Supplementary Note 1. Characterization of as-synthesized [Ag44(SR)30] 4 nanoclusters (NCs).

UV-vis absorption spectrum of the as-prepared Ag NCs shows several characteristic absorption features of the reported $[Ag_{44}(SR)_{30}]^{4}$ NCs (SR denotes thiolate ligand) at 415[,](#page-22-0) 485, 535, 645, and 835 nm (Fig. 1a)¹, which also suggests good yield $(\sim 90\%$ on Ag atom basis, determined by inductively coupled plasma optical emission spectroscopy, ICP-OES) and high purity of the as-prepared $[Ag_{44}(p\text{-}MBA)_{30}]^{4}$ in our protocol. To further assess the purity of as-prepared $[Ag_{44}(p\text{-}MBA)_{30}]^4$ NCs, we analyzed our samples by polyacrylamide gel electrophoresis (PAGE) and electrospray ionization mass spectrometry (ESI-MS). As shown in Fig. 1a (left inset), the PAGE result shows 4 bands, where the most prominent band (Band 4) corresponds to $[Ag_{44}(p\text{-}MBA)_{30}]$ ⁴⁻, and the other three bands (Bands 1-3) could be attributed to the impurities generated during the running of PAGE analysis, which is consistent with a previous report^{[2](#page-22-1)}. ESI-MS spectrum (Fig. 1b) shows two dominant peaks at m/z of \approx 2335 and \approx 2975 in a broad m/z range of 1000–4000, which should be assigned to $[Ag_{44}(p\text{-}MBA)_{30}]$ ⁴⁻ cluster ion and a fragment ion of $[Ag_{43}(p\text{-}MBA)_{28}]$ ³⁻, respectively. The good accuracy of our assignment can be exemplified by the perfect match of the experimental and calculated isotope patterns of $[Ag_{44}(p\text{-}MBA)_{30}]^4$ (Fig. 1b, left inset). It should be noted that our PAGE results and ESI-MS spectrum are identical to those of the reported pure $[Ag_{44}(p\text{-MBA})_{30}]^4$ ⁻ NCs²[.](#page-22-1)

Supplementary Figure 1. Experimental (black line) and simulated (magenta line) isotope patterns of $[Ag_{32}Au_{12}(SR)_{29}Cl]^4$, where SR denotes thiolate ligand.

Supplementary Figure 2. Time-evolution ultraviolet-visible absorption spectra of reaction mixture from $[Ag_{44}(SR)_{30}]^4$ to $[Ag_{32}Au_{12}L_{30}]^4$ nanoclusters (L = SR or Cl).

Supplementary Figure 3. Ultraviolet-visible absorption spectrum of AgAu nanoclusters formed by reacting $[Ag_{44}(SR)_{30}]^4$ with Au(III) salts (i.e., HAuCl₄). The zero absorbance is indicated by the dotted line. Insets 3 and 3' are polyacrylamide gel electrophoresis result and digital photo of the as-formed AgAu nanoclusters. For comparison purpose, the polyacrylamide gel electrophoresis results of $[Ag_{32}Au_{12}L_{30}]^4$ and $[Ag_{44}(SR)_{30}]^4$ are shown as insets 1 and 2, respectively.

Supplementary Figure 4. Ultraviolet-visible absorption spectra of Bands 1–6 identified in the polyacrylamide gel electrophoresis gel (inset) of cluster mixture formed by reacting $[Ag_{44}(SR)_{30}]^{4}$ with HAuCl₄. The dotted lines indicate the absorption features of $[Ag_{32}Au_{12}L_{30}]^{4}$ at 390, 490, 620, and 735 nm.

Supplementary Figure 5. Electrospray ionization mass spectrum of AgAu nanoclusters formed by reacting $[Ag_{44}(SR)_{30}]^{4}$ with Au(III) salts (i.e., HAuCl₄). The inset shows zoom-in spectrum of $[Ag_{44-x}Au_xL_{30}]^4$ (L = SR or Cl) peaks. The $[Ag_{43}$ xAu_xL_{28} ³⁻ is a common fragment of $[Ag_{44-x}Au_xL_{30}]$ ⁴⁻, similar to the fragment ion of $[Ag_{43}L_{28}]$ ⁴ observed in mass spectrum of $[Ag_{44}L_{30}]$ ⁴ (Fig. 1b in main text). The asterisk peaks correspond to nanoclusters with larger sizes, whose accurate formula could not be deduced due to a lack of isotope resolution.

