Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome

Maria-Soledad Benitez^{*}, Shannon L. Osborne, R. Michael Lehman

USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD 57006

Supplementary Information

Supplementary Table 1. Primer sets and associated sequences used for MiSeq library preparation in this study.

16S for MiSeq sequencing										
Primer name	Overhang (for Nextera kit indexing)	Gene-specific primer	References							
515f modified	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	GTGYCAGCMGCCGCGGTAA								
806r			Walters et al 2015							
modified	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG	GGACTACNVGGGTWTCTAAT								
ITS2 for MiSeq sequencing										
Primer name	Overhang (for Nextera kit indexing)	Gene-specific primer								
ITS3mix1	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	CATCGATGAAGAACGCAG								
ITS3mix2	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	CAACGATGAAGAACGCAG								
ITS3mix3	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	CACCGATGAAGAACGCAG								
ITS3mix4	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	CATCGATGAAGAACGTAG	Tedersoo et al 2014							
ITS3mix5	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	CATCGATGAAGAACGTGG								
ITS3mix10	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	CATCGATGAAGAACGCTG								
ITS4ngs	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG	TCCTSCGCTTATTGATATGC								

References

Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

Walters, W. *et al.* Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. *mSystems* **1** (2015).

Supplementary Table 2. Nutrient content ^a (mg/g for macronutrients and μ g/g for micronutrients) in dried shoot tissue of maize seedlings grown in soils preceded by four different four-year rotation sequences under infestation with western corn rootworm or *Fusarium graminearum*

Soil provenance	Infestation	С	arbon		Ni	trogen		Phe	osphor	us	Pe	otassium			Sulfur			Calciu	im	Ма	gnesiu	m		Zinc		Ma	nganese			Boron		C	Copper		ŀ	/on
Western corn	oot worm																																			
Maize	No	399.13	±5.33	в	12.54	±0.83	А	4.43	±0.31		49.60	±4.10	A	2.07	±0.12	Α	3.82	2 ±0.30	aA	2.80	±0.19	А	18.13	±1.92		66.06	±4.34	аA	26.04	±4.28	Α	2.45	±1.53		60.58	±20.63
Pea	No	401.19	±9.83		12.29	±0.36	А	4.27	±0.48	A	48.03	±3.68	Α	2.13	±0.22		3.57	±0.47	abA	2.65	±0.14	А	16.55	±2.63		63.45	±14.28	aА	23.23	±4.69	Α	2.02	±0.87		70.34	±49.54
Soybean	No	403.27	±5.96	в	12.22	±0.82	А	4.17	±0.40	Α	49.38	±2.28	А	2.00	±0.14		3.25	5 ±0.24	b	2.78	±0.13	А	18.46	±4.4		47.61	±6.79	bA	21.24	±2.2	Α	1.53	±1.01		74.89	±75.58
Sunflower	No	402.32	±6.01		12.03	±0.4	А	4.30	±0.31		49.02	±3.04		1.93	±0.15		3.77	±0.25	аA	2.73	±0.22	А	19.84	±6.32		66.04	±6.02	аA	23.87	±3.68	А	2.13	±1.07	в	74.66	±75.34
Maize	Yes	405.47	±6.44	А	10.75	±0.32	в	4.22	±0.33	а	44.33	±3.77	в	1.95	5 ±0.14	в	3.22	2 ±0.35	abB	2.37	±0.19	в	20.63	±4.80		49.80	±4.28	bB	16.69	±1.13	abB	2.70	±1.51		50.69	±21.72
Pea	Yes	410.13	±3.36		10.74	±0.44	в	3.77	±0.21	bB	44.08	±1.80	в	1.95	±0.15		3.03	3 ±0.23	bcB	2.27	±0.14	В	15.19	±3.25		42.00	±2.72	cB	15.98	±1.82	bcB	3.04	±2.98		40.39	±15.86
Soybean	Yes	411.50	±7.48	А	11.31	±0.62	в	3.57	±0.65	bB	43.53	±3.62	в	1.92	±0.20		2.80	±0.49	с	2.22	±0.23	в	16.50	±2.35		36.89	±7.05	cB	14.87	±2.27	cB	4.31	±8.16		58.86	±20.99
Sunflower	Yes	402.98	±5.63		10.80	±0.52	в	4.15	±0.25	а	46.07	±3.14		1.83	±0.29		3.38	3 ±0.24	aB	2.42	±0.13	в	17.73	±3.52		56.94	±3.34	aB	18.93	±3.26	aB	2.80	±0.66	Α	51.60	±22.74
	Soil Effect							*									**									***			**			*				
	Inoculation Effect	**			***						***			••												***										
F. graminearu	n																																			
Maize	No	409.29	±2.39	bc	13.11	±0.67	в	4.85	±0.3	а	51.65	±1.76	ab	3.02	±0.15		4.57	±0.29		2.85	±0.14		16.91	±0.82	bB	102.14	±14.33	b	47.95	±12.06		3.40	±0.88		58.66	±8.34
Pea	No	412.16	±1.72	аA	13.71	±0.72	В	4.43	±0.31	bB	47.28	±4.37	cB	2.88	±0.44	В	4.43	±0.58		2.65	±0.34		20.55	±3.37	а	94.19	±12.32	b	38.87	±3.49		2.93	±1.12		56.23	±14.72
Soybean	No	407.36	±2.15	cB	13.35	±0.89	В	4.88	±0.58	а	52.38	±5.32	а	2.93	±0.43		4.48	±0.58		2.70	±0.31		18.14	±0.67	aB	97.15	±12.39	b	45.78	±8.37		2.64	±1.64		54.42	±13.55
Sunflower	No	410.42	±1.63	ab	13.42	±0.67	в	4.92	±0.29	aB	50.67	±1.87	bc	2.93	±0.33		4.65	±0.42		2.83	±0.24		17.91	±1.29	abB	130.63	±10.25	а	41.04	±5.84		2.72	±0.76		56.01	±10.34
Maize	Yes	408.60	±4.07	-	15.13	±0.55	А	4.58	±1.24		47.03	±11.46		3.02	±0.88		4.25	±1.06		2.57	±0.63	-	18.38	±4.8	А	91.74	±28.4	b	43.08	±13.57	b	2.49	±0.87	\square	52.79	±21.69
Pea	Yes	408.89	±1.01	в	15.08	±0.75	А	5.38	±0.31	А	54.57	±2.46	А	3.50	±0.13	A	4.73	±0.26		2.83	±0.1		21.26	±5.26		95.57	±7.6	b	39.27	±4.89	b	3.56	±1.00		62.07	±28.04
Soybean	Yes	409.23	±1.17	А	15.16	±0.29	А	5.08	±0.66		51.27	±6.48		3.18	±0.50		4.42	±0.51		2.70	±0.36		20.65	±1.00	А	88.87	±9.65	b	50.61	±6.21	а	2.81	±0.56		73.63	±41.85
Sunflower	Yes	407.63	±4.17		14.92	±0.52	А	5.37	±0.66	А	51.20	±4.5		3.17	±0.47		4.70	±0.51		2.75	±0.26		19.54	±1.25	А	138.47	±27.45	а	42.72	±6.41	b	3.04	±0.90		53.16	±4.35
	Soil Effect																						•			***			**							
	Inoculation Effect				***			***						**									•••													

