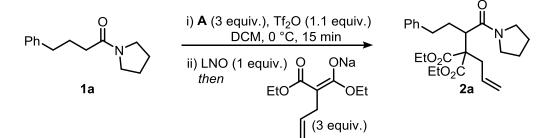
Supporting Information

Chemoselective intermolecular cross-enolate-type coupling of amides

Daniel Kaiser[†], Christopher J. Teskey[†], Pauline Adler and Nuno Maulide*

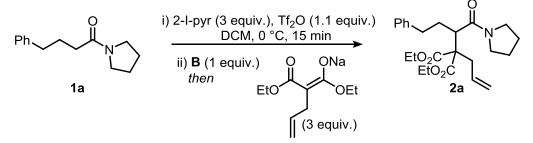
Institute of Organic Chemistry, University of Vienna, Währinger Strasse 1090, Vienna, Austria


Table of Contents

1.	Ge	neral Information2	2		
2.	Ор	timization	3		
3. Amides					
3	8.1.	Synthesis of Amides5	5		
3	8.2.	Characterization	5		
4.	Pro	ducts of Cross-Enolate Coupling)		
4	l.1.	General Procedure C – Sodium Hydride)		
4	1.2.	General Procedure D – Lithium Diisopropylamide10)		
4	1.3.	Characterization11	L		
5.	NM	1R Spectra	5		
6.	X-R	ay Crystallographic Data90)		
7.	Ref	erences95	5		

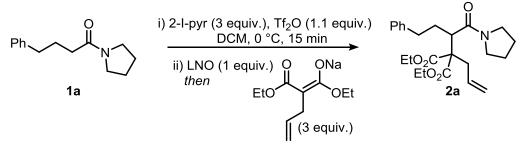
1. General Information

Unless otherwise stated, all glassware was flame-dried before use and all reactions were performed under an atmosphere of argon. All solvents were distilled from appropriate drying agents prior to use. Triflic anhydride was distilled over P₄O₁₀ prior to use. All other reagents were used as received from commercial suppliers unless otherwise stated. Reaction progress was monitored by thin layer chromatography (TLC) performed on aluminium plates coated with silica gel F₂₅₄ with 0.2 mm thickness. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining using potassium permanganate. Flash column chromatography was performed using silica gel 60 (230-400 mesh, Merck and co.). Neat infra-red spectra were recorded using a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Wavenumbers (v_{max}) are reported in cm⁻¹. Mass spectra were obtained using a Finnigan MAT 8200 or (70 eV) or an Agilent 5973 (70 eV) spectrometer, using electrospray ionization (ESI). All ¹H NMR and ¹³C NMR spectra were recorded using a Bruker AV-400 or AV-600 spectrometer at 300K. Chemical shifts were given in parts per million (ppm, δ), referenced to the solvent peak of CDCl₃, defined at δ = 7.26 ppm (¹H NMR) and δ = 77.16 (¹³C NMR) or acetone-d₆, defined at δ = 2.05 ppm (¹H NMR) and δ = 206.26/29.84 (¹³C NMR). Coupling constants are quoted in Hz (J). ¹H NMR splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q), pentet (p). Splitting patterns that could not be interpreted or easily visualized were designated as multiplet (m) or broad (br). Selected ¹³C NMR spectra were recorded using the attached proton test (APT) to facilitate the confirmation and assignment of the structure.


2. Optimization

DCM, 0 to 25 °C, 1 h

Α	NMR yield ^a
2-I-pyr	72% (isolated)
2,6-diF-pyr	13%
2-F-pyr	62%
2-Cl-pyr	46%
2-NO ₂ -pyr	0%
DTBMP	14%
2-F-pyr (2 equiv.)	55%


^aNMR yield determined using 1,3,5-trimethoxybenzene as internal standard. Tf₂O = trifluoromethanesulfonic anhydride; LNO = 2,6-lutidine *N*-oxide; 2-I-pyr = 2-iodopyridine; 2,6-diF-pyr = 2,6-difluoropyridine; 2-F-pyr = 2-fluoropyridine; 2-CI-pyr = 2-chloropyridine; 2-NO₂-pyr = 2-nitropyridine; DTBMP = 2,6-di-tert-butyl-4-methylpyridine.

DCM, 0 to 25 °C, 1 h

В	NMR yield ^a
PNO	43% (isolated)
LNO	72% (isolated)
4-CN-PNO	64%
2,6-diCl-PNO	57%
4-NO ₂ -PNO	77%
3-F-PNO	70%
3,5-diF-PNO	78%
2-Me-4-NO ₂ -PNO	80%
2-CI-PNO	77%

^aNMR yield determined using 1,3,5-trimethoxybenzene as internal standard. PNO = pyridine *N*-oxide; 4-CN-PNO = 4-cyanopyridine N-oxide; 2,6-diCl-PNO = 2,6-dichloropyridine N-oxide; $4-NO_2-PNO = 4-nitropyridine$ N-oxide; 3-F-PNO = 3-fluoropyridine N-oxide; 3,5-diF-PNO = 3,5-difluoropyridine *N*-oxide; 2-Me-4-NO₂-PNO = 2-methyl-4-nitropyridine *N*-oxide; 2-Cl-PNO = 2-chloropyridine *N*-oxide.

DCM, 0 to 25 °C, 1 h

Change from standard conditions	NMR yield ^a
Quenched after 15 min	50%
Cs ₂ CO ₃ for enolate formation	0 %
2 equiv. malonate	Traces
40 °C, 12 h	58%
2.2 equiv. 2-I-pyr	83% (isolated)
2.2 equiv. 2-I-pyr, 2-Me-4-NO ₂ -PNO	79%
2.2 equiv. 2-I-pyr, 2-Cl-PNO	84%

^aNMR yield determined using 1,3,5-trimethoxybenzene as internal standard.

3. Amides

3.1. Synthesis of Amides

General Procedure A:

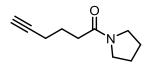
To a solution of the amine (1.00 equiv.) and triethylamine (2.00 equiv.) in DCM (0.1 M) at 0°C, the corresponding acyl chloride (1.20 equiv.) was added dropwise and the resulting reaction mixture was allowed to warm to room temperature while stirring overnight (14 h). After this time, a saturated aqueous solution of sodium bicarbonate was added and the biphasic system was separated. The aqueous phase was extracted with DCM (1 ×) and the organic phases were combined and dried over anhydrous sodium sulfate. The dried solution was filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography on silica gel (heptane/ethyl acetate) to afford the desired compound.

General Procedure B:

To a solution of the amine (1.00 equiv.), triethylamine (1.00 equiv.), hydroxybenzotriazole (HOBt, 1.00 equiv.) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI*HCl, 1.00 equiv.) in DCM (0.1 M), the corresponding carboxylic acid was added and the resulting solution was stirred at room temperature overnight (14 h). After this time, the organic solution was extracted sequentially with 0.5 M aqueous hydrochloric acid, saturated aqueous sodium bicarbonate and saturated aqueous sodium chloride. The washed solution was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography on silica gel (heptane/ethyl acetate) to afford the desired compound.

