Supplementary Note 1. Characterization of as-synthesized [Agas(SR)so]*
nanoclusters (NCs).

UV-vis absorption spectrum of the as-prepared Ag NCs shows several characteristic
absorption features of the reported [Agas(SR)30]* NCs (SR denotes thiolate ligand) at
415, 485, 535, 645, and 835 nm (Fig. 1a)*, which also suggests good yield (~90% on
Ag atom basis, determined by inductively coupled plasma optical emission
spectroscopy, ICP-OES) and high purity of the as-prepared [Agas(p-MBA)so]* in our
protocol. To further assess the purity of as-prepared [Agss(p-MBA)s]* NCs, we
analyzed our samples by polyacrylamide gel electrophoresis (PAGE) and electrospray
ionization mass spectrometry (ESI-MS). As shown in Fig. 1a (left inset), the PAGE
result shows 4 bands, where the most prominent band (Band 4) corresponds to
[Agas(p-MBA)3]*, and the other three bands (Bands 1-3) could be attributed to the
impurities generated during the running of PAGE analysis, which is consistent with a
previous report’. ESI-MS spectrum (Fig. 1b) shows two dominant peaks at m/z of
~2335 and ~2975 in a broad m/z range of 10004000, which should be assigned to
[Agas(p-MBA)3]* cluster ion and a fragment ion of [Agas(p-MBA)2s]®, respectively.
The good accuracy of our assignment can be exemplified by the perfect match of the
experimental and calculated isotope patterns of [Ags(p-MBA)s]* (Fig. 1b, left
inset). It should be noted that our PAGE results and ESI-MS spectrum are identical to

those of the reported pure [Agas(p-MBA)z]* NCs2.
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Supplementary Figure 1. Experimental (black line) and simulated (magenta line)

isotope patterns of [Ags2Au2(SR)29CI]*, where SR denotes thiolate ligand.
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Supplementary Figure 2. Time-evolution ultraviolet-visible absorption spectra of

reaction mixture from [Agas(SR)s0]* to [Ags2AussL 0] nanoclusters (L = SR or CI).
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Supplementary Figure 3. Ultraviolet-visible absorption spectrum of AgAu
nanoclusters formed by reacting [Aga(SR)s0]* with Au(lIl) salts (i.e., HAUCI,). The
zero absorbance is indicated by the dotted line. Insets 3 and 3’ are polyacrylamide gel
electrophoresis result and digital photo of the as-formed AgAu nanoclusters. For
comparison purpose, the polyacrylamide gel electrophoresis results of [AgsAussLag]*

and [Agas(SR)30]* are shown as insets 1 and 2, respectively.
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Supplementary Figure 4. Ultraviolet-visible absorption spectra of Bands 1-6
identified in the polyacrylamide gel electrophoresis gel (inset) of cluster mixture
formed by reacting [Aga(SR)s]* with HAUCl.. The dotted lines indicate the

absorption features of [Ags2AuiaLso]* at 390, 490, 620, and 735 nm.
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Supplementary Figure 5. Electrospray ionization mass spectrum of AgAu
nanoclusters formed by reacting [Agas(SR)s0]* with Au(111) salts (i.e., HAUCI,). The
inset shows zoom-in spectrum of [AgasxAuyLsg]* (L = SR or Cl) peaks. The [Agss.
WAu,Log]® is a common fragment of [AgasAuxLse]*, similar to the fragment ion of
[AgasLos]® observed in mass spectrum of [Agaslso]* (Fig. 1b in main text). The
asterisk peaks correspond to nanoclusters with larger sizes, whose accurate formula

could not be deduced due to a lack of isotope resolution.
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Supplementary Figuré 6. (a) Ultraviolet-visible absorption spectra and (b)
polyacrylamide gel electrophoresis results of AgAu nanoclusters formed by reacting
[Agsa(SR)s0]* with Au(l)-SR complexes prepared by varied thiol-to-Au ratios, Rsg/au.
The dotted drop lines in (a) serve as visual guide for characteristic absorptions of

[Aga2AuL L30]4_ NCs.
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Supplementary Figure 7. Zoom-in electrospray ionization mass spectra of [Agas-

XAuXL30]4' NCs synthesized at varied Ragas/au(y ranging from 1:0 to 1:9.
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Supplementary Figure 8. (a) Zoom-in electrospray ionization mass spectrum of
[AgasAuyLzo]” nanoclusters synthesized at Ragaaiauy = 1:9, where peaks with mass
higher than that of [Ags2Au2(SR)30]* could be attributed to [Au(SR)CI] -associated
[AGasxAU(SR)30]* (X = 0-10; [AgasxAux(SR)30 --Au(SR)CI + H]*). (b) Experimental
(black line) and simulated (magenta line) isotope patterns of [Ag4(SR)3z0 --Au(SR)CI

+H]*.
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Supplementary Figure 9. Zoom-in electrospray ionization mass spectra of [Agas-

XAuXLgo]“' nanoclusters synthesized at varied Ragaa/auqy ranging from 1:9 to 1:24.
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Supplementary Figure 10. (a) Scanning transmission electron microscopy (STEM)

image and (b, c) energy dispersive X-ray (EDX) elemental maps in terms of (b) ClI
and (c) Ag of the by-product AgCI formed in the alloying reaction. The scale bar is 10

nm.
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Supplementary Figure 11. Tandem mass spectra of [Agas(SR)so]* ion centered at
m/z = 2335 obtained at varied collision energies. Insets are zoom-in spectra of the

boxed area in corresponding panel.
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Supplementary Note 2. Fragmentation habit of [Ag(SR)s0]* NCs.

