 in	cooperation	cost	systematically	and	more	

explicitly	in	the	analysis	presented	in	the	main	text	by	changing	the	stoichiometric	

coefficient	of	ATP	in	the	sucrose	hydrolysis	reaction	(see	Figure	2A	of	the	main	text	

and	Section	3.1	in	this	document).	Here,	we	present	the	results	of	the	same	analysis	

by	using	a	histidine	auxotroph	producer	genotype	specifically	reproducing	 in	silico	

the	 system	used	 in	Gore	et	 al	 18.	Toward	 this	end,	 an	 in	silico	producer	 strain	was	

constructed	by	fixing	the	flux	of	reaction	encoded	by	hisD	in	the	iAZ900	model	19	at	

zero	(see	Supplementary	Figure	13A).	Furthermore,	the	stoichiometric	coefficient	of	

ATP	in	the	sucrose	hydrolysis	reaction	was	tuned	and	fixed	at	a	value	such	that	the	

producer	are	2.5%	less	fit	than	the	non-producers	as	reported	in		18	(see	section	1	of	

section	2	of	Supplementary	Methods	for	details).		

	

The	 identified	 Nash	 equilibria	 and	 equilibrium	 fraction	 of	 producers	 are	 given	 in	

Supplementary	Figure	13B	and	13C.	Overall,	the	general	patterns	that	are	observed	

here	are	qualitatively	in	agreement	with	those	in	Figures	2B	and	2C	of	the	main	text.	

The	 only	 difference	 is	 that	 the	 Prisoner’s	 Dilemma	 game	 comprises	 only	 a	 small	

portion	 of	 the	 cost-capture	 efficiency	 landscape	 in	 Supplementary	 Figure	 13B	

compared	to	that	in	Figure	2B	of	the	main	text.	This	is	mostly	due	to	the	fact	that	the	

genome-scale	 metabolic	 models	 of	 the	 yeast	 20,21	 cannot	 fully	 recapitulate	 the	

growth	 defect	 (i.e.,	 cooperation	 cost)	 due	 to	 histidine	 limitation	 in	 the	 absence	 of	

hisD	gene	(see	Supplementary	Figure	14).		



	

	

Assessing	 the	 impact	 of	 the	 addition	 of	 glucose	 to	 the	 growth	 medium	

(Supplementary	 Figures	 13D-F)	 also	 reveals	 patterns	 that	 are	 qualitatively	 in	

agreement	with		those	in	Figures	2E	and	2F	of	the	main	text.	The	addition	of	glucose	

to	the	growth	medium	was	modeled	by	allowing	for	the	uptake	of	5	mmol/(gDW.h)	

of	 glucose	 (for	 10	 mmol/(gDW.h)	 of	 sucrose	 uptake	 (using	 different	 values	 of	

glucose	uptake	leads	to	qualitatively	similar	results).	When	compared	to	Figure	2E,	

we	 observe	 that	 here	 a	 region	 of	 the	 Snowdrift	 game	 is	 still	 retained	

(Supplementary	Figure	13E).	One	can	observe	that	there	is	a	noticeable	decrease	in	

the	 fraction	 of	 producers	 compared	 to	 the	 case	 where	 no	 additional	 glucose	 is	

provided	in	the	Snowdrift	game	region	(Supplementary	Figures	13C	and	13F).	This	

is	 because	 in	 the	 presence	 of	 glucose	 in	 the	 extracellular	 environment,	 the	 non-

producers	 are	 less	 dependent	 on	 producers	 for	 the	 availability	 of	 sugars,	 thereby	

increasing	 the	 average	 fitness	 of	 non-producers	 compared	 to	 the	 case	 where	 no	

glucose	 is	 provided.	 This	 makes	 producers	 more	 difficult	 to	 sustain	 i.e.,	 they	 are	

either	 driven	 to	 extinction	 by	 non-producers	 (leading	 to	 a	 Prisoner’s	 Dilemma	

game)	or	 their	 equilibrium	 frequency	decreases	 if	 a	 Snowdrift	 game	region	 is	 still	

retained.	 These	 patterns	 are	 consistent	 with	 the	 reports	 by	 Gore	 et	 al	 18	 that	

increasing	 the	glucose	concentration	 in	 the	growth	medium	 leads	 to	a	decrease	 in	

the	equilibrium	 fraction	of	producers	and	 that	 this	decrease	can	be	so	severe	 that	

eventually	 transforms	 the	Mutually	 Beneficial	 or	 Snowdrift	 games	 to	 a	 Prisoner’s	

Dilemma	game.	

	

	



	

Supplementary	Note	3.	Detailed	analysis	of	 the	Nash	equilibria	

and	equilibrium	genotype	frequencies	in	E.	coli	strains	secreting	

individual	amino	acids	
Here,	 we	 analyze	 in	 more	 details	 the	 identified	 Nash	 equilibria	 and	 equilibrium	

genotype	frequencies	given	in	Figures	3B	and	3D	of	the	main	text.		

1.	Analysis	of	the	Nash	equilibria	

As	noted	 in	 the	main	 text	 and	 shown	 in	Figure	3B	of	 the	main	 text,	 as	 the	 cost	of	

amino	acid	production	 increases,	 the	maximum	 leakiness	 level	enabling	 (WT,	MT)	

coexistence	 (i.e.,	 Snowdrift	game)	decreases	monotonically.	Conversely,	 the	size	of	

the	Prisoner’s	Dilemma	region	increases	monotonically	as	the	growth	cost	of	amino	

acid	production	increases,	with	the	smallest	region	being	the	one	for	alanine	and	the	

largest	 for	 tryptophan.	 This	 pattern	 is	 similar	 to	 the	 one	 observed	 for	 the	 yeast	

sucrose	case	(Figure	2B	of	the	main	text),	where	the	role	previously	played	by	the	

ATP	cost	of	sucrose	hydrolysis	is	translated	here	into	the	amino	acid-specific	cost	of	

leakiness.	However,	 interestingly,	a	different,	more	complex	pattern	is	observed	in	

the	E.	coli	case	for	the	Mutually	Beneficial	region:	in	contrast	to	sucrose	hydrolysis	

in	 yeast,	 here	 we	 have	 only	 a	 few	 cases	 where	 (WT,	 WT)	 appears	 as	 the	 Nash	

equilibrium	with	glutamate	having	the	largest	range	of	leakiness	that	supports	such	

equilibria.	For	(WT,	WT)	to	be	a	Nash	equilibrium,	a	WT	facing	a	WT	must	be	fitter	

than	a	MT	facing	a	WT.	We	reasoned	that	this	would	occur	if	the	secreted	amino	acid		

was	associated	with	a	small	growth	cost	to	WT	and/or	a	small	growth	advantage	to	

the	 mutant.	 Indeed,	 for	 the	 most	 extreme	 case	 of	 glutamate,	 we	 found	 that	 the	

growth	gain	per	unit	uptake	for	a	glutamate	auxotroph	mutant	is	significantly	lower	

than	all	other	amino	acid	auxotroph	mutants	(Supplementary	Figure	16).		