3.2. Characterization

4-Phenyl-1-(pyrrolidin-1-yl)butan-1-one (1a)


Ph

General Procedure A; (Quant.). All analytical data were in good accordance with data reported in the literature.[1]

1-(Pyrrolidin-1-yl)undec-10-en-1-one (1b)

General Procedure A; (Quant.). All analytical data were in good accordance with data reported in the literature.[2]

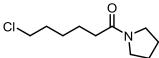
1-(Pyrrolidin-1-yl)hex-5-yn-1-one (1c)

General Procedure B; (93%). All analytical data were in good accordance with data reported in the literature.[3]

3-Cyclopentyl-1-(pyrrolidin-1-yl)propan-1-one (1d)

С

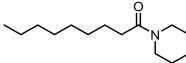
General Procedure A; (Quant.). All analytical data were in good accordance with data reported in the literature.[1]


7-Oxo-7-(pyrrolidin-1-yl)heptanenitrile (1e)

NC

(Quant.). Prepared according to the procedure reported in the literature.[4]

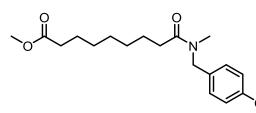
All analytical data were in good accordance with data reported in the literature.


6-Chloro-1-(pyrrolidin-1-yl)hexan-1-one (1f)

General Procedure A; (Quant.). All analytical data were in good accordance

with data reported in the literature.[4]

1-(Piperidin-1-yl)nonan-1-one (1g)


General Procedure A; (Quant.). All analytical data were in good accordance with data reported in the literature.[5]

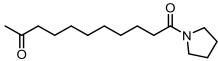
N,N-Dimethylnonanamide (1h)

General Procedure A; (Quant.). All analytical data were in good accordance

with data reported in the literature.[6]

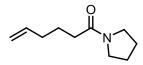
Methyl 9-((4-methoxybenzyl)(methyl)amino)-9-oxononanoate (1i)

General Procedure B; (95%). All analytical data were in


good accordance with data reported in the literature.[3]

Methyl 9-oxo-9-(pyrrolidin-1-yl)nonanoate (1j)

General Procedure B; (95%). All analytical data were in good


accordance with data reported in the literature.[4]

1-(Pyrrolidin-1-yl)undecane-1,10-dione (1k)

Ö (48%). Prepared according to the procedure reported in the literature. All analytical data were in good accordance with data reported in the literature.[1]

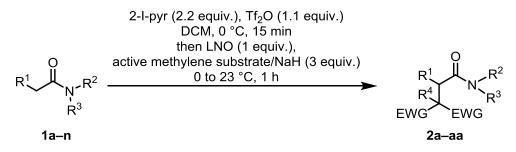
1-(Pyrrolidin-1-yl)hex-5-en-1-one (11)

General Procedure B; (87%). All analytical data were in good accordance with data reported in the literature.[3]

1-(Pyrrolidin-1-yl)pent-4-en-1-one (1m)

General Procedure B; (82%). All analytical data were in good accordance with data reported in the literature.[7]

3-Methyl-1-(pyrrolidin-1-yl)butan-1-one (1n)

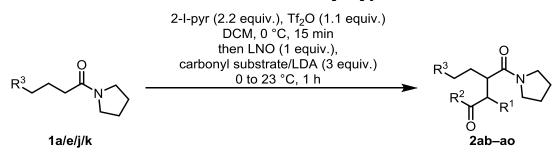

General Procedure B; (Quant.). All analytical data were in good accordance with data reported in the literature.[3]

1-(Pyrrolidin-1-yl)hept-6-en-1-one (1o)

General Procedure B; (Quant.). All analytical data were in good accordance with data reported in the literature.[8]

4. Products of Cross-Enolate Coupling

4.1. General Procedure C – Sodium Hydride



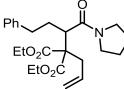
All reactions were run on a 0.2 mmol scale.

To a solution of amide **1** (1.00 equiv.) and 2-iodopyridine (2.20 equiv.) in dichloromethane (2 mL, 0.1M) at 0 °C was added triflic anhydride (1.10 equiv.) and the resulting mixture was stirred at 0 °C and colouration of the solution was observed. After 15 min, 2,6-lutidine *N*-oxide (1.00 equiv.) was added in one portion and the reaction mixture was stirred at 0 °C for 1 min. After this time, and the observation of colour-change or decolourisation, a pre-formed solution of the corresponding active methylene substrate (3.00 equiv.) and sodium hydride (60%, 3.00 equiv.) – for the preparation, see below – was added. The resulting mixture was allowed to warm to ambient temperature (25 °C) over the course of 1 h, after which time a saturated aqueous phase was extracted with dichloromethane (2 × 5 mL). The combined organic phases were dried over anhydrous sodium sulfate, the dried solution was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by flash column chromatography (SiO₂, heptanes/ethyl acetate or toluene/ethyl acetate) to afford the compounds **2**. <u>Sodium enolate formation:</u>

To a solution of the malonate (3.00 equiv.) in THF (1 mL, 0.6м) at 0 °C was added sodium hydride (60%, 3.00 equiv.) in one portion. The resulting suspension was stirred at 0 °C for 30 min, until complete disappearance of the solids was observed.

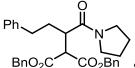
4.2. General Procedure D – Lithium Diisopropylamide

All reactions were run on a 0.2 mmol scale.


To a solution of amide **1** (1.00 equiv.) and 2-iodopyridine (2.20 equiv.) in dichloromethane (2 mL, 0.1M) at 0 °C was added triflic anhydride (1.10 equiv.) and the resulting mixture was stirred at 0 °C and colouration of the solution was observed. After 15 min, 2,6-lutidine *N*-oxide (1.00 equiv.) was added in one portion and the reaction mixture was stirred at 0 °C for 1 min. After this time, and the observation of colour-change or decolourisation, a pre-formed solution of the corresponding carbonyl substrate (3.00 equiv.) and lithium di*iso* propylamide (freshly prepared; 3.00 equiv.) – for the preparation, see below – was added. The resulting mixture was allowed to warm to ambient temperature (25 °C) over the course of 1 h, after which time a saturated aqueous solution of ammonium chloride (5 mL) was added. The biphasic mixture was separated and the aqueous phase was extracted with dichloromethane (2 × 5 mL). The combined organic phases were dried over anhydrous sodium sulfate, the dried solution was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by flash column chromatography (SiO₂, heptanes/ethyl acetate or toluene/ethyl acetate) to afford the compounds **2**.

Lithium enolate formation:

To a solution of di*iso*propylamine (3.8 equiv.) in THF (1 mL, 0.76m) at -78 °C, *n*-butyllithium (1.6M in hexanes, 3.50 equiv.) was added. After stirring at the same temperature for 5 min, the malonate (3.00 equiv.) was slowly added and the resulting solution was allowed to stir at -78 °C for 15 min.