^a Value represents mean of n=8 pots per soil origin and infestation treatment combination, ± standard deviation. Means followed by different letter are significantly different at *p*< 0.1 after Kruskal-Wallis test. Comparisons between rotation sequences, within infestation level are shown by lower case letters. Comparisons between infested and non-infested counterparts of the same rotation sequence are shown in upper case letters. Absence of letters mean no significance was detected. Significant responses to soil provenance (soil effect) and infestation are shown at <0.1 (*), <0.05(**) and <0.001(***).

Supplementary	Table 3a.	Illumina MiSeo	sequencing	summary	results for 1	6S and ITS2	amplicon libraries
---------------	-----------	----------------	------------	---------	---------------	-------------	--------------------

Marker	Sequences per marker	Paired-reads	Sequences used for OTU calling ^a	OTUs⁵	Treatments only sequences ^c	Treatments only OTUs ^c
16S	19,148,934	6,598,118	6,023,754	9,015	4,224,557	7,141
ITS2	13,282,922	2,821,329	1,541,454	1,505	839,315	1,023

^a PF reads (passed filtered reads)

^b paired-end sequences >200 nucleotides, quality trimmed, following usearch 8 pipeline and chimera checking

^c bacterial or fungal (and oomycete) origin only

Supplementary Table 3b. Summary of number of OTUs and sequences obtained for each gene region and experiment before and after low abundance filtering