2.	Analysis	of	the	equilibrium	genotype	frequencies	

As	 shown	 in	Figure	3D	of	 the	main	 text,	WT	dominates	 in	 the	Mutually	 beneficial	

game	region,	MT	dominates	in	the	Prisoner’s	Dilemma	game	region	and	WT	and	MT	

coexist	 in	 the	Snowdrift	game	region.	Here,	we	 focus	on	analyzing	 the	equilibrium	



	

frequencies	in	the	Snowdrift	game	region.	As	noted	in	the	main	text,	the	equilibrium	

fraction	of	MTs	in	the	Snowdrift	game	region	is	the	outcome	of	the	complex	balance	

between	two	factors	(captured	by	the	Nash	equilibria	of	 the	game):	(i)	 the	growth	

cost	 of	 producing	 leaky	 amino	 acids	 and	 (ii)	 the	 growth	 benefit	 of	 auxotrophic	

mutant	 strains	 upon	 taking	 up	 those	 amino	 acids.	 The	 former	 increases	 as	 the	

leakiness	 level	 increases	 for	 all	 amino	 acids	 as	 expected	 (Supplementary	 Figure	

17A).	However,	we	do	not	observe	a	consistent	pattern	in	the	growth	benefit	of	the	

mutant	 strains	 for	 all	 amino	 acids	 (Supplementary	 Figure	 17B)	 consistent	 with	

previous	 reports	 22.	 In	 particular,	 we	 observed	 that	 the	 growth	 rate	 of	 MTs	 that	

appear	only	in	a	small	equilibrium	fraction	in	the	Snowdrift	game	region	has	already	

reached	a	saturation	point	at	very	small	uptake	levels.	This	implies	that	any	further	

increase	 in	 the	 leakiness	 levels	 in	 WT	 will	 not	 increase	 their	 growth	 rate.	 This	

causes	the	average	fitness	of	these	mutants	to	be	lower	than	WT,	which	in	turn	leads	

to	a	higher	frequency	of	WT	in	the	Snowdrift	game	region.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

Supplementary	Methods		

1.	More	details	on	NashEq	Finder	

Nash	equilibrium	 is	 a	 central	 concept	 in	game	 theory	describing	a	 state	where	no	

player	has	an	incentive	to	change	its	current	strategy	because	it	cannot	improve	its	

payoff	any	further	by	doing	so,	if	other	players	keep	their	strategies	unchanged.	As	

noted	 in	 the	 main	 text,	 we	 developed	 an	 optimization-based	 framework	 called	

NashEq	Finder	to	identify	the	pure	strategy	Nash	equilibria	(NE)	of	a	non-symmetric	

!-player	game,	given	its	payoff	matrix	(Sections	3	and	4	of	this	text	provide	detailed	

descriptions	of	how	payoffs	were	computed	for	the	case	studies	in	this	paper).	In	the	

following,	we	present	an	example	of	how	NashEq	Finder	optimization	 formulation	

works	using	a	simple	two-player	game,	and	also	provide	a	preliminary	assessment	

of	the	computational	efficiency	of	the	NashEq	Finder	algorithm.		

1.1.	An	example	showing	how	NashEq	Finder	optimization	formulation	works	

Consider	 the	 following	 payoff	 matrix	 for	 a	 game	 with	 two	 players,	 ("1	and	"2),	

where	each	player	can	either	Cooperate	(C)	or	Defect	(D):	

	

	 	 "2	

	 	 C	 D	

"1
	

C	 %&&' = 3, %&&+ = 3	 %&,' = 0, %&,+ = 6	

D	 %,&' = 5, %,&+ = 0.5	 %,,' = 1, %,,+ = 2	

	

We	have:	

1 = 2,3 ,									5 = {2, 3}	

We	also	set	89' = 89+ = −1.	

	

It	is	easy	to	verify	that	"1	is	better	off	defecting	if	"2	cooperates.	The	same	is	true	if	

"2	defects	 as	 well.	 Similarly,	"2	is	 always	 better	 off	 defecting	 no	 matter	 if	"1	

cooperates	or	defects.	This	implies	that	DD	is	the	Nash	equilibrium	of	the	game	(i.e.,	



	

this	 is	 a	 Prisoner’s	 Dilemma	 game).	33	is	 the	 only	 cell	 of	 the	 payoff	 matrix	 that	

satisfies	 the	 conditions	 of	 the	 Nash	 equilibrium	 mathematically	 described	 with	

Constraints	(6)	and	(7)	in	the	NashEq	Finder	optimization	formulation	in	the	main	

text	(note	that	;&,	is	a	binary	variable	and	can	assume	only	a	value	of	zero	or	one):	

	

Constraint	(6):	

" = 3, < = 3	

For	 this	 constraint,	 the	 strategy	 of	 player	"2	is	 fixed	 at	3	and	 we	 check	 whether	

taking	3	by	player	"1	is	the	best	response	to	("2,D):	

max
AB∈D

%AB,' = max %&,' , %,,' =1,					%,,' = 1	

1 ≥ 1;,, + (−1)(1 − ;,,),	

which	is	satisfied	for	both	;,, = 0	and	;,, = 1.	

	

Constraint	(7):	

" = 3, < = 3	

For	 this	 constraint,	 the	 strategy	 of	 player	"1	is	 fixed	 at	3	and	 we	 check	 whether	

taking	3	by	player	"2	is	the	best	response	to	("1, 3):	

max
HB∈I

%,HB+ = max %,&+ , %,,+ =2,					%,,+ = 2	

2 ≥ 2;,, + (−1)(1 − ;,,),	

which	is	satisfied	for	both		;,, = 0		;,, = 1.	

In	this	case	we	observe	that	both		;,, = 0		;,, = 1	satisfy	Constraints	(6)	and	(7),	

however,	since	the	objective	function	of	the	optimization	problem	maximizes	sum	of	

the	 binary	 variables,	;,, = 1	will	 be	 returned	 as	 the	 optimal	 value	 for	;,,	upon	

solving	the	optimization	problem.		

	

Now,	we	verify	that	Constraints	(6)	and	(7)	are	satisfied	for	other	cells	of	the	payoff	

matrix	only	 if	 the	value	of	 the	corresponding	binary	variable	 is	zero.	For	example,	

assume	the	cell	23	(i.e.,	"1	cooperates	and	"2	defects):	

	

	



	

Constraint	(6):	

" = 2, < = 3	

max
AB∈D

%AB,' =1,					%&,' = 0	

0 ≥ 1;&, + (−1)(1 − ;&,),	

which	is	satisfied	only	for	;&, = 0	

	

Constraint	(7):	

" = 2, < = 3	

max
HB∈I

%,HB+ =6,					%&,+ = 6	

6 ≥ 6;&, + (−1)(1 − ;&,),	

This	inequality	is	satisfied	for	both	;&, = 0	and	;&, = 1.	However,		it	is	only	;&, =