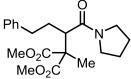

4.3. Characterization

Diethyl 2-allyl-2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonate (2a)

83% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.23–7.15 (m, 2H), 7.13–7.06 (m, 3H), 5.81–5.66 (m, 1H), 5.04–4.95 (m, 2H), 4.22–4.13 (m, 2H), 4.08 (q, *J* = 7.1 Hz, 2H), 3.52–3.34 (m, 3H), 3.26–3.18 (m, 1H), 3.15 (dd, *J* = 10.8, 3.1 Hz, 1H), 2.83–2.74 (m, 1H), 2.64–2.42 (m, 3H), 2.34–2.21 (m, 1H), 2.05–1.94 (m, 1H), 1.84–1.72 (m, 4H), 1.22–1.18 (m, 3H), 1.16 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 170.6, 170.2, 141.6, 133.9, 128.5, 128.4, 126.1, 118.5, 61.4, 61.3, 60.6, 47.7, 47.3, 45.9, 38.5, 34.3, 31.8, 26.2, 24.5, 14.2; IR (neat) v_{max}: 2978, 2925, 2874, 1727, 1638, 1496, 1440, 1367, 1285, 1221 1029, 919, 863, 749, 701; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₄H₃₃NO₅Na) requires *m/z* 438.2251, found *m/z* 438.2250.

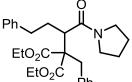
Dibenzyl 2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonate (2b)

BnO₂C^T CO₂Bn 89% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.27 (m, 8H), 7.26–7.20 (m, 4H), 7.19–7.13 (m, 1H), 7.05–7.01 (m, 2H), 5.21–5.11 (m, 3H), 5.06–5.01 (m, 1H), 4.08 (d, J = 10.9 Hz, 1H), 3.62 (dt, J = 9.6, 6.6 Hz, 1H), 3.47–3.37 (m, 2H), 3.35–3.28 (m, 1H), 3.23 (dt, J = 10.0, 6.7 Hz, 1H), 2.67–2.58 (m, 1H), 2.55–2.46 (m, 1H), 1.96–1.70 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 168.6, 168.3, 141.2, 135.4, 135.3, 128.7 (2C), 128.6 (2C), 128.5, 128.5 (3C), 128.4, 128.3 (2C), 128.2 (2C), 126.2, 67.5, 67.4, 54.9, 46.9, 46.0, 42.7, 32.5, 32.2, 26.1, 24.4; IR (neat) v_{max} : 2953, 1733, 1635, 1454, 1377, 1344, 1143, 750, 699; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₃₁H₃₃NO₅Na) requires *m/z* 521.2251, found *m/z* 522.2252.

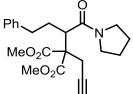

1-Benzyl 3-methyl 2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonate (2c)

MeO₂C CO₂Bn 87% yield (2 mmol: 89%), d.r. 1.2:1.

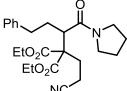
Diastereomer 1: ¹H NMR (600 MHz, CDCl₃): δ 7.37–7.26 (m, 6H), 7.26–7.12 (m, 4H), 5.19 (d, *J* = 12.4 Hz, 1H), 5.04 (d, *J* = 12.4 Hz, 1H), 4.05 (d, *J* = 10.9 Hz, 1H), 3.71 (s, 3H), 3.65–3.61 (m, 1H), 3.44–3.38 (m, 2H), 3.34–3.29 (m, 1H), 3.28–3.23 (m, 1H), 2.69–2.63 (m, 1H), 2.58–2.51 (m, 1H), 1.97–1.90 (m, 1H), 1.87–1.74 (m, 5H); ¹³C NMR (150 MHz, CDCl₃): δ 171.3, 169.2, 168.3, 141.2, 135.4, 128.6 (2C), 128.5 (2C), 128.4, 128.4 (2C), 128.1 (2C), 126.2, 67.3, 54.8, 52.8, 46.9, 45.9, 42.6, 32.6, 32.4, 26.0, 24.4; IR (neat) **v**_{max}: 2952, 1735, 1635, 1453, 1343, 1191, 1148, 750, 700; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₅H₂₉NO₅Na) requires *m/z* 446.1938, found *m/z* 446.1939.


Diastereomer 2: ¹H NMR (600 MHz, CDCl₃): δ 7.37–7.29 (m, 5H), 7.23 (d, *J* = 7.6 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 2H), 5.24–5.17 (m, 2H), 4.05 (d, *J* = 10.9 Hz, 1H), 3.74–3.69 (m, 1H), 3.65 (s, 3H), 3.53–3.48 (m, 1H), 3.45–3.39 (m, 1H), 3.32–3.23 (m, 2H), 2.65–2.59 (m, 1H), 2.51–2.45 (m, 1H), 1.96–1.79 (m, 5H), 1.74–1.67 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 171.4, 168.9, 168.7, 141.1, 135.3, 128.7 (2C), 128.6, 128.5 (2C), 128.5 (2C), 128.3 (2C), 126.1, 67.5, 54.6, 52.7, 46.9, 46.0, 42.6, 32.5, 32.1, 26.1, 24.5; IR (neat) v_{max}: 2954, 1750, 1734, 1635, 1452, 1199, 1115, 751, 700; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₅H₂₉NO₅Na) requires *m/z* 446.1938, found *m/z* 446.1939.

Dimethyl 2-methyl-2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonate (2d)

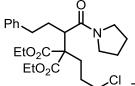

MeO₂C 89% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.24 (m, 2H), 7.20–7.15 (m, 3H), 3.73 (s, 3H), 3.67 (s, 3H), 3.56 (dt, J = 10.2, 6.5 Hz, 1H), 3.46 (t, J = 6.6 Hz, 2H), 3.35 (dd, J = 10.9, 3.1 Hz, 1H), 3.27 (dt, J = 10.0, 6.5 Hz, 1H), 2.71–2.61 (m, 1H), 2.57–2.48 (m, 1H), 2.28–2.17 (m, 1H), 1.94–1.79 (m, 5H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 171.7, 171.4, 141.4, 128.5 (2C), 128.4 (2C), 126.2, 57.1, 52.8, 52.7, 47.3, 46.7, 45.9, 33.9, 31.1, 26.3, 24.6, 17.8; IR (neat) v_{max} : 2953, 1735, 1636, 1451, 1435, 1253, 1121; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₀H₂₇NO₅Na) requires *m/z* 384.1781, found *m/z* 384.1778.

Diethyl 2-benzyl-2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonate (2e)

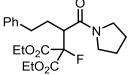

Ph 70% yield; ¹H NMR (600 MHz, CDCl₃): δ 7.32–7.13 (m, 10H), 4.33–4.20 (m, 2H), 4.11–4.04 (m, 1H), 3.98–3.92 (m, 1H), 3.60–3.55 (m, 1H), 3.54–3.47 (m, 2H), 3.31 (d, *J* = 14.1 Hz, 1H), 3.23–3.16 (m, 3H), 2.71–2.63 (m, 1H), 2.54–2.45 (m, 1H), 2.38–2.29 (m, 1H), 2.17–2.09 (m, 1H), 1.90– 1.79 (m, 4H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 171.4, 170.7, 170.4, 141.5, 136.8, 130.4 (2C), 128.4 (2C), 128.4 (2C), 128.1 (2C), 126.9, 126.1, 61.4, 61.3, 47.7, 47.1, 45.9, 39.3, 34.1, 32.1, 29.8, 26.2, 24.5, 14.1, 13.8; IR (neat) v_{max}: 3061, 3027, 2954, 2923, 2854, 1721, 1634, 1495, 1437, 1389, 1367, 1246, 1221, 1185, 1091, 1029, 917, 863, 777, 745, 700; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₈H₃₅NO₅Na) requires *m/z* 488.2407, found *m/z* 488.2410.