	All O	ΓUs	Filtering of low abundance OTUs										
	Samples OTUs		OTUs	Sequences	Range	Median	Mean						
16S													
WCR	64	6,323	3,365	954,110	8,993-22,643	14,768	14908						
Fusarium	64	6,676	4,079	1,547,068	6,256-76,631	2,2694	24173						
ITS2													
WCR	64	622	218	66,586	147-4,323	696	1040						
Fusarium	62	888	508	435,661	744-19,118	7063	7027						

Supplementary Table 4. Relative abundance ^a of *Fusarium graminearum* OTU (Fg_OTU4) recovered through Illumina MiSeq sequencing of ITS2 amplicon libraries, from maize seedling rhizospheres growing in soils preceded by four different four-year rotation sequences with and without infestation

		Non-	infested			Infe		Effects		
	Maize	Pea	Soybean	Sunflower	Maize	Pea	Soybean	Sunflower	Soil origin	Infestation
Fg_OTU4	2.58 B	2.45 B	4.33 B	3.86 B	11.82 A	12.18 A	12.15 A	12.04 A		***

^a Values represents mean normalized abundance of ITS2 OTU4 recovered from n=8 maize roots (and associated soil). Samples were individually processed for ITS2 amplicon sequencing. Means followed by different letter are significantly different at p < 0.1 after Kruskal-Wallis test. Comparisons between rotation sequences, within infestation level are shown by lower case letters. Comparisons between infested and non-infested counterparts of the same rotation treatment are shown in upper case letters. Absence of letters mean no significance was detected. Significant effects of soil provenance or infestation are shown as * p < 0.1, ** p < 0.05, *** p < 0.001

Supplementary Tables 5 and 6. Relative abundance of bacterial amplicons recovered from maize rhizosphere of seedlings growing in soils preceded by four different four-year rotation sequences and exposed to western corn root worm or *Fusarium graminearum* infestation. Suppl. Table 5 summarizes all bacterial phyla recovered and Suppl Table 6 bacteria at different taxonomic rank showing consistent responses to soil provenance across experiments. *See Excel file.*

Supplementary Table 7. Relative sequence abundance of bacterial and fungal taxa recovered from maize rhizosphere of seedlings growing in soils preceded by four different four-year rotation sequences which respond to western corn root worm infestation. Differential abundance was tested with data aggregated at different levels of the taxonomic hierarchy. Taxa are arranged from highest to lowest taxonomic rank when differences were observed at different levels. *See Excel file.*

Supplementary Table 8. Relative sequence abundance of bacterial and fungal taxa recovered from maize rhizosphere of seedlings growing in soils preceded by four different four-year rotation sequences which respond to infestation with *Fusarium graminearum*. Differential abundance was tested with data aggregated at different levels of the taxonomic hierarchy. Taxa are arranged from highest to lowest taxonomic rank when differences were observed at different levels. *See Excel file*.

Supplementary Table 9. Relative sequence abundance of fungal taxa recovered from maize rhizosphere of seedlings growing in soils preceded by four different four-year rotation sequences and exposed to western corn root worm or *Fusarium graminearum* infestation. Differential abundance was tested with data aggregated at different levels of the taxonomic hierarchy. Suppl. Table 9 summarizes all fungal phyla recovered as well as fungal taxa at different taxonomic rank showing consistent responses to soil provenance across experiments. *See Excel file*.

Supplementary Figure 1. Percent contribution of root length for different root diameter size classes (mm). Maize seedlings were grown in soils from four different four-year rotation sequences under infestation with *Fusarium graminearum* and roots were scanned and analyzed using WinRhizo software. Cumulative percent for each diameter class size is shown per soil provenance and infestation combination.

16S Non-infested Infested

100 -

75

Soil provenance: Pea

Family Acetoba eraceae teraceae Micrococcaceae Acidimicrobiaceae Cytophagaceae Micromonosporaceae Moraxellaceae Alcaligenaceae Deinococcaceae Alicyclobacillaceae Interobacteriaceae Motilibacter Alsobacter Erythrobacteraceae Mycobacteriaceae Armatimonadaceae Fimbriimonadaceae lakamurellaceae Bacteriovoracaceae lavobacteriaceae annocystaceae Bdellovibrionaceae Gaiellaceae Vitrososphaera Bradyrhizobiaceae Geminicoccus Nitrospiraceae Brucellaceae Gemmatimonadacea locardiaceae Burkholderiaceae Geobacteraceae Nocardioidaceae Catenulisporaceae Geodermatophilacea Oligoflexaceae Caulobacteraceae Opitutaceae Hyphomicrobiaceae Chitinophagaceae ntrasporangiaceae Oxalobacteraceae Chthonomonadacea egionellaceae Paenibacillaceae_1 Clostridiaceae_1 eptospiraceae haselicystidaceae Comamonadaceae Methylobacteriaceae Phyllobacteriaceae Coxiellaceae lethylophilaceae Planctomycetaceae Propionibacteriaceae Cryomorphaceae Vicrobacteriaceae