0	that	satisfies	both	Constraints	(S1)	and	(S2).	�	

1.2.	Computational	efficiency	of	the	NashEq	Finder	algorithm	

Computing	pure	strategy	Nash	equlibria	is	known	to	be	an	NP-hard	problem	and	it	

is	PPAD-complete	when	considering	mixed	 strategies	as	well	 23,24.	As	noted	 in	 the	

main	 text,	 we	 have	 provided,	 in	 Supplementary	 Software	 1,	 a	 python	 script	

implementing	NashEq	Finder	 in	 its	most	general	 form	to	 identify	all	pure	strategy	

Nash	equilibria	of	an	!-player	game.	The	runtime	of	NashEq	primarily	depends	on	

the	 size	 of	 the	 payoff	matrix	 (a	 function	 of	 number	 of	 players	 and	 the	 number	 of	

strategies	each	player	can	take)	as	one	binary	variable	is	assigned	to	each	cell	of	the	

payoff	matrix.	Supplementary	Figure	18	shows	the	required	processor	time	to	solve	

NashEq	 Finder	 for	 a	 number	 of	 sample	 simulations	 that	we	 performed	 for	E.	coli	

leaking	 different	 number	 of	 amino	 acids.	 NashEq	 Funder	 complements	 previous	

mixed-integer	programming	approaches	to	 identify	the	Nash	equilibria	of	n-player	

games	 25,	 however,	 a	 more	 comprehensive	 study	 is	 needed	 to	 find	 out	 how	 the	

computational	 efficiency	 of	 NashEq	 Finder	 is	 compared	 to	 that	 of	 the	 previous	

algorithms.		

	



	

2.	Computing	the	payoff	values	for	the	sucrose-hydrolysis	populations	of	the	S.	

cerevisiae	

When	 growing	 on	 sucrose,	 S.	 cerevisiae	 produces	 the	 enzyme	 invertase	 that	

hydrolyzes	sucrose	and	converts	 it	glucose	and	 fructose.	This	hydrolysis	occurs	 in	

the	 periplasmic	 space	 where	 up	 to	 99%	 of	 the	 glucose	 and	 fructose	 have	 been	

reported	to	diffuse	away	and	serve	as	a	public	good,	while	the	rest	(quantified	as	the	

percent	 capture	 efficiency,	 e)	 can	 be	 retained	 by	 the	 cell	 18.	 Given	 that	 invertase	

production	 is	 metabolically	 and	 energetically	 costly,	 a	 mutant	 non-producer	

strategy	may	 emerge	 through	 losing	 the	 invertase	 production	 genes.	 Gore	 et	 al	 18	

showed	 that	 depending	 on	 the	 cost	 of	 cooperation	 (i.e.,	 the	 cost	 of	 invertase	

production)	and	on	the	glucose/fructose	capture	efficiency,	a	range	of	outcomes	is	

possible:	 These	 include	 a	 Mutually	 Beneficial	 (Deadlock)	 game	 (where	 producers	

dominate),	 a	 Snowdrift	 game	 (where	 producers	 and	 non-producers	 coexist)	 or	 a	

Prisoner’s	Dilemma	game	(where	non-producers	dominate).	As	a	proof-of-concept,	

we	 sought	 to	 examine	 whether	 a	 game	 theoretic	 model	 of	 this	 system	 based	 on	

genome-scale	metabolism	 is	 able	 to	 reproduce	 the	 experimentally	 observed	Nash	

equilibria.	 Here,	 sucrose	 hydrolysis	 (or	 invertase	 production)	 serves	 as	 the	 leaky	

function	with	percent	leakiness	J = 100 − K.	

	

Now,	we	describe	in	detail	how	the	payoffs	of	the	game	are	computed	for	different	

ways	 of	 encountering	 producer	 (WT)	 and	 non-producer	 (MT)	 strains	 of	 the	 S.	

cerevisiae	 growing	 on	 sucrose.	 The	 python	 scripts	 used	 to	 generate	 the	 data	 and	

figures	 for	 this	 case	 study	are	 fully	available	 from	 the	 corresponding	author	upon	

request.	

2.1.	Definition	of	the	in	silico	producer	and	non-producer	strains	

Non-producer:	 The	 non-producer	 strain	 lacks	 suc2	 gene,	 which	 is	 simulated	 by	

setting	 the	 lower	 and	upper	bounds	on	 reaction	SUCRe	 in	 the	 iAZ900	model	 19	 to	

zero.			

	



	

Producer:	The	original	sucrose	hydrolysis	reaction	in	the	 iAZ900	model	(SUCRe)	is	

as	follows:	

1.0	h2o_e	+	1.0	sucr_e	-->	1.0	glc_e	+	1.0	fru_D_e	

	

where,	 sucr_e,	 glc_e	 and	 fru_D_e	 stand	 for	 sucrose,	 glucose	 and	 fructose,	

respectively.	 This	 reaction	 is	 modified	 as	 follows	 to	 incorporate	 the	 ATP	 cost	 of	

sucrose	hydrolysis	as	well	as	the	glucose/fructose	capture	efficiency:	

	

1.0	h2o_e	+	1.0	sucr_e	+	LMND	atp	-->	K	glc_e	+	(1 − K)	glc_secreted	+	K	fru_e	+	(1 − K)	

fru_secreted		+	LMNDadp		+	LMND	pi	

	

where,		LMND	and	K	denote	the	ATP	cost	of	sucrose	hydrolysis	(i.e.,	the	stoichiometric	

coefficient	 of	 ATP	 in	 SUCRe	 reaction)	 and	 glucose/fructose	 capture	 efficiency,	

respectively.	 In	 addition,	 glc_secreted	 and	 fru_secreted	 are	 two	 new	 compounds	

added	to	the	metabolic	model	to	model	fractions	of	the	glucose	and	fructose	that	are	

not	 captured	 by	 the	 cell.	 In	 order	 to	 allow	 the	 export	 of	 glc_secreted	 and	

fru_secreted	 out	 of	 the	 cell,	we	 further	 added	 two	 exchange	 reactions	 for	 each	 of	

these	compounds	to	the	metabolic	model:	

EX_glc_secreted:	 glc_secreted	<==>	

EX_fru_secreted:	 fru_secreted	<==>	

	

Note	that	a	positive	and	negative	flux	for	an	exchange	reaction	imply	secretion	and	

uptake,	 respectively.	 The	 in	 silico	 producer	 strain	 is	 defined	 as	 follows	 for	 two	

different	ways	of	modeling	the		variations	in	cooperation	cost:	

	

(i) Changes	in	invertase	production	cost	is	modeled	by	changing	the	ATP	cost	

of	 sucrose	 hydrolysis:	 In	 this	 case,	 we	 change	 the	 value	 of	LMND,OP&QR 	to	

model	the	changes	in	the	cooperation	cost.		