Dimethyl 2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)-2-(prop-2-yn-1-yl)malonate (2f)

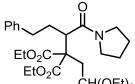
III 62% yield; ¹H NMR (600 MHz, CDCl₃): δ 7.28–7.24 (m, 2H), 7.22–7.12 (m, 3H), 3.76 (s, 3H), 3.72 (s, 1H), 3.52–3.47 (m, 2H), 3.46–3.41 (m, 1H), 3.32–3.27 (m, 1H), 3.03 (dd, J = 17.4, 2.1 Hz, 1H), 2.84 (dd, J = 17.4, 2.1 Hz, 1H), 2.66–2.57 (m, 2H), 2.29–2.19 (m, 2H), 2.07 (t, J = 2.1 Hz, 1H), 1.91–1.80 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 171.1, 170.0, 169.9, 141.4, 128.4 (2C), 128.4 (2C), 126.1, 72.0, 59.3, 52.9, 52.8, 47.3, 46.7, 45.9, 34.2, 31.4, 29.8, 26.2, 24.5, 24.0; IR (neat) v_{max} : 3229, 3223, 3026, 2952, 2923, 2873, 2853, 1731, 1629, 1495, 1435, 1340, 1282, 1202, 1054, 977, 747, 700; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₂H₂₇NO₅Na) requires *m/z* 408.1781, found *m/z* 408.1784.


Diethyl 2-(2-cyanoethyl)-2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonate (2g)

NC^{*} 73% yield; ¹H NMR (600 MHz, CDCl₃): δ 7.29–7.26 (m, 2H), 7.19 (*app* t, J = 7.4 Hz, 1H), 7.15 (d, J = 7.1 Hz, 1H), 4.28–4.23 (m, 2H), 4.23–4.16 (m, 2H), 3.52–3.42 (m, 3H), 3.30–3.24 (m, 2H),

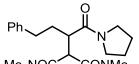

2.73–2.63 (m, 1H), 2.54–2.26 (m, 5H), 1.96–1.80 (m, 5H), 1.29–1.25 (m, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 170.6, 169.8, 169.5, 140.9, 128.6, 128.4, 126.3, 119.7, 62.2, 62.0, 59.7, 48.1, 47.4, 46.1, 34.0, 31.6, 29.8, 28.6, 26.2, 24.5, 14.2, 14.1; IR (neat) v_{max}: 2978, 2931, 1729, 1637, 1444, 1369, 1341, 1256, 1194, 1094, 1021, 750, 701; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₄H₃₃N₂O₅) requires *m/z* 429.2384, found *m/z* 429.2393.

Ethyl 2-(3-chloropropyl)-2-((ethylperoxy)- λ^2 -methyl)-5-phenyl-3-(pyrrolidine-1-carbonyl)pentanoate (2h)

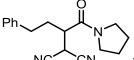


76% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.24 (m, 2H), 7.20–7.14 (m, 3H),
 4.27–4.14 (m, 4H), 3.57–3.41 (m, 5H), 3.32–3.22 (m, 2H), 2.73–2.63 (m, 1H), 2.51 (ddd, *J* = 13.7, 9.7, 6.6
 Hz, 1H), 2.41–2.30 (m, 1H), 2.16–1.79 (m, 8H), 1.68–1.56 (m, 1H), 1.30–1.22 (m, 6H); ¹³C NMR (101 MHz,
 CDCl₃): δ 171.1, 170.8, 170.3, 141.3, 128.5, 128.4, 126.1, 61.6, 61.4, 60.1, 48.1, 47.3, 45.9, 45.2, 34.1,
 31.7, 31.1, 28.7, 26.2, 24.5, 14.2, 14.2; IR (neat) v_{max}: 2977, 2875, 1726, 1638, 1442, 1368, 1340, 1299,
 1249, 1214, 1163, 1095, 1027, 749, 701; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₄H₃₅CINO₅)
 requires *m/z* 452.2198, found *m/z* 452.2207.

Ethyl 2-((ethylperoxy)- λ^2 -methyl)-2-fluoro-5-phenyl-3-(pyrrolidine-1-carbonyl)pentanoate (2i)

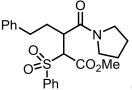


EtO₂C 57% yield; ¹H NMR (700 MHz, CDCl₃): δ 7.28–7.24 (m, 2H), 7.19–7.13 (m, 3H), 4.33–4.30 (m, 2H), 4.28–4.21 (m, 2H), 3.56–3.45 (m, 3H), 3.39 (dt, J = 12.6, 6.4 Hz, 1H), 3.13 (*app* dt, J =9.9, 6.6 Hz, 1H), 2.73–2.67 (m, 1H), 2.55 (ddd, J = 14.1, 9.1, 7.4 Hz, 1H), 2.33–2.27 (m, 1H), 2.08–2.01 (m, 1H), 1.91–1.77 (m, 4H), 1.31 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃): δ 168.6, 166.0 (d, J = 25 Hz), 165.6 (d, J = 25 Hz), 140.8, 128.5, 128.4, 126.3, 95.0 (d, J = 207 Hz), 62.9, 62.9, 47.6 (d, J = 20 Hz), 47.1, 46.0, 33.3, 28.9 (d, J = 6.4 Hz), 26.2, 24.5, 14.2, 14.0; ¹⁹F NMR (659 MHz, CDCl₃): δ -166.0. IR (neat) v_{max}: 2978, 2876, 1748, 1642, 1442, 1392, 1369, 1340, 1231, 1095, 1049, 1021, 859, 751, 702; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₁H₂₉FNO₅) requires *m/z* 394.2024, found *m/z* 394.2038. Ethyl 2-(2,2-diethoxyethyl)-2-((ethylperoxy)- λ^2 -methyl)-5-phenyl-3-(pyrrolidine-1carbonyl)pentanoate (2j)



CH(OEt)₂ 52% yield; ¹H NMR (600 MHz, CDCl₃): δ 7.28–7.25 (m, 2H), 7.19–7.16 (m, 3H), 4.67 (dd, J = 7.0, 3.4 Hz, 1H), 4.31–4.11 (m, 4H), 3.65–3.50 (m, 5H), 3.44 (*app* dt, J = 12.3, 6.9 Hz, 1H), 3.37–3.25 (m, 3H), 2.65 (ddd, J = 13.9, 10.8, 5.2 Hz, 1H), 2.52 (ddd, J = 13.7, 10.2, 6.3 Hz, 1H), 2.41–2.34 (m, 2H), 2.12–2.03 (m, 2H), 1.94–1.79 (m, 4H), 1.30–1.24 (m, 6H), 1.18 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 171.4, 170.6, 170.3, 141.5, 128.4, 128.4, 126.1, 100.9, 62.3, 61.9, 61.3, 61.3, 58.0, 48.8, 47.3, 45.9, 38.5, 34.3, 31.9, 26.2, 24.5, 15.5, 15.2, 14.2, 14.1; IR (neat) v_{max}: 2975, 2931, 2874, 1725, 1636, 1438, 1369, 1341, 1288, 1226, 1196, 1118, 1095, 1057, 1028, 916, 865, 731, 700; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₇H₄₀NNaO₇) requires *m/z* 514.2781, found *m/z* 514.2766.