Pseudomonadaceae Pseudonocardiaceae Rhizobiaceae Rhodobacteraceae Rhodocyclaceae Rhodospirillaceae Sinobacteraceae Solirubrobacteraceae Sphingobacteriaceae Sphingomonadaceae Sporichthyaceae Streptomycetaceae Streptosporangiaceae Veillonellaceae Verrucomicrobiaceae Xanthobacteraceae Xanthomonadaceae

Soil provenance: Sunflower

Supplementary Figure 2. Relative abundance of bacterial (16S) sequences from individual studied samples, aggregated at the family level. Sequences were recovered from the rhizosphere of maize seedlings grown in soils from four different fouryear rotation sequences under infestation with western corn rootworm.

Family Acetobacteraceae Coxiellaceae Microbacteriaceae Acidimicrobiaceae Cryomorphaceae Micrococcaceae Actinospicaceae Cystobacteraceae Micromonosporaceae Alcaligenaceae Moraxellaceae Cytophagaceae Alicyclobacillaceae Deinococcaceae Motilibacter Alsobacter Enterobacteriaceae Mycobacteriacea Armatimonadaceae Erythrobacteraceae Nakamurellaceae Bacillaceae_1 Fimbriimonadaceae Nannocystaceae Bacteriovoracaceae Flavobacteriaceae Nitrososphaera Bdellovibrionaceae Gaiellaceae Nitrospiraceae Bradyrhizobiaceae Geminicoccus Nocardiaceae Brucellaceae Nocardioidaceae Gemmatimonadac Burkholderiaceae Geobacteraceae Oligoflexaceae Catenulisporaceae eodermatophila Opitutaceae Caulobacteraceae Hyphomicrobiaceae Oxalobacteraceae Paenibacillaceae_1 Chitinophagaceae ntrasporangiaceae Phaselicystidaceae Chthonomonadaceae Legionellaceae Methylobacteriacea Clostridiaceae_1 Phyllobacteriaceae Planctomycetaceae Comamonadaceae Methylophilaceae

Propionibacteriaceae Pseudomonadaceae Pseudonocardiaceae Rhizobiaceae Rhodobacteraceae Rhodocyclaceae Rhodospirillaceae Sinobacteraceae Solirubrobacteraceae Sphingobacteriaceae Sphingomonadaceae Sporichthyaceae Streptomycetaceae Streptosporangiaceae Thermoactinomycetaceae_1 Verrucomicrobiaceae Xanthobacteraceae Xanthomonadaceae

Soil provenance: Sunflower

Supplementary Figure 3. Relative abundance of bacterial (16S) sequences from individual studied samples, aggregated at the family level. Sequences were recovered from the rhizosphere of maize seedlings grown in soils from four different fouryear rotation sequences under infestation with *F. graminearum*.

Samples

Soil provenance: Sunflower

Samples

Soil provenance: Pea

Supplementary Figure 4. Relative

abundance of fungal (ITS2) sequences from individual studied samples, aggregated at the family level. Sequences were recovered from the rhizosphere of maize seedlings grown in soils from four different four-year rotation sequences under infestation with western corn rootworm.

Soil provenance: Maize

Soil provenance: Soybean

Soil provenance: Soybean

ITS2 Non-infested Infested 100normalized sequence abundance 75-50 -25 -0-FFus117 FFus164 Samples FFus125 FFus129 FFus14 FFus15 FFus151 - FFus157 FFus162 FFus126 FFus136 FFus146 FFus147 FFus145 FFus135