As illustrated in Supplementary Fig. 12 below, the fragmentation of [Aga(SR)s0]* in
tandem MS analysis follows a stripping-off mechanism, where the fragment ions are
developed from their parent ions via successive dissociation of single negatively
charged [SR] (orange arrows), [Ag(SR)2]" (blue arrows), and [Ag2(SR)s]" (purple
arrows). Specifically, the 1% generation fragment cluster ions (i.e., [Aga(SR)2 — H]*,
[Agss(SR)26]*, and [Ags2(SR)27]%) are developed at low collision energy (e.g., 5 and
10 eV, Supplementary Fig. 11) by dissociation of the aforementioned single
negatively charged species from parent cluster ions (i.e., [Ags(SR)30]*). Further
increasing the collision energy (e.g., 20 and 30 eV, Supplementary Fig. 11) could lead
to fragmentation of the 1% generation fragment cluster ions by dissociation of identical
single negatively charged species, yielding the 2" generation fragment cluster ions
(i.e., [Agss(SR)27 — H]*, [Ada2(SR)26]%, and [Agai(SR)2s]%). At an extreme collision
energy (e.g., 30 eV, Supplementary Fig. 11), the 3 generation fragment cluster ions
(i.e., [AQs2(SR)25 — H]* and [Aga1(SR)24 — H]*), which are most probably formed by
dissociation of the aforementioned single negatively charged species from the 2™
generation fragment ions, could also be observed. It should be noted that a stepwise
downgrade of net charge by 1 electron (e") was recorded when the generation count of
fragment cluster ions was increased by 1, which is in good agreement with the
proposed stripping-off mechanism by successive dissociation of single negatively

charged species.
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Supplementary Figure 12. Schematic illustration of fragmentation process of

[Ag44(SR)30]4' ions in tandem mass spectrometry analysis, where [AgX(SR)y]q is

referred to as (x, y)? for clarity.
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Supplementary Figure 13. Tandem mass spectra of [Agas(SR)so]* ion centered at

m/z = 2335 obtained at collision energies higher than 30 eV.
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Supplementary Figure 14. Tandem mass spectra in m/z = 50-2000 of

[AgasAuiols]® and [AgssAuiilsg]® (marginal) ions. Collision energies are
highlighted in magenta in each panel. With increasing collision energies, the
abundance of single negatively charged species [Ag(SR)CI], [Ag(SR);], and
[Au(SR),] increases, corroborating the stripping-off fragmentation mechanism by

dissociation of these species.
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Supplementary Figure 15. Ultraviolet-visible absorption spectra of [Agasa-
AU (SR)30]* nanoclusters prepared by reacting [Agas(p-MBA)so]* with Au(l)-(p-
NTP) (magenta line, p-NTP = para-nitrothiophenol) and Au(l)-(p-MBA) (black line,
p-MBA = para-mercaptobenzoic acid) complexes, respectively. Zero absorbance is

indicated by dotted lines.
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Supplementary Figure 16. Electrospray ionization mass spectrum of Au(l)-SR

complexes used in surface motif exchange reaction. The inset shows experimental

(black line) and simulated (magenta line) isotope patterns of [Au,(SR).CI]".
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Supplementary Figure 17. Electrospray ionization mass spectrum of Au(l)-SR
complex by-product observed in surface motif exchange reaction. The inset shows

experimental (black line) and simulated (magenta line) isotope patterns of [Au(SR),] .
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Supplementary Figure 18. Schematic illustration of cleavage of surface Ag-S
bond in [Ag(SR)se]* induced by CI. (a) Initiation of the motif exchange by CI” ion
absorption, and (b) subsequent geometric relaxation and Ag-S bond cleavage induced
by bonding of the CI" to the Ag atom. For ease of computation, the —SR is simplified

as —SH.
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Supplementary Figure 19. (a) Digital image and (b) ultraviolet-visible absorption

spectrum of [AgaAu2(SR)z0Clo]* NCs (b = 0-2) synthesized at large quantity

(volume of flask = 100 mL).
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Supplementary Figure 20. Reaction of Agss nanoclusters with varied dose of
Cu(1)-SR complexes. Electrospray ionization mass spectra of [AgasxCUx(SR)so]*
NCs synthesized at varied feeding ratios of Agas-to-Cu(l), Ragaacuq)- The dotted lines

indicate the number of Cu heteroatoms in each cluster.
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