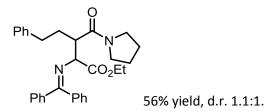
N¹, N¹, N³, N³-tetramethyl-2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonamide (2k)



Me₂NOC CONMe₂ 72 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.27–7.24 (m, 2H), 7.18–7.15 (m, 3H), 4.32 (d, J = 10.2 Hz, 1H), 3.97–3.92 (m, 1H), 3.58 (td, J = 10.2, 3.8 Hz, 1H), 3.42 (t, J = 6.6 Hz, 2H), 3.32 (dt, J = 10.0, 6.6 Hz, 1H), 3.11 (s, 3H), 3.02 (s, 3H), 2.98 (s, 3H), 2.89 (s, 3H), 2.67–2.54 (m, 2H), 1.99–1.75 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 172.8, 168.8, 168.7, 141.6, 128.5, 126.1, 50.0, 47.1, 46.0, 44.8, 37.7, 37.4, 36.5, 36.2, 33.5, 32.7, 26.1, 24.6; IR (neat) v_{max} : 2927, 1634, 1496, 1455, 1399, 1259, 1140, 753, 702; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₁H₃₂N₃O₃) requires *m/z* 374.2438, found *m/z* 374.2434. 2-(1-Oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malononitrile (2l)

NC^CCN 36% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.28 (m, 2H), 7.25–7.20 (m, 1H), 7.19–7.15 (m, 2H), 4.14 (d, *J* = 9.9 Hz, 1H), 3.62–3.54 (m, 1H), 3.49–3.39 (m, 2H), 3.20–3.10 (m, 2H), 2.80–2.61 (m, 2H), 2.23–2.16 (m, 2H), 1.98–1.83 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 139.5, 128.9 (2C), 128.4 (2C), 126.9, 112.0, 112.0, 47.0, 46.5, 44.4, 32.2, 31.9, 26.1, 25.6, 24.3; IR (neat) v_{max}: 2879, 1632, 1495, 1451, 1342, 752, 701; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₁₇H₁₉N₃ONa) requires *m/z* 304.1420, found *m/z* 304.1417.

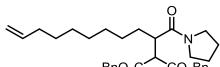
Methyl 5-phenyl-2-(phenylsulfonyl)-3-(pyrrolidine-1-carbonyl)pentanoate (2m)



65% yield, d.r. 1.5:1. Diastereomer have not been separated.

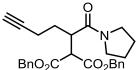
Major diastereomer: ¹H NMR (600 MHz, CDCl₃): δ 7.87–7.83 (m, 2H), 7.69–7.64 (m, 1H), 7.57–7.52 (m, 2H), 7.31–7.24 (m, 2H), 7.22–7.16 (m, 2H), 7.12 (d, J = 7.5 Hz, 1H), 4.68 (d, J = 10.7 Hz, 1H), 3.88–3.80 (m, 1H), 3.60 (s, 3H), 3.47–3.43 (m, 1H), 3.32–3.25 (m, 2H), 3.20–3.15 (m, 1H), 2.70–2.51 (m, 2H), 2.02–1.94 (m, 2H), 1.94–1.73 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 169.2, 165.5, 140.6, 138.8, 134.4, 134.3, 129.2, 129.1, 129.1, 128.6, 128.5, 128.5, 128.3, 126.3, 72.9, 53.1, 47.1, 46.2, 40.8, 32.8, 32.4, 26.1, 24.4. Minor diastereomer, caracteristic signals: ¹H NMR (600 MHz, CDCl₃): δ 4.43 (d, J = 9.9 Hz, 1H), 3.59–3.49 (m, 3H), 3.36 (s, 3H), 2.80–2.73 (m, 1H), 2.35–2.28 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 170.2, 166.6, 140.9, 138.0, 126.2, 72.5, 52.9, 47.0, 46.0, 41.9, 32.3, 32.1, 26.0.

Mixture: **IR (neat)** v_{max}: 3060, 3026, 2952, 2876, 2665, 1734, 1631, 1445, 1325, 1226, 1143, 1082, 914, 732, 689; **HRMS (ESI+)**: exact mass calculated for [M+Na]⁺ (C₂₃H₂₇NO₅SNa) requires *m/z* 452.1502, found *m/z* 452.1517.

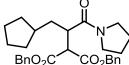

Ethyl 2-((diphenylmethylene)amino)-5-phenyl-3-(pyrrolidine-1-carbonyl)pentanoate (2n)

Diastereomer 1: ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 7.7 Hz, 2H), 7.47–7.40 (m, 3H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.30–7.22 (m, 4H), 7.20 (d, *J* = 7.0 Hz, 2H), 7.17–7.12 (m, 3H), 4.27 (d, *J* = 9.9 Hz, 1H), 4.16–4.05 (m, 2H), 4.00–3.95 (m, 1H), 3.53–3.47 (m, 1H), 3.40–3.34 (m, 1H), 3.34–3.28 (m, 1H), 3.20–3.14 (m, 1H), 2.69–2.63 (m, 1H), 2.54–2.48 (m, 1H), 2.05–1.97 (m, 1H), 1.89–1.83 (m, 1H), 1.81–1.64 (m, 4H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 171.4, 171.2, 171.0, 141.5, 139.5, 135.7, 130.4, 128.8 (2C), 128.7, 128.5 (2C), 128.4 (2C), 128.3 (2C), 128.2 (2C), 128.0 (2C), 126.0, 69.3, 61.0, 47.1, 47.0, 45.8, 33.5, 30.5, 26.1, 24.6, 14.2; IR (neat) v_{max}: 3059, 3027, 2923, 2853, 1736, 1658, 1633, 1578, 1493, 1447, 1277, 1182, 1156, 1001, 700; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₃₁H₃₄N₂O₃Na) requires *m/z* 505.2462, found *m/z* 505.2459.

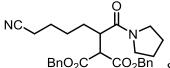
Diastereomer 2: ¹H NMR (400 MHz, CDCl₃): δ 7.58–7.54 (m, 2H), 7.36–7.30 (m, 4H), 7.28–7.23 (m, 2H), 7.20–7.05 (m, 7H), 4.43 (d, *J* = 9.0 Hz, 1H), 4.02 (q, *J* = 7.1 Hz, 2H), 3.60–3.51 (m, 1H), 3.37–3.27 (m, 3H), 3.22–3.15 (m, 1H), 2.60–2.50 (m, 1H), 2.49–2.40 (m, 1H), 1.84–1.70 (m, 6H), 1.14 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 172.0, 171.3, 141.8, 139.8, 136.2, 130.5, 129.1 (2C), 128.9, 128.6 (2C), 128.5 (4C), 128.3 (2C), 128.2 (2C), 126.0, 67.7, 61.2, 46.8, 46.4, 45.8, 33.0, 31.1, 26.2, 24.5, 14.2; IR (neat) v_{max} : 3058, 3025, 2923, 2855, 1731, 1629, 1576, 1492, 1440, 1186, 1027, 696; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₃₁H₃₄N₂O₃Na) requires *m/z* 505.2462, found *m/z* 505.2459.