(ii) Changes	 in	 the	 invertase	 production	 cost	 is	 modeled	 by	 changing	 the	

histidine	uptake	rate:	This	is	to	specifically	reproduce	Gore	et	al	18	system,	



	

where	they	used	a	histidine	auxotroph	producer	strain	(ΔhisD),	so	as	to	
experimentally	increase	the	“cost	of	cooperation”	by	limiting	the	histidine	

concentration	in	the	growth	medium.	Here,	we	first	construct	an	in	silico	

histidine	 auxotroph	 strain	 by	 setting	 the	 lower	 and	 upper	 bound	 for	

reaction	 IGPDH	 (imidazoleglycerol	 phosphate	 dehydratase)	 encoded	 by	

gene	 hisD	 to	 zero.	 We,	 next,	 manually	 adjusted	LMND,OP&QR 	such	 that	 the	

growth	rate	of	a	producer	strain	is	2.5%	less	than	that	of	a	non-producer	

strain	as	reported	 in	18.	However,	since	 the	 in	silico	non-producer	strain	

cannot	 grow	 on	 sucrose	 (due	 to	 having	 SUCRe	 reaction	 removed),	 we	

instead	used	 the	original	 iAZ900	model	where	SUCRe	reaction	does	not	

contain	 an	 ATP	 cost	 as	 a	 proxy	 for	 the	 non-producer	 strain.	We	 found	

with	 this	 analysis	 that	LMND = 0.115,	 results	 in	 a	 growth	 rate	 for	 the	

producer	strain,	which	is	less	than	that	for	the	non-producer	by	2.5%.	

	

All	 simulations	 were	 performed	 for	 aerobic	minimal	medium	with	 a	 sucrose	 and	

oxygen	uptake	rates	of	10 SSTU
V,W..X

	and	2 SSTU
V,W.X

	,	respectively,	and	with	the	flux	of	ATPM	

reaction	fixed	at	1 SSTU
V,W.X

	19,20.		

2.2.	Estimating	additional	metabolic	parameters	

We	 first	need	 to	determine	a	number	of	parameters	before	quantifying	 the	payoff	

matrix	of	the	game.	

	

Death	 rate:	 A	 death	 rate	 was	 calculated	 requirements	 by	 using	 the	 following	

equation	 1	 for	 the	 case	 of	 an	 infeasible	 FBA	 problem	 implying	 that	 the	 available	

glucose	in	the	growth	medium	cannot	support	maintenance	ATP:	

YZR[\X = <] − ^] _`
]
	

where,	<]
SSTU
V,W.X

	is	the	uptake	rate	of	the	limiting	substrate	L	(in	this	case	glucose),	

^]
SSTU
V,W.X

	is	 the	 minimum	 uptake	 rate	 of	 limiting	 substrate	L	required	 to	 satisfy	

maintenance	requirements	and	_a
b

V,W
SSTU

	is	the	biomass	yield	of	substrate	L.	^]	can	



	

be	 easily	 found	 by	 solving	 an	 FBA	 problem	 where	 the	 objective	 function	 is	 to	

minimize	the	uptake	rate	of	limiting	substrate	L.	_a
b
	can	be	also	found	by	solving	an	

FBA	problem.	Note	that	YZR[\X	takes	a	negative	value	since	the	cell	undergoes	death	

if	<] < ^].	

	

Growth	 cost	 of	 sucrose	 hydrolysis:	 We	 calculated	 a	 representative	 growth	 cost	 of	

sucrose	hydrolysis	for	a	fixed	LMND	by	solving	two	FBA	problems	one	for	the	original	

iAZ900	model	(where	no	ATP	cost	is	incorporated	into	the	SUCRe	reaction)	and	the	

other	 for	 the	 in	silico	 producer	 strain	 (where	ATP	 is	 incorporated	 into	 the	 SUCRe	

reaction	but	with	K = 1).	The	growth	cost	of	sucrose	hydrolysis	is	then	calculated	as	

follows:	

Ldef_ℎijf_kfl;mℎ_elLm = 	−(YnoTS[]]opqrss − YnoTS[]]
tTTARu[\Tu,Rv').	

Note	that	Ldef_ℎijf_kfl;mℎ_elLm	always	takes	a	negative	value.	

	

Glucose	and	fructose	secretion	rates:	We	first	solve	the	following	FBA	problem	for	a	

producer	strain	alone,	to	find	out	the	glucose	and	fructose	secretion	rates:	

	

maximize	YnoTS[]]	 	

subject	to	 	

LoÅYÅ
Å∈Ç

= 0,															∀Ñ ∈ Ö,	 (S1)	

89Å ≤ YÅ ≤ á9Å,									∀à ∈ â,	 (S2)	

Yäã_]åtu_R ≥ −10,	 (S3)	

Yäã_T+_R ≥ −2,	 (S4)	

YMNDç = 1.	 (S5)	

	

where,	Ö	and	â	denote	 the	 set	 of	metabolites	 and	 reactions,	LoÅ 	is	 the	 stoichiometric	

coefficient	of	metabolite	Ñ	in	reaction	à	and	YÅ 	is	 the	 flux	of	 reaction	à.	Furthermore,	

YnoTS[]],	Yäã_]åtu_R ,	Yäã_T+_R 	and	YMNDç	denote	 the	 flux	 of	 biomass	 reaction,	 sucrose	

exchange	 reaction,	 oxygen	 exchange	 reaction	 and	 ATP	 maintenance	 reaction,	



	

respectively.	 Constraint	 (S1)	 represents	 the	 steady-state	 mass	 balance	 for	 each	

metabolite,	Constraint	(S2)	 imposes	a	 lower	(89Å)	and	upper	bound	(á9Ç)	on	each	

reaction	flux,	Unless	specified	otherwise,	the	lower	bound	is	set	to	zero	and	-1000	

for	irreversible	and	reversible	reactions,	respectively,	and	the	upper	bound	is	set	to	

1000	 for	all	 reaction	 for	all	FBA	problems	 throughout	 this	paper.	Constraints	 (S3)	

and	 (S4)	 set	 the	 bounds	 on	 the	 sucrose	 and	 oxygen	uptake	 and	 finally	 Constraint	

(S5)	 fixes	 the	 flux	 of	 ATPM	 reaction	 at	 the	 specified	 value.	 The	 optimal	 values	 of	

reaction	 fluxes	 for	kJe_LKefKmKj	and	éfd_LKefKmKj	upon	 solving	 this	 problem	 are	

stored	 as	kJe_LKefKmKj_éJdè 	and	éfd_LKefKmKj_éJdè .	 If	 this	 FBA	 problem	 is	

infeasible,	kJe_LKefKmKj_éJdè	and	éfd_LKefKmKj_éJdè	are	set	to	 1 − K 10,	where	10	

is	 the	 upper	 bounds	 on	 the	 sucrose	 uptake	 rate.	 Assigning	 a	 non-zero	 value	 to	

kJe_LKefKmKj_éJdè	and	éfd_LKefKmKj_éJdè	in	 this	 case	 the	 goal	 was	 to	 guarantee	

that	 a	 partner	 (producer	 or	 non-producer)	 strain	 can	 still	 benefit	 from	 this	

cooperative	behavior	even	when	the	cooperation	is	too	costly.	