Soil provenance: Pea

Soil provenance: Sunflower

Fa	mily						
	Acaulosporaceae	Cucurbitariaceae	Hyaloscyphaceae	Paraglomeraceae		Sordariales_fam_Incertae_sedis	
	Agaricaceae	Cunninghamellaceae	Hypocreaceae	Pezizaceae		Spizellomycetaceae	
	Amanitaceae	Cystobasidiaceae	Hypocreales_fam_Incertae_sedis	Pezizomycotina_fam_Incertae_sedis		Sporidiobolales_fam_Incertae_sedis	
	Annulatascaceae	Cystofilobasidiaceae	Inocybaceae	Phaeosphaeriaceae		Sporormiaceae	
	Archaeosporaceae	Cystofilobasidiales_fam_Incertae_sedis	Lasiosphaeriaceae	Piskurozymaceae		Tetraplosphaeriaceae	
	Arizonaphlyctidaceae	Diversisporaceae	Leptosphaeriaceae	Plectosphaerellaceae		Tremellales_fam_Incertae_sedis	
	Ascobolaceae	Endogonaceae	Lipomycetaceae	Pleomassariaceae		Tremellomycetes_fam_Incertae_sedis	
	Bionectriaceae	Entolomataceae	Lophiostomataceae	Pleosporaceae		Trichocomaceae	
	Ceratobasidiaceae	Filobasidiaceae	Mortierellaceae	Pleosporales_fam_Incertae_sedis		Trichosphaeriales_fam_Incertae_sedis	
	Ceratocystidaceae	Gigasporaceae	Mucoraceae	Psathyrellaceae		Tubeufiaceae	
	Chaetomiaceae	Glomeraceae	Mycosphaerellaceae	Pyronemataceae		unidentified	
	Chaetosphaeriaceae	Glomerellaceae	Myxotrichaceae	Rhizophlyctidaceae		Ustilaginaceae	
	Chytridiales_fam_Incertae_sedis	Glomosporiaceae	Nectriaceae	Rhizophydiaceae		Vibrisseaceae	
	Claroideoglomeraceae	Halosphaeriaceae	Olpidiaceae	Rhizophydiales_fam_Incertae_sedis		Xylariales_fam_Incertae_sedis	
	Clavicipitaceae	Helotiaceae	Onygenaceae	Rhizopodaceae			
	Coniochaetaceae	Helotiales_fam_Incertae_sedis	Ophiocordycipitaceae	Saccharomycetales_fam_Incertae_sedis			
	Corynesporascaceae	Herpotrichiellaceae	Orbiliaceae	Sonoraphlyctidaceae			

Supplementary Figure 5. Relative abundance of fungal (ITS2) sequences from individual studied samples, aggregated at the family level. Sequences were recovered from the rhizosphere of maize seedlings grown in soils from four different four-year rotation sequences under infestation with *F. graminearum*.

4000 -

2000 -

0

Β.

Supplementary Figure 6. Relative abundance of fungal (ITS2) sequences aggregated at the phylum level. Sequences were recovered from the rhizosphere of maize seedlings grown in soils from four different four-year rotation sequences under infestation with western corn root worm (A) and infestation with *Fusarium graminearum* (B).

Supplementary Figure 7. Soil provenance and infestation effects on predicted metagenome gene content of rhizosphere-associated bacteria recovered from maize seedlings grown in soils from different four-year rotation sequences. Metagenome content prediction was performed using PICRUSt (Langille et al., 2013) after closed reference OTU clustering of 16S amplicon sequence. Ordination was performed based on non-metric multidimensional scaling (NMDS) of Bray-Curtis distance matrices for all samples.

Supplementary Methods.

Pipeline used for sequence processing, OTU calling and preparation of OTU by sample tables

#unless noted, the same pipeline was used for 16S and ITS2 sequences, replacing the first letter of the file name from b to f

#place all fastq files in one folder
cp B*/Data/Intensities/BaseCalls/*.fastq.gz ~/Documents/GH16bact_fastqfiles

#merge paired reads (after decompression of .gz files)
usearch -fastq_mergepairs *_R1_*.fastq -relabel @ -fastqout bmerged.fq

#trimming gene specific primers after merging and removal of sequences without primers
#for 16S sequences
~/.local/bin/cutadapt -g GTGYCAGCMGCCGCGGTAA -a ATTAGAWACCCBNGTAGTCC -e 0.1 --untrimmedoutput=no trim bmerged.fastg --match-read-wildcards -o bmerged trimm.fastg bmerged.fg

#for ITS2 sequences

~/.local/bin/cutadapt -g CAHCGATGAAGAACGYDG -a GCATATCAATAAGCGSAGGA -e 0.1 --untrimmedoutput=no_trim_fbmergeded.fastq --match-read-wildcards -o fbmerged_trimm.fastq no_trim_bmerged.fastq