Dibenzyl 2-(1-oxo-1-(pyrrolidin-1-yl)undec-10-en-2-yl)malonate (20)

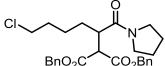
BnO₂C[•] CO₂Bn[•] 69% yield; ¹H NMR (600 MHz, CDCl₃): δ 7.32–7.27 (m, 8H), 7.25–7.21 (m, 2H), 5.79 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.18–5.11 (m, 3H), 5.03–4.90 (m, 3H), 4.03 (d, J = 10.9 Hz, 1H), 3.72–3.67 (m, 1H), 3.44–3.37 (m, 3H), 3.23 (td, J = 10.2, 3.9 Hz, 1H), 2.04–1.99 (m, 2H), 1.90–1.83 (m, 2H), 1.82–1.76 (m, 2H), 1.58–1.51 (m, 1H), 1.36–1.30 (m, 3H), 1.26–1.11 (m, 8H); ¹³C NMR (150 MHz, CDCl₃): δ 171.8, 168.7, 168.3, 139.2, 135.3 (2C), 128.6 (2C), 128.6 (2C), 128.5, 128.4 (2C), 128.3, 128.1 (2C), 114.3, 67.3 (2C), 54.9, 46.9, 45.8, 43.0, 33.8, 31.0, 29.7, 29.3, 29.1, 28.9, 26.4, 26.0, 24.4; IR


(neat) v_{max} : 3066, 3033, 2925, 2854, 1730, 1634, 1498, 1441, 1379, 1165, 1141, 998, 909, 738, 697; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₃₂H₄₁NO₅Na) requires *m/z* 542.2877, found *m/z* 542.2878.

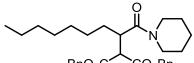
Dibenzyl 2-(1-oxo-1-(pyrrolidin-1-yl)hex-5-yn-2-yl)malonate (2p)


BnO₂C^{\sim}CO₂Bn^{$-}</sup> 55% yield; ¹H NMR (500 MHz, CDCl₃): <math>\delta$ 7.32–7.27 (m, 8H), 7.24–7.21 (m, 2H), 5.19 (d, *J* = 12.3 Hz, 1H), 5.15–5.10 (m, 2H), 5.02 (d, *J* = 12.3 Hz, 1H), 4.00 (d, *J* = 10.8 Hz, 1H), 3.75–3.68 (m, 1H), 3.65–3.59 (m, 1H), 3.47–3.36 (m, 3H), 2.26–2.19 (m, 1H), 2.12–2.05 (m, 1H), 1.95 (t, *J* = 2.6 Hz, 1H), 1.92–1.75 (m, 5H), 1.70–1.62 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 170.9, 168.2, 168.0, 135.2, 135.2, 128.7 (2C), 128.6 (2C), 128.5, 128.3 (br.), 128.1 (2C), 69.3, 67.5, 67.4, 54.8, 47.1, 46.0, 41.7, 29.9, 26.0, 24.4, 15.8; IR (neat) v_{max}: 3288, 3065, 3034, 2953, 2927, 2877, 1498, 1730, 1631, 1498, 1452, 1378, 1221, 1189, 1145, 1001, 744, 698; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₇H₂₉NO₅Na) requires *m/z* 470.1938, found *m/z* 470.1935.</sup>

Dibenzyl 2-(3-cyclopentyl-1-oxo-1-(pyrrolidin-1-yl)propan-2-yl)malonate (2q)


BnO₂C[•] CO₂Bn[•] 59% yield; ¹H NMR (600 MHz, CDCl₃): δ 7.33–7.28 (m, 8H), 7.25–7.22 (m, 2H), 5.19–5.10 (m, 3H), 5.03–5.00 (m, 1H), 3.96 (d, *J* = 10.8 Hz, 1H), 3.76 (dt, *J* = 9.8, 6.6 Hz, 1H), 3.46–3.36 (m, 3H), 3.24 (td, *J* = 10.6, 3.6 Hz, 1H), 1.91–1.83 (m, 2H), 1.82–1.77 (m, 2H), 1.74–1.68 (m, 1H), 1.68–1.72 (m, 3H), 1.52–1.38 (m, 4H), 1.24 1.18 (m, 1H), 1.03–0.94 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 172.1, 168.6, 168.3, 135.4, 135.3, 128.7 (2C), 128.6 (2C), 128.6 (2C), 128.5, 128.4, 128.1 (2C), 67.4, 67.3, 55.7, 47.1, 46.0, 42.5, 38.0, 37.2, 33.4, 32.9, 26.1, 25.4, 25.4, 24.4; IR (neat) v_{max}: 2950, 1749, 1734, 1449, 1341, 1168, 749, 698; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₉H₃₆NO₅) requires *m/z* 478.2588, found *m/z* 478.2593.

Dibenzyl 2-(6-cyano-1-oxo-1-(pyrrolidin-1-yl)hexan-2-yl)malonate (2r)


BnO₂C^{- CO₂Bn 85% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.28 (m, 8H), 7.26–7.22 (m, 2H), 5.20–5.10 (m, 3H), 5.05–5.00 (m, 1H), 4.00 (d, J = 10.9 Hz, 1H), 3.71 (dt, J = 9.7, 6.7 Hz, 1H), 3.44–3.36 (m, 3H), 3.28–3.20 (m, 1H), 2.19 (td, J = 7.1, 2.0 Hz, 2H), 1.96–1.75 (m, 4H), 1.59–1.43 (m, 3H), 1.40–1.29 (m, 3H); ¹³C NMR (175 MHz, CDCl₃): δ 171.3, 168.5, 168.1, 135.3, 135.3, 128.7 (2C), 128.7, 128.6 (2C), 128.6 (2C), 128.4, 128.2 (2C), 119.5, 67.4, 67.4, 54.7, 47.1, 46.0, 42.7, 30.0, 26.0, 25.5 (2C), 24.4, 17.0; IR (neat) v_{max} : 2951, 1731, 1632, 1453, 1261, 1144, 1003, 751, 699; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₈H₃₃N₂O₅) requires *m/z* 477.2384, found *m/z* 477.2387.}

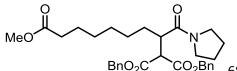
Dibenzyl 2-(6-chloro-1-oxo-1-(pyrrolidin-1-yl)hexan-2-yl)malonate (2s)

BnO₂C⁻⁻⁻CO₂Bn 73% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.27 (m, 8H), 7.25–7.21 (m, 2H), 5.15 (s, 2H), 5.13 (d, *J* = 12.4 Hz, 1H), 5.02 (d, *J* = 12.4 Hz, 1H), 4.01 (d, *J* = 10.9 Hz, 1H), 3.74–3.66 (m, 1H), 3.46–3.36 (m, 5H), 3.28–3.21 (m, 1H), 1.92–1.74 (m, 4H), 1.65–1.54 (m, 3H), 1.40–1.33 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 168.5, 168.2, 135.3 (2C), 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.3 (2C), 128.1 (2C), 67.4, 67.3, 54.8, 47.0, 45.9, 44.6, 42.8, 32.6, 30.2, 26.0, 24.4, 23.7; IR (neat) v_{max} : 3064, 3034, 2953, 2875, 1732, 1634, 1498, 1452, 1377, 1342, 1143, 1002, 910, 740, 699; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₇H₃₂ClNO₅Na) requires *m/z* 508.1861, found *m/z* 508.1860.