	

With	having	these	parameters	determined,	we	can	now	compute	the	payoffs.	Note	

that	these	payoffs	are	computed	for	the	encounter	of	two	single	cells.	The	impact	of	

cell	 type	 frequencies	 is	 accounted	 for	when	 simulating	 the	 evolutionary	dynamics	

using	 the	Replicator’s	equation	(see	Methods	 in	 the	main	 text).	The	 following	FBA	

formulations	are	presented	for	a	fixed	capture	efficiency,	K	,	and	a	fixed	ATP	cost	of	

sucrose	hydrolysis,	LMND	for	case	(i)	in	Section	3.1.	These	formulations	can	be	readily	

adjusted	for	case	(ii)	as	well.	

2.3.	Computing	the	payoffs	for	a	producer	vs.	another	producer	

Here,	we	solve	one	FBA	problem	as	follows:	

maximize	YnoTS[]]	 	

subject	to	 	

LoÅYÅ
Å∈Ç

= 0,															∀Ñ ∈ Ö,	 	

89Å ≤ YÅ ≤ á9Å,									∀à ∈ â,	 	

Yäã_]åtu_R ≥ −10,	 	



	

Yäã_T+_R ≥ −2,	 	

Yäã_VUt_R ≥ −kJe_LKefKmKj_éJdè,	 (S6)	

Yäã_êuå_R ≥ −éfd_LKefKmKj_éJdè,	 (S7)	

YMNDç = 1.	 	

	

where,	ëí_kJe_K	and	ëí_éfd_K	are	the	exchange	reactions	for	glucose	and	fructose.	

Constraints	 (S6)	 and	 (S7)	 describe	 the	 fact	 that	 each	 single	 Producer	 strain	 can	

benefit	from	the	secreted	glucose	and	fructose	by	its	partner	Producer.	The	optimal	

value	 of	YnoTS[]]	is	 assigned	 as	 the	 payoff	 of	 a	 Producer	 vs.	 a	 Producer.	 If	 the	

problem	 is	 infeasible,	 the	 payoff	 is	 set	 to	YZR[\X + Ldef_ℎijflJ_kfl;mℎ_elLm	(note	

that	both	YZR[\X	and	Ldef_ℎijflJ_kfl;mℎ_elLm	are	both	negative).	

2.4.	Computing	the	payoffs	for	a	producer	vs.	a	non-producer	

The	FBA	problem	for	the	producer	is	formulated	as	follows:	

maximize	YnoTS[]]	 	

subject	to	 	

LoÅYÅ
Å∈Ç

= 0,															∀Ñ ∈ Ö,	 	

89Å ≤ YÅ ≤ á9Å,									∀à ∈ â,	 	

Yäã_]åtu_R ≥ −10,	 	

Yäã_T+_R ≥ −2,	 	

Yäã_VUt_R ≥ 0	 (S8)	

Yäã_êuå_R ≥ 0	 (S9)	

YMNDç = 1.	 	

	

The	difference	between	this	FBA	problem	and	that	for	producer	vs.	producer	is	that	

here	we	do	not	allow	 for	 the	uptake	of	glucose	and	 fructose	as	here	 the	producer	

deals	with	a	non-producer	strain.	As	before,	the	optimal	value	of	YnoTS[]]	is	assigned	

as	 the	 producer’s	 payoff,	 if	 the	 FBA	problem	 is	 solved	 to	 optimality,	 and	 is	 set	 to	

YZR[\X + Ldef_ℎijflJ_kfl;mℎ_elLm,	if	it	is	infeasible.		

	



	

The	FBA	for	the	non-producer	is	as	follows:	

maximize	YnoTS[]]	 	

subject	to	 	

LoÅYÅ
Å∈Ç

= 0,															∀Ñ ∈ Ö,	 	

89Å ≤ YÅ ≤ á9Å,									∀à ∈ â,	 	

YOP&QR = 0	 (S10)	

Yäã_]åtu_R ≥ −10,	 	

Yäã_T+_R ≥ −2,	 	

Yäã_VUt_R ≥ −kJe_LKefKmKj_éJdè,	 	

Yäã_êuå_R ≥ −éfd_LKefKmKj_éJdè,	 	

YMNDç = 1.	 	

	

Here,	 the	 non-producer	 can	 benefit	 from	 the	 secreted	 glucose	 and	 fructose	 by	 its	

cooperative	partner.	The	optimal	value	of	YnoTS[]]	is	assigned	as	the	non-producer’s	

payoff,	if	the	FBA	problem	is	solved	to	optimality.	Otherwise,	the	payoff	of	the	non-

producers	 is	 set	 to	YZR[\X	(note	 that	 the	 non-producer	 does	 not	 incur	 the	 cost	 of	

sucrose	hydrolysis).		

2.5.	Computing	the	payoffs	for	a	non-producer	vs.	another	non-producer	

There	is	no	need	to	solve	an	FBA	problem	in	this	case,	because	it	is	known	a	priori	

that	 an	 FBA	 problem	 for	 a	 non-producer	 vs.	 a	 non-producer	 will	 be	 infeasible	

because	the	ATP	maintenance	requirements	(described	by	YMNDç = 1	20)	cannot	be	

satisfied	due	to	the	absence	of	glucose/fructose.	The	payoff	of	the	non-producer	is	

set	to	YZR[\X	in	this	case.		

	

	

	



	

3.	Computing	the	payoff	values	for	amino	acid-secreting	E.	coli	strains	

Here,	we	describe	the	details	of	how	the	payoffs	are	computed	for	games	involving	

E.	coli	strains	that	are	auxotroph	and/or	 leaky	for	certain	amino	acids	(the	python	

scripts	used	to	generate	the	data	and	figures	 for	 this	case	study	are	 fully	available	

from	 the	 corresponding	 author	 upon	 request).	 It	 is	worth	 noting	 that	 despite	 the	

inherent	differences	between	sucrose	hydrolysis	by	yeast	and	amino	acid	secretion	

by	E.	coli	both	systems	can	be	studied	in	the	light	of	the	Black	Queen	Hypothesis.		A	

side-by-side	 comparison	 of	 the	 key	 properties	 related	 to	 the	 Black	 Queen	

Hypothesis	in	these	two	systems	is	given	in	Supplementary	Table	1.	

	

All	 simulations	 were	 performed	 using	 the	 iJO1366	 metabolic	 model	 of	 E.	 coli	 26	

under	 the	 anaerobic	 minimal	 conditions	 with	 glucose	 as	 the	 sole	 carbon	 source	

following	 previous	 experimental	 studies	 12,27.	 12The	 lower	 bound	 on	 the	 exchange	

flux	 of	 glucose	was	 set	 to	−10SSTU
V,W

	and	 that	 for	 the	 rest	 of	 the	 compounds	 in	 the	

medium	was	set	to	−1000 SSTU
V,W.X

	28.	The	lower	bound	for	the	rest	of	exchange	fluxes	

as	well	 as	 that	 for	 irreversible	 reactions	was	 set	 to	 zero.	 The	upper	bound	 for	 all	

reactions	 was	 set	 to	1000 SSTU
V,W.X

,	 unless	 otherwise	 specified.	 The	 flux	 of	 ATP	

maintenance	reactions	was	also	set	to	8.39 SSTU
VZï.X

.		