#OTU calling pipeline usearch -fastq_filter bmerged_trimm.fastq -fastq_maxee 0.5 -fastq_minlen 200 -relabel Filt -fastaout bcfiltered.fa

usearch -derep_fullength bfiltered.fa -relabel Uniq -sizeout -fastaout bcuniques.fa

usearch -cluster_otus buniques.fa -minsize 2 -otus bcotus.fa -relabel Otu -sizeout -sizein

usearch -uchime_ref bcotus.fa -db refdb.fa -strand plus -minh 1.0 -nonchimeras bcotus_nonch.fa \ -uchimeout otus.uchime -uchimealns otus.aln

usearch -usearch_global bmerged_trimm.fastq -db bcotus_nonch.fa -strand plus -id 0.97 -otutabout botutab.txt - biomout botutab.json

usearch -makeudb_utax refdb.fa -output brefdb.udb -taxconfsin 250.tc

usearch -utax bcotus_nonch.fa -db brefdb.udb -utaxout butax.txt -strand both -rdpout butaxrdp.txt -alnout baln.txt

#for ITS2 taxonomy assignment use Qiime's assign taxonomy and full Qiime-formatted Unite database assign_taxonomy.py -i fcotus_treatments_seq.fasta –r unite_ref/sh_refs_qiime_ver7_97_s_20.11.2016.fasta -t unite_ref/sh_taxonomy_qiime_ver7_97_s_20.11.2016.txt -m blas

#manually revise file and identify non-target OTUs for filtering. Incorporate into Qiime for filtering of non-target OTUs, low abundance OTUs, splitting into individual experiments and sequence count normalization

filter_otus_from_otu_table.py -i fcotush.biom -o fungi_only_fcotu_table -e otus_to_remove.txt

filter_samples_from_otu_table.py -i fungi_only_fcotu_table -o fungi_treat_only_table --sample_id_fp control_samples.txt --negate_sample_id_fp

biom convert -i fungi_treat_only_table -o Fungi_otus_treatments_table_new.txt --to-tsv #treatment only, sequence count file for alpha diversity analysis (R, phyloseq)

split_otu_table.py -i fungi_treat_only_table -m mapping_ITS_treat.csv -f Experiment -o by_experiment

#this point forward, for each gene region files were split per experiment (WCR, Fusarium 1 and Fusarium 2)
filter_otus_from_otu_table.py -i fungi_treat_only_table__Experiment_FUS1_0116.biom -n 10 -s 5 -o
fcotus_filt_Jan2017_Fus1

filter_samples_from_otu_table.py -i fcotus_filt_Jan2017_Fus1 -n 5 -o fcotus_filt_Jan2017_Fus1ed

normalize_table.py -i fcotus_filt_Jan2017_Fus1ed -o Fus1_F_filt_norm -a CSS -s --output_CSS_statistics

biom convert -i Fus1_F_filt_norm -o F1_F_filt_CSSnew.txt --to-tsv #normalized file used for beta diversity and other statistical analyses in R (phyloseq and vegan)

#for Picrust analysis: require greengenes identification, obtained through Qiime's closed reference OTU picking #perform pick closed reference otus in qiime using the defaults (as in picrust.github.io otu picking tutorial) echo "pick_otus:enable_rev_strand_match True" >> otu_picking_params_97.txt

echo "pick_otus:similarity 0.97" >> otu_picking_params_97.txt

pick_closed_reference_otus.py -i bcfiltered.fasta -p otu_picking_picking_params_97.txt -o bactc_cr_otus

manually revise file and identify non-target OTUs for filtering, filter low abundance OTUs as above filter_samples_from_otu_table.py -i otu_table.biom --sample_id_fp bcsample_list.txt -o otu_table_filtered

filter_otus_from_otu_table.py -i otu_table_filtered -o otu_table_bact_only_filt -n 10 -s 5 -e closedref_nobact_list.txt

#convert to biom json format for compatibility with picrust and to text file for comparison with results of usearch OTU picking

biom convert -i otu_table_bact_only_filt -o bact_only_table_f_json.biom --table-type "OTU table" --to-json

biom convert -i otu_table_bact_only_filt -o bact_only_table_f.txt --to-tsv --header-key taxonomy

#run Picrust, integrated into bioBakery
normalize_by_copy_number.py -i bact_only_table_json.biom -o normalized_apr06.biom

predict_metagenomes.py -i normalized_apr06.biom -o apr_metagenome_predictions.biom -a apr_nsti_per_sample.tab --with_confidence #-f option generates a text version of the file to be integrated into R (phyloseq, vegan)

categorize_by_function.py -i apr_metagenome_predictions.biom -o apr_by_function_Kegg.txt -c KEGG_Pathways -l 3

categorize_by_function.py -i apr_metagenome_predictions.biom -o apr_by_Kegg_1.txt -c KEGG_Pathways -l 1