Dibenzyl 2-(1-oxo-1-(piperidin-1-yl)nonan-2-yl)malonate (2t)

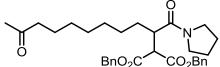
BnO₂C^CCO₂Bn 59% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.26–7.19 (m, 8H), 7.19–7.15 (m, 2H), 5.08–5.04 (m, 3H), 4.96 (d, J = 12.4 Hz, 1H), 4.00 (d, J = 10.8 Hz, 1H), 3.47–3.39 (m, 4H), 1.63–1.51 (m, 3H), 1.46–1.37 (m, 4H), 1.31–1.23 (m, 1H), 1.21–1.01 (m, 11H), 0.79 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 168.8, 168.3, 135.5, 135.4, 128.6, 128.6, 128.5, 128.4, 128.2, 128.1, 67.3, 67.2, 54.9, 47.3, 43.2, 40.4, 31.9, 30.8, 29.8, 29.1, 26.4, 26.3, 25.8, 24.7, 22.7, 14.2; IR (neat) v_{max}: 3065,

3033, 2925, 2854, 1749, 1731, 1631, 1498, 1453, 1376, 1251, 1175, 1137, 1003, 737, 697; **HRMS (ESI+):** exact mass calculated for [M+Na]⁺ (C₃₁H₄₁NO₅Na) requires *m/z* 530.2877, found *m/z* 530.2880.

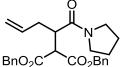

Dibenzyl 2-(1-(dimethylamino)-1-oxononan-2-yl)malonate (2u)

BnO₂C^CCO₂Bn 74% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.23 (m, 8H), 7.22–7.19 (m, 2H), 5.15–5.06 (m, 3H), 5.00–4.94 (m, 1H), 3.99 (dd, J = 10.8, 4.1 Hz, 1H), 3.41 (ddd, J = 10.8, 9.0, 4.1 Hz, 1H), 3.03 (s, 3H), 2.86 (s, 3H), 1.53–1.43 (m, 1H), 1.36–1.26 (m, 1H), 1.26–1.05 (m, 10H), 0.82 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 173.5, 168.7, 168.4, 135.4, 135.4, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 67.3, 67.3, 55.1, 40.7, 37.8, 35.9, 31.9, 31.1, 29.8, 29.2, 26.4, 22.7, 14.2. IR (neat) v_{max} : 2926, 2856, 1731, 1641, 1498, 1456, 1415, 1401, 1377, 1341, 1234, 1214, 1143, 1002, 748, 698; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₈H₃₈NO₅) requires *m/z* 468.2744, found *m/z* 468.2756.

1,1-dibenzyl 8-methyl 2-((4-methoxybenzyl)(methyl)carbamoyl)octane-1,1,8-tricarboxylate (2v)


BNO₂C CO₂Bn 51% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.22 (m, 10H), 7.21–7.12 (m, 2H), 6.90–6.79 (m, 2H), 5.21–5.04 (m, 4H), 4.61–4.35 (m, 2H), 4.11–4.06 (m, 1H), 3.83–3.74 (m, 3H), 3.66 (s, 3H), 3.62–3.44 (m, 1H), 2.98–2.75 (m, 3H), 2.28–2.22 (m, 2H), 1.58–1.33 (m, 4H), 1.30–1.06 (m, 6H) (rotameric effects present); ¹³C NMR (101 MHz, CDCl₃): δ 174.2, 173.4, 173.3, 168.6, 168.4, 168.3, 159.2, 159.1, 135.5, 135.4, 135.4, 129.6, 129.5, 128.7, 128.7, 128.6, 128.5, 128.5, 128.4, 128.3, 128.2, 128.1, 114.3, 114.0, 67.4, 67.3, 55.4, 55.0, 54.6, 53.1, 51.5, 50.6, 41.0, 40.9, 35.1, 34.1, 33.6, 30.9, 29.5, 28.9, 26.0, 24.9 (rotameric effects present); **IR (neat)** v_{max} : 2936, 2858, 1733, 1639, 1613, 1512, 1456, 1246, 1175, 1033, 751, 699; **HRMS (ESI+)**: exact mass calculated for [M+H]⁺ (C₃₆H₄₃NO₈) requires *m/z* 618.3061, found *m/z* 618.3069.

1,1-Dibenzyl 8-methyl 2-(pyrrolidine-1-carbonyl)octane-1,1,8-tricarboxylate (2w)

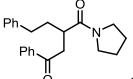

 $BnO_2C^{-1}CO_2Bn = 68\%$ yield; ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.27 (m, 8H), 7.24–7.20 (m, 2H), 5.15–5.09 (m, 3H), 5.00 (d, *J* = 12.4 Hz, 1H), 4.01 (d, *J* = 10.9 Hz, 1H), 3.72–3.66 (m, 1H), 3.64 (s, 3H), 3.43–3.36 (m, 3H), 3.26–3.18 (m, 1H), 2.25 (t, *J* = 7.5 Hz, 2H), 1.89–1.74 (m, 4H), 1.58–1.49 (m, 3H), 1.30–1.12 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 174.2, 171.7, 168.6, 168.3, 135.4 (2C), 128.6, 128.5, 128.4, 128.3, 128.1, 67.3 (2C), 54.9, 51.5, 46.9, 45.8, 43.0, 34.0, 30.9, 29.4, 28.9, 26.3, 26.0, 24.9, 24.4; IR (neat) v_{max}: 3033, 2931, 2858, 1730, 1633, 1498, 1439, 1212, 1002, 749, 698; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₃₁H₃₉NO₇Na) requires *m/z* 560.2619, found *m/z* 560.2615.

Dibenzyl 2-(1,10-dioxo-1-(pyrrolidin-1-yl)undecan-2-yl)malonate (2x)

BNO₂C CO₂Bn 67% yield (88% brsm); ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.26 (m, 8H), 7.23–7.19 (m, 2H), 5.14–5.09 (m, 3H), 5.00 (d, J = 12.4 Hz, 1H), 4.00 (d, J = 10.9 Hz, 1H), 3.71–3.64 (m, 1H), 3.43–3.34 (m, 3H), 3.25–3.18 (m, 1H), 2.37 (t, J = 7.4 Hz, 2H), 2.10 (s, 3H), 1.90–1.74 (m, 4H), 1.54–1.46 (m, 3H), 1.36–1.28 (m, 1H), 1.26–1.10 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 209.2, 171.7, 168.6, 168.2, 135.3 (2C), 128.6, 128.5, 128.4, 128.3, 128.3, 128.0, 67.2 (2C), 54.9, 46.9, 45.8, 43.7, 43.0, 30.9, 29.9, 29.6, 29.1, 29.1, 26.3, 26.0, 24.3, 23.8; IR (neat) v_{max} : 3065, 3034, 2928, 2856, 1732, 1634, 1498, 1452, 1345, 1260, 1166, 1001, 749, 699; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₃₂H₄₁NO₆Na) requires *m/z* 558.2826, found *m/z* 558.2825.