3.1.	Identifying	the	maximum	production	levels	of	amino	acids	

We	solved	an	FBA	problem	maximizing	the	exchange	flux	of	each	amino	acid,	one	at	

a	time,	in	order	to	identify	the	maximum	possible	amino	acid	production	levels	by	a	

wild-type	 strain	 under	 the	 uptake	 and	 aeration	 conditions	mentioned	 above.	 The	

results	 of	 this	 analysis	 are	 summarized	 in	 Supplementary	 Figure	 15.	 One	 can	

observe	 that	 except	 for	 ala	 (alanine),	 the	maximal	 production	 level	 of	 the	 rest	 of	

amino	 acids	 is	 less	 than	 or	 equal	 to	10 SSTU
V,W.X

.	 Therefore,	 we	 decided	 to	 use	 a	

universal	maximal	production	level	of	10 SSTU
V,W.X

	for	all	amino	acids.	For	the	purpose	

of	 standardizing	 the	 presented	 results	 across	 different	 amino	 acids,	 the	 leakiness	

levels	were	expressed	as	a	certain	percentage	of	this	maximum.		



	

3.2.	Construction	of	the	in	silico	strains	

Auxotrophy	for	one	or	more	amino	acids	is	imposed	by	setting	the	lower	and	upper	

bounds	 for	 reactions	 corresponding	 to	 the	 genes	 responsible	 for	 the	 synthesis	 of	

those	amino	acid	to	zero.	A	list	of	genes	coding	for	the	synthesis	of	all	amino	acids	

and	their	corresponding	reactions	in	the	model	are	given	in	Supplementary	Data	2.	

We	considered	only	gene	mutations	that	lead	to	the	auxotrophy	only	for	one	amino	

acid	 in	 01	 and	 10	 genotypes	 and	 to	 auxotrophy	 for	 both	 amino	 acids	 in	 00	 a	

genotype	 according	 to	 the	 metabolic	 model.	 Note	 that	 while	 the	 composition	 of	

biomass	 in	 metabolic	 network	 models	 is	 constant	 (and	 captured	 by	 biomass	

reaction)	 across	 all	 mutants	 arising	 from	 the	 same	 wild-type	 strain,	 it	 is	 quite	

possible	 for	 the	 mutant	 strains	 to	 have	 a	 biomass	 composition	 slightly	 different	

from	that	of	the	wild-type.	Future	studies	may	take	into	account	this	consideration	

to	 provide	 a	 more	 realistic	 representation	 of	 these	 mutant	 strains.	 Amino	 acid	

leakiness	 was	 imposed	 in	 the	 model	 by	 setting	 the	 lower	 bounds	 of	 the	

corresponding	exchange	reactions	to	a	certain	percentage	of	the	maximum	value	of	

10 SSTU
V,W.X

.	it	should	be	noted	that	the	impact	of	leaking	an	amino	acid	at	a	particular	

leakiness	level	on	the	fitness	(growth)	of	that	genotype	depends	not	only	on	the	cost	

of	synthesizing	that	amino	acid	but	also	on	its	transport	cost,	in	case	the	transport	of	

this	amino	acid	is	metabolically	or	energetically	costly	(all	these	costs	are	captured	

by	the	metabolic	network	model).	

3.3.	 Determining	 the	 net	 export	 and	 uptake	 level	 of	 each	 amino	 acid	 by	 each	

community	member	

Here,	we	assume	that	 the	 leakiness	 level	of	each	amino	acid	 is	 the	same	across	all	

genotypes	in	the	community	that	are	leaky	for	that	amino	acid	given	that	all	mutant	

genotypes	 arise	 from	 a	wild-type	 genotype.	 For	 example,	 if	 the	 leakiness	 level	 of	

amino	acid	AA	is	25%,	all	genotypes	that	are	not	auxotroph	for	this	AA	will	secrete	

0.25×10 SSTU
V,W.X

	of	AA.	Now,	let	"	be	the	leakiness	level	(in	percent)	of	a	given	amino	

acid	 AA	 (corresponding	 to	 a	 production	 level	 of	
A
'ss

×10 SSTU
V,W.X

),	ó	be	 the	 total	

number	of	genotypes	in	a	given	encounter	(e.g.,	ó = 2	for	pairwise	interacitons	and	



	

ó = 3	for	 the	 encounter	 of	 three	 genotypes),	 and	óMM	denote	 the	 total	 number	 of	

genotypes	 in	 the	 game	 secreting	 amino	 acid	 AA.	 Then,	 the	 net	 uptake	 rate	 of	 an	

amino	acid	AA	for	a	genotype	auxotroph	for	AA	is	determined	as	follows:	

YòR\,åA\[ôR =
óMM

10"
100

ó − 1 	
(S11)	

Similarly,	 the	 net	 secretion	 (export)	 level	 of	 amino	 acid	 AA	 by	 a	 genotype	 in	 the	

game	that	is	leaky	for	this	amino	acid	is	determined	as	follows:	

YòR\,R`ATu\ =
10"
100 −

óMM − 1
10"
100

ó − 1 	
(S12)	

	

Note	 that	 if	 the	 net	 export	 turns	 out	 to	 be	 negative,	 it	 implies	 uptake.	 This	 may	

happen	for	three	or	more	leaky	traits.		

	

The	main	assumption	underlying	these	relations	is	that	a	genotype	that	is	leaky	for	

an	amino	acid	does	not	have	access	to	part	of	the	amino	acid	that	is	secreted	out	but	

it	can	access	those	secreted	by	other	genotypes	in	the	community.	This	assumption	

is	to	impose	the	notion	that	the	private	benefit	is	the	portion	of	the	amino	acid	that	

is	retained	by	producing	cells	and	the	rest	will	serve	as	the	public	good.	In	addition,	

we	 assume,	 for	 simplicity,	 that	 any	 secreted	 amino	 acid	 by	 a	 given	 genotype	 is	

equally	 shared	 among	 all	 other	 the	 genotypes	 involved	 in	 the	 game	 (community).	

This	is	a	reasonable	assumption	in	a	homogeneous	environment,	which	is	the	focus	

of	 this	 study.	 Note	 that	 these	 assumptions	 do	 not	 affect	 the	 generality	 of	 our	

framework	 and	 can	 be	 easily	 relaxed,	 if	 needed.	 Some	 examples	 of	 how	 these	

relations	work	are	given	in	the	following,	where	1	and	0	represent	cases	in	which	a	

genotype	is	leaky	or	auxotroph	for	a	given	amino	acid,	respectively.		

	

Examples:	

(i)	Pairwise	interactions	and	one	leaky	trait	(amino	acid	AA):		

1	vs.	1:				ó = 2,			óMM = 2,			YòR\,R`ATu\' = 'sA
'ss

−
+ö' õúù

õúú
+ö'

= 0	



	

This	implies	that	the	same	amount	that	is	exported	by	genotype	1	is	taken	up	from	

its	partner	genotype	1.	