Supplementary Figure 6. (**a**) Ultraviolet-visible absorption spectra and (**b**) polyacrylamide gel electrophoresis results of AgAu nanoclusters formed by reacting $[Ag_{44}(SR)_{30}]^4$ with Au(I)-SR complexes prepared by varied thiol-to-Au ratios, $R_{SR/Au}$. The dotted drop lines in (**a**) serve as visual guide for characteristic absorptions of $[Ag_{32}Au_{12}L_{30}]^{4}$ NCs.

Supplementary Figure 7. Zoom-in electrospray ionization mass spectra of [Ag₄₄₋] $_{x}Au_{x}L_{30}$ ⁴⁻ NCs synthesized at varied $R_{Ag44/Au(I)}$ ranging from 1:0 to 1:9.

Supplementary Figure 8. (**a**) Zoom-in electrospray ionization mass spectrum of $[Ag_{44-x}Au_xL_{30}]^4$ nanoclusters synthesized at $R_{Ag44/Au(I)} = 1:9$, where peaks with mass higher than that of $[Ag_{32}Au_{12}(SR)_{30}]^4$ could be attributed to $[Au(SR)Cl]$ -associated $[Ag_{44-x}Au_x(SR)_{30}]^4$ ⁻ ($x = 0$ -10; $[Ag_{44-x}Au_x(SR)_{30}$ ·· Au(SR)Cl + H]⁴⁻). (**b**) Experimental (black line) and simulated (magenta line) isotope patterns of $[Ag_{44}(SR)_{30} \cdots Au(SR)Cl$ $+ H]^{4-}.$

Supplementary Figure 9. Zoom-in electrospray ionization mass spectra of [Ag₄₄₋] $_{x}Au_{x}L_{30}$ ⁴⁻ nanoclusters synthesized at varied $R_{Ag44/Au(I)}$ ranging from 1:9 to 1:24.

Supplementary Figure 10. (**a**) Scanning transmission electron microscopy (STEM) image and (**b**, **c**) energy dispersive X-ray (EDX) elemental maps in terms of (**b**) Cl and (**c**) Ag of the by-product AgCl formed in the alloying reaction. The scale bar is 10 nm.

Supplementary Figure 11. Tandem mass spectra of $[Ag_{44}(SR)_{30}]^{4}$ ion centered at $m/z = 2335$ obtained at varied collision energies. Insets are zoom-in spectra of the boxed area in corresponding panel.

Supplementary Note 2. Fragmentation habit of [Ag44(SR)30] 4- NCs.

As illustrated in Supplementary Fig. 12 below, the fragmentation of $[Ag_{44}(SR)_{30}]^4$ in tandem MS analysis follows a stripping-off mechanism, where the fragment ions are developed from their parent ions via successive dissociation of single negatively charged [SR]⁻ (orange arrows), $[Ag(SR)_2]$ ⁻ (blue arrows), and $[Ag_2(SR)_3]$ ⁻ (purple arrows). Specifically, the 1st generation fragment cluster ions (i.e., $[Ag_{44}(SR)_{29} - H]^{4}$, $[Ag_{43}(SR)_{28}]^3$, and $[Ag_{42}(SR)_{27}]^3$) are developed at low collision energy (e.g., 5 and 10 eV, Supplementary Fig. 11) by dissociation of the aforementioned single negatively charged species from parent cluster ions (i.e., $[Ag_{44}(SR)_{30}]^4$). Further increasing the collision energy (e.g., 20 and 30 eV, Supplementary Fig. 11) could lead to fragmentation of the $1st$ generation fragment cluster ions by dissociation of identical single negatively charged species, yielding the $2nd$ generation fragment cluster ions (i.e., $[Ag_{43}(SR)_{27} - H]^3$, $[Ag_{42}(SR)_{26}]^2$, and $[Ag_{41}(SR)_{25}]^2$). At an extreme collision energy (e.g., 30 eV, Supplementary Fig. 11), the $3rd$ generation fragment cluster ions (i.e., $[Ag_{42}(SR)_{25} - H]^2$ and $[Ag_{41}(SR)_{24} - H]^2$), which are most probably formed by dissociation of the aforementioned single negatively charged species from the 2nd generation fragment ions, could also be observed. It should be noted that a stepwise downgrade of net charge by 1 electron (e) was recorded when the generation count of fragment cluster ions was increased by 1, which is in good agreement with the proposed stripping-off mechanism by successive dissociation of single negatively charged species.