	

(ii)	Pairwise	interactions	and	two	leaky	traits	(with	amino	acid	AA	being	the	second	

trait):	

11	vs.	11:		ó = 2,			óMM = 2,			YòR\,R`ATu\'' = 'sA
'ss

−
+ö' õúù

õúú
+ö'

= 0	

	

11	vs.	10	(with	amino	acid	AA	being	the	second	trait):	

ó = 2,		óMM = 1,		YòR\,R`ATu\'' = 'sA
'ss

−
'ö' õúù

õúú
+ö'

= 'sA
'ss
,			YòR\,åA\[ôR's =

' õúù
õúú
+ö'

= 'sA
'ss
	

	

11	vs.	11	vs.	10	(with	amino	acid	AA	being	the	second	trait):	

ó = 3,		óMM = 2,		YòR\,R`ATu\'' = 'sA
'ss

−
+ö' õúù

õúú
ûö'

= 0.5 'sA
'ss
,			YòR\,åA\[ôR's =

+ õúù
õúú
ûö'

= 'sA
'ss
	

The	 implies	 that	 the	net	export	of	AA	by	11	genotypes	 is	only	0.5 'sA
'ss
	because	 they	

secrete	1 'sA
'ss
	but	can	take	up	0.5 'sA

'ss
	from	another	11.	Furthermore	the	net	uptake	of	

AA	by	10	genotype	is	
'sA
'ss
	composed	of	 two	0.5 'sA

'ss
,	each	secreted	by	one	of	 the	two	

11	genotypes.	

3.4.	Formulation	of	the	FBA	problems	to	quantify	the	payoffs	

One	FBA	problem	is	solved	for	each	distinct	genotype	in	a	pairwise	or	higher-order	

interaction.	 For	 example,	 if	 computing	 the	 payoffs	 for	 the	 encounter	 of	 three	

genotypes	11,	11	and	10,	one	needs	to	solve	only	one	FBA	problem	for	11	genotypes	

and	one	for	the	10	genotype.	The	list	of	exchanged	amino	acids	and	their	leakiness	

levels	are	provided	as	inputs.	The	general	form	of	the	FBA	problem	that	is	solved	for	

a	given	genotype	ü	in	the	game	(community)	is	as	follows:	

maximize	YnoTS[]]ô 	 	

subject	to	 	

LoÅô YÅô

Å∈Ç†
= 0,																		∀Ñ ∈ Öô,	 	



	

89Åô ≤ YÅô ≤ á9Å,ô 									∀à ∈ âô,	 	

Yäã_VUt_R ≥ −10,	 (S13)	

YÅ∗
ô = 0,																														∀à∗ ∈ ¢£ô 	 (S14)	

Yäã_o_Rô ≥ YòR\,R`ATu\,oô ,											∀Ñ ∈ ÖUR[ô§,ô 	 (S15)	

Yäã_o_Rô ≥ −YòR\,åA\[ôR,oô ,							∀Ñ ∈ {Ñ|Ñ ∉ ÖUR[ô§,ô	&	Ñ ∈ ÖUR[ô§,ô®, ∀üB ≠ ü},		 (S16)	

YMNDç = 8.39.	 (S17)	

	

where,	 all	 parameters	 and	 variables	 defined	 for	 an	 FBA	 problem	 in	 Section	 3	 are	

extended	 here	 by	 addition	 of	 a	 superscript	ü	denoting	 that	 they	 belong	 to	 the	

community	 member	 ü .	 Here,	 ¢£ô 	and	 ÖUR[ô§,ô 	denote	 the	 set	 of	 reactions	

corresponding	 to	 the	 knocked	 out	 genes	 and	 the	 set	 of	 leaky	 metabolites	 for	

genotype	ü,	 respectively.	 Constraint	 (S14)	 sets	 to	 zero	 the	 flux	 of	 reactions	

corresponding	to	the	specific	gene	mutations	in	the	genotype	under	consideration.	

Constraints	(S15)	and	(S16)	impose	the	bounds	on	the	export	rate	of	metabolites	for	

which	 genotype	ü	is	 leaky	 and	 on	 the	 uptake	 rate	 of	 metabolites	 for	 which	 it	 is	

auxotroph,	 where	 	YòR\,R`ATu\,oô 	and	YòR\,åA\[ôR,oô 	are	 obtained	 from	 Equations	 (S11)	

and	(S12),	respectively.	Constraint	(S17)	sets	the	flux	of	maintenance	ATP	reaction	

in	 the	 model	 to	 8.39	
SSTU
V,W.X

	following	 previous	 studies	 28.	 The	 general	 FBA	

formulation	 can	 be	 customized	 for	 any	 desired	 genotypes	 by	 adjusting	¢£ô 	and	

ÖUR[ô§,ô .	 If	 the	 FBA	 problem	 is	 solved	 to	 optimality,	 the	 obtained	 biomass	 flux	 is	

assigned	as	the	payoff	of	the	corresponding	genotype.	Otherwise,	the	payoff	is	set	to	

jK%mℎ_f%mK	(a	negative	value),	which	is	computed	beforehand	the	same	way	it	was	

described	in	section	2	of	Supplementary	Methods.	

	

	

	

	

	



	

Supplementary	References	
1	 Zhuang,	K.	et	al.	Genome-scale	dynamic	modeling	of	the	competition	between	

Rhodoferax	and	Geobacter	in	anoxic	subsurface	environments.	ISME	J	5,	305-
316,	doi:10.1038/ismej.2010.117	(2011).	

2	 Zomorrodi,	 A.	 R.	 &	 Segrè,	 D.	 Synthetic	 Ecology	 of	 Microbes:	 Mathematical	

Models	and	Applications.	J	Mol	Biol,	doi:10.1016/j.jmb.2015.10.019	(2015).	
3	 Biggs,	 M.	 B.,	 Medlock,	 G.	 L.,	 Kolling,	 G.	 L.	 &	 Papin,	 J.	 A.	 Metabolic	 network	

modeling	 of	microbial	 communities.	Wiley	Interdisciplinary	Reviews-Systems	
Biology	and	Medicine	7,	317-334,	doi:10.1002/wsbm.1308	(2015).	

4	 Nowak,	M.	A.	Evolutionary	dynamics	:	exploring	the	equations	of	life.		(Belknap	
Press	of	Harvard	University	Press,	2006).	

5	 Sanchez,	 A.	 &	 Gore,	 J.	 feedback	 between	 population	 and	 evolutionary	

dynamics	determines	 the	 fate	of	 social	microbial	populations.	PLoS	Biol	11,	
e1001547,	doi:10.1371/journal.pbio.1001547	(2013).	

6	 Elena,	S.	F.	&	Lenski,	R.	E.	Evolution	experiments	with	microorganisms:	 the	

dynamics	 and	 genetic	 bases	 of	 adaptation.	 Nat	 Rev	 Genet	 4,	 457-469,	
doi:10.1038/nrg1088	(2003).	

7	 Post,	D.	M.	&	Palkovacs,	E.	P.	Eco-evolutionary	feedbacks	 in	community	and	

ecosystem	 ecology:	 interactions	 between	 the	 ecological	 theatre	 and	 the	

evolutionary	 play.	 Philos	 Trans	 R	 Soc	 Lond	 B	 Biol	 Sci	 364,	 1629-1640,	
doi:10.1098/rstb.2009.0012	(2009).	

8	 Rauch,	J.,	Kondev,	J.	&	Sanchez,	A.	Cooperators	trade	off	ecological	resilience	

and	 evolutionary	 stability	 in	 public	 goods	 games.	 J	 R	 Soc	 Interface	 14,	
doi:10.1098/rsif.2016.0967	(2017).	

9	 Trinh,	 C.	 T.,	 Wlaschin,	 A.	 &	 Srienc,	 F.	 Elementary	 mode	 analysis:	 a	 useful	

metabolic	pathway	analysis	tool	for	characterizing	cellular	metabolism.	Appl	
Microbiol	Biotechnol	81,	813-826,	doi:10.1007/s00253-008-1770-1	(2009).	

10	 Schuster,	 S.,	 de	 Figueiredo,	 L.	 F.,	 Schroeter,	 A.	 &	 Kaleta,	 C.	 Combining	

metabolic	pathway	analysis	with	Evolutionary	Game	Theory:	explaining	the	

occurrence	 of	 low-yield	 pathways	 by	 an	 analytic	 optimization	 approach.	

Biosystems	105,	147-153,	doi:10.1016/j.biosystems.2011.05.007	(2011).	
11	 Becker,	 S.	 A.	 et	 al.	 Quantitative	 prediction	 of	 cellular	 metabolism	 with	

constraint-based	 models:	 the	 COBRA	 Toolbox.	 Nat	 Protoc	 2,	 727-738,	
doi:10.1038/nprot.2007.99	(2007).	

12	 Wintermute,	 E.	 H.	 &	 Silver,	 P.	 A.	 Emergent	 cooperation	 in	 microbial	

metabolism.	Mol	Syst	Biol	6,	407,	doi:10.1038/msb.2010.66	(2010).	
13	 Mee,	M.	T.,	Collins,	 J.	 J.,	Church,	G.	M.	&	Wang,	H.	H.	Syntrophic	exchange	 in	

synthetic	microbial	communities.	Proc	Natl	Acad	Sci	U	S	A	111,	E2149-2156,	
doi:10.1073/pnas.1405641111	(2014).	

14	 Shou,	 W.,	 Ram,	 S.	 &	 Vilar,	 J.	 M.	 Synthetic	 cooperation	 in	 engineered	 yeast	

populations.	 Proc	 Natl	 Acad	 Sci	 U	 S	 A	 104,	 1877-1882,	

doi:10.1073/pnas.0610575104	(2007).	

15	 Harcombe,	W.	 Novel	 cooperation	 experimentally	 evolved	 between	 species.	

Evolution	64,	2166-2172,	doi:10.1111/j.1558-5646.2010.00959.x	(2010).	



	

16	 Hoek,	 T.	 A.	 et	 al.	 Resource	 Availability	 Modulates	 the	 Cooperative	 and	
Competitive	 Nature	 of	 a	 Microbial	 Cross-Feeding	 Mutualism.	 PLoS	Biol	 14,	
e1002540,	doi:10.1371/journal.pbio.1002540	(2016).	

17	 Pande,	S.	et	al.	Fitness	and	stability	of	obligate	cross-feeding	interactions	that	
emerge	 upon	 gene	 loss	 in	 bacteria.	 ISME	 J	 8,	 953-962,	

doi:10.1038/ismej.2013.211	(2014).	

18	 Gore,	 J.,	 Youk,	 H.	 &	 van	 Oudenaarden,	 A.	 Snowdrift	 game	 dynamics	 and	

facultative	cheating	in	yeast.	Nature	459,	253-256,	doi:10.1038/nature07921	
(2009).	

19	 Zomorrodi,	 A.	 R.	 &	 Maranas,	 C.	 D.	 Improving	 the	 iMM904	 S.	 cerevisiae	

metabolic	model	using	essentiality	and	synthetic	lethality	data.	BMC	Syst	Biol	
4,	178,	doi:10.1186/1752-0509-4-178	(2010).	

20	 Mo,	 M.	 L.,	 Palsson,	 B.	 O.	 &	 Herrgård,	 M.	 J.	 Connecting	 extracellular	

metabolomic	measurements	to	intracellular	flux	states	in	yeast.	BMC	Syst	Biol	
3,	37,	doi:10.1186/1752-0509-3-37	(2009).	

21	 Chowdhury,	R.,	Chowdhury,	A.	&	Maranas,	C.	D.	Using	Gene	Essentiality	and	

Synthetic	Lethality	Information	to	Correct	Yeast	and	CHO	Cell	Genome-Scale	

Models.	Metabolites	5,	536-570,	doi:10.3390/metabo5040536	(2015).	
22	 D'Souza,	G.	et	al.	Less	is	more:	selective	advantages	can	explain	the	prevalent	

loss	 of	 biosynthetic	 genes	 in	 bacteria.	 Evolution	 68,	 2559-2570,	
doi:10.1111/evo.12468	(2014).	

23	 Gilboa,	 I.	 &	 Zemel,	 E.	 Nash	 and	 correlated	 equilibria:	 some	 complexity	

considerations.	Games	and	Economic	Behavior	1,	80-93	(1989).	
24	 Daskalakis,	 C.,	 Goldberg,	 P.	 W.	 &	 Papadimitriou,	 C.	 H.	 The	 Complexity	 of	

Computing	 a	 Nash	 Equilibrium.	 Communications	 of	 the	 Acm	 52,	 89-97,	
doi:10.1145/1461928.1461951	(2009).	

25	 Wu,	Z.	T.,	Dang,	C.	Y.,	Karimi,	H.	R.,	 Zhu,	C.	A.	&	Gao,	Q.	A	Mixed	0-1	Linear	

Programming	 Approach	 to	 the	 Computation	 of	 All	 Pure-Strategy	 Nash	

Equilibria	of	a	Finite	n-Person	Game	in	Normal	Form.	Mathematical	Problems	
in	Engineering,	doi:10.1155/2014/640960	(2014).	

26	 Orth,	J.	D.	et	al.	A	comprehensive	genome-scale	reconstruction	of	Escherichia	
coli	 metabolism--2011.	 Mol	 Syst	 Biol	 7,	 535,	 doi:10.1038/msb.2011.65	
(2011).	

27	 Zomorrodi,	 A.	 R.,	 Islam,	M.	M.	 &	Maranas,	 C.	 D.	 d-OptCom:	 Dynamic	multi-

level	and	multi-objective	metabolic	modeling	of	microbial	communities.	ACS	
Synth	Biol	3,	247-257,	doi:10.1021/sb4001307	(2014).	

28	 Feist,	 A.	 M.	 et	al.	 A	 genome-scale	 metabolic	 reconstruction	 for	 Escherichia	
coli	 K-12	 MG1655	 that	 accounts	 for	 1260	 ORFs	 and	 thermodynamic	

information.	Mol	Syst	Biol	3,	121,	doi:10.1038/msb4100155	(2007).	
	

	