Supplementary Figure 12. Schematic illustration of fragmentation process of $[Ag_{44}(SR)_{30}]$ ⁴ ions in tandem mass spectrometry analysis, where $[Ag_{x}(SR)_{y}]$ ^{*q*} is referred to as $(x, y)^q$ for clarity.

Supplementary Figure 13. Tandem mass spectra of $[Ag_{44}(SR)_{30}]^{4}$ ion centered at $m/z = 2335$ obtained at collision energies higher than 30 eV.

Supplementary Figure 14. Tandem mass spectra in $m/z = 50-2000$ of $[Ag_{34}Au_{10}L_{30}]$ ⁴⁻ and $[Ag_{33}Au_{11}L_{30}]$ ⁴⁻ (marginal) ions. Collision energies are highlighted in magenta in each panel. With increasing collision energies, the abundance of single negatively charged species $[Ag(SR)Cl]$, $[Ag(SR)₂]$, and [Au(SR)₂] increases, corroborating the stripping-off fragmentation mechanism by dissociation of these species.

Supplementary Figure 15. Ultraviolet-visible absorption spectra of [Ag₄₄₋] α_x Au_x(SR)₃₀⁴ nanoclusters prepared by reacting $[Ag_{44}(p\text{-}MBA)_{30}]$ ⁴ with Au(I)-(*p*-NTP) (magenta line, *p*-NTP = *para*-nitrothiophenol) and Au(I)-(*p*-MBA) (black line, *p*-MBA = *para*-mercaptobenzoic acid) complexes, respectively. Zero absorbance is indicated by dotted lines.

Supplementary Figure 16. Electrospray ionization mass spectrum of Au(I)-SR complexes used in surface motif exchange reaction. The inset shows experimental (black line) and simulated (magenta line) isotope patterns of $[Au_2(SR)_2Cl]$.

Supplementary Figure 17. Electrospray ionization mass spectrum of Au(I)-SR complex by-product observed in surface motif exchange reaction. The inset shows experimental (black line) and simulated (magenta line) isotope patterns of $[Au(SR)₂]$.

Supplementary Figure 18. **Schematic illustration of cleavage of surface Ag-S bond in** $[Ag_{44}(SR)_{30}]$ ⁴⁻ **induced by Cl**. (a) Initiation of the motif exchange by Cl ion absorption, and (**b**) subsequent geometric relaxation and Ag-S bond cleavage induced by bonding of the Cl to the Ag atom. For ease of computation, the -SR is simplified as –SH.

Supplementary Figure 19. (**a**) Digital image and (**b**) ultraviolet-visible absorption spectrum of $[Ag_{32}Au_{12}(SR)_{30-b}Cl_b]^4$ ⁻ NCs (*b* = 0–2) synthesized at large quantity (volume of flask = 100 mL).

Supplementary Figure 20. Reaction of Ag⁴⁴ nanoclusters with varied dose of Cu(I)-SR complexes. Electrospray ionization mass spectra of $[Ag_{44-x}Cu_{x}(SR)_{30}]^{4}$ NCs synthesized at varied feeding ratios of Ag₄₄-to-Cu(I), $R_{Ag44/Cu(I)}$. The dotted lines indicate the number of Cu heteroatoms in each cluster.

Supplementary References

- 1. Yao, Q.*, et al.* Counterion-assisted shaping of nanocluster supracrystals. *Angew. Chem. Int. Ed.* **54**, 184-189 (2015).
- 2. Desireddy, A.*, et al.* Ultrastable silver nanoparticles. *Nature* **501**, 399-402 (2013).