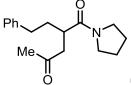
Dibenzyl 2-(1-oxo-1-(pyrrolidin-1-yl)pent-4-en-2-yl)malonate (2y)

BnO₂C^{\sim}CO₂Bn 70% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.27 (m, 8H), 7.25–7.21 (m, 2H), 5.68 (ddt, *J* = 17.4, 10.1, 7.3 Hz, 1H), 5.20–5.08 (m, 3H), 5.05–4.95 (m, 3H), 4.04 (d, *J* = 10.8 Hz, 1H), 3.64–3.56 (m, 1H), 3.46–3.35 (m, 3H), 3.35–3.27 (m, 1H), 2.36–2.26 (m, 1H), 2.22–2.14 (m, 1H), 1.88–1.74 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 168.4, 168.1, 135.3, 135.3, 133.9, 128.6, 128.6, 128.5, 128.3, 128.1, 118.0, 67.3 (2C), 54.5, 46.8, 45.8, 43.0, 35.0, 26.0, 24.4; IR (neat) v_{max}: 3065, 3034, 2971, 2876,

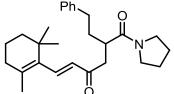

1730, 1632, 1498, 1448, 1218, 1167, 1146, 999, 915, 748, 698; HRMS (ESI+): exact mass calculated for $[M+Na]^+(C_{26}H_{29}NO_5Na)$ requires m/z 458.1938, found m/z 458.1937.

Dibenzyl 2-(1-oxo-1-(pyrrolidin-1-yl)hept-6-en-2-yl)malonate (2z)

BnO₂C


 CO_2Bn 61% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.27 (m, 8H), 7.25–7.20 (m, 2H), 5.68 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.16–5.10 (m, 3H), 5.02 (d, J = 12.4 Hz, 1H), 4.97–4.87 (m, 2H), 4.03 (d, J = 10.9 Hz, 1H), 3.74–3.66 (m, 1H), 3.46–3.35 (m, 3H), 3.29–3.20 (m, 1H), 1.94–1.73 (m, 6H), 1.61– 1.52 (m, 1H), 1.41–1.23 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 168.6, 168.3, 138.2, 135.4 (2C), 128.6, 128.6, 128.5, 128.4, 128.3, 128.1, 114.9, 67.3 (2C), 54.9, 46.9, 45.9, 43.0, 33.8, 30.5, 26.0, 25.7, 24.4; IR (neat) v_{max}: 3066, 3034, 2929, 2874, 1731, 1634, 1498, 1447, 1166, 1144, 998, 911, 740, 698; **HRMS (ESI+):** exact mass calculated for $[M+Na]^+$ (C₂₈H₃₅NO₅Na) requires m/z 486.2251, found m/z486.2249.

2-Phenethyl-4-phenyl-1-(pyrrolidin-1-yl)butane-1,4-dione (2ab)


O 66% yield (65% yield on 2 mmol scale); ¹H NMR (600 MHz, CDCl₃): δ 7.96 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (*app* t, J = 7.7 Hz, 2H), 7.28 (*app* t, J = 7.6 Hz, 2H), 7.20–7.18 (m, 3H), 3.75–3.71 (m 1H), 3.66 (*app* dd, J = 17.8, 9.2 Hz, 1H), 3.49–3.39 (m, 2H), 3.33–3.28 (m, 1H), 3.23–3.18 (m, 1H), 3.04 (*app* dd, J = 17.8, 4.0 Hz, 1H), 2.72–2.65 (m, 2H), 2.08–1.80 (m, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 199.3, 173.6, 141.6, 136.8, 133.3, 128.7, 128.6, 128.5, 128.2, 126.2, 46.7, 45.9, 41.7, 38.5, 34.4, 33.6, 26.2, 24.5; IR (neat) v_{max} : 2922, 2853, 1683, 1631, 1450, 1362, 1343, 1220,747, 696; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₂H₂₆NO₂) requires *m/z* 336.1958, found *m/z* 336.1963.

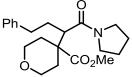
2-Phenethyl-1-(pyrrolidin-1-yl)pentane-1,4-dione (2ac)

O 50% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.24 (m, 2H), 7.20–7.13 (m, 3H), 3.65 (dt, J = 10.0, 6.9 Hz, 1H), 3.51–3.35 (m, 2H), 3.28–3.21 (m, 1H), 3.14–3.05 (m, 1H), 3.03–2.95 (m, 1H), 2.62 (dt, J = 14.4, 7.2 Hz, 2H), 2.51 (*app* dd, J = 17.6, 3.6 Hz, 1H), 1.96–1.70 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 207.9, 173.5, 141.5, 128.6, 128.4, 126.2, 46.6, 46.3, 45.9, 38.2, 34.1, 33.4, 30.3, 26.2, 24.5; IR (neat) v_{max} : 2952, 2926, 2874, 1712, 1318, 1445, 1365, 1343, 1169, 1040, 750, 701; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₁₇H₂₄NO₂) requires *m/z* 274.1802, found *m/z* 274.1807.

(E)-2-Phenethyl-1-(pyrrolidin-1-yl)-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hex-5-ene-1,4-dione (2ad)

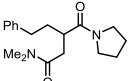
58% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.24 (m, 3H), 7.20–7.16 (m, 3H), 6.11 (d, J = 16.4 Hz, 1H), 3.68 (dt, J = 10.2, 6.9 Hz, 1H), 3.53–3.38 (m, 2H), 3.31–3.23 (m, 1H), 3.23–3.15 (m, 1H), 3.13–3.05 (m, 1H), 2.73–2.61 (m, 3H), 2.06 (t, J = 6.4 Hz, 2H), 2.01–1.79 (m, 6H), 1.75 (s, 3H), 1.64–1.58 (m, 2H), 1.48–1.45 (m, 2H), 1.05 (app d, J = 2.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 173.7, 142.6, 141.7, 136.6, 136.2, 130.5, 128.5 (2C), 128.5 (2C), 126.1, 46.7, 45.9, 43.5, 40.0, 38.5, 128.5 (2C), 128.5 (2C), 126.1, 46.7, 45.9, 43.5, 40.0, 38.5, 128.5 (2C), 128.5 (2C), 126.1, 46.7, 45.9, 43.5, 40.0, 38.5, 128.5 (2C), 128.5 (2C), 126.1, 46.7, 45.9, 43.5, 40.0, 38.5, 128.5 (2C), 128.5 (2C), 128.5 (2C), 126.1, 46.7, 45.9, 43.5, 40.0, 38.5, 128.5 (2C), 128.5 (2C), 128.5 (2C), 126.1, 46.7, 45.9, 43.5, 40.0, 38.5, 128.5 (2C), 128

34.4, 34.2, 33.8, 33.6, 29.0, 28.9, 26.2, 24.5, 21.9, 19.0; **IR (neat)** v_{max}: 2931, 2873, 1718, 1617, 1453, 1364, 1255, 1229, 1190, 701; **HRMS (ESI+)**: exact mass calculated for [M+Na]⁺ (C₂₇H₃₇NO₂Na) requires *m/z* 430.2717, found *m/z* 430.2716.

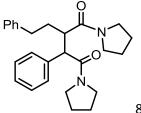

Ethyl 2,5-diphenyl-3-(pyrrolidine-1-carbonyl)pentanoate (2ae)

73% yield (d.r. 1.1:1 from isolation)

Major diasteromer ¹H NMR (600 MHz, CDCl₃): δ 7.36–7.32 (m, 2H), 7.29–7.15 (m, 8H), 4.21–4.15 (m, 1H), 4.12–4.06 (m, 1H), 3.86 (d, *J* = 11.2 Hz, 1H), 3.25–3.17 (m, 2H), 3.03–2.97 (m, 1H), 2.91–2.86 (m, 1H), 2.72–2.61 (m, 2H), 2.56–2.48 (m, 1H), 2.23–2.14 (m, 1H), 1.95–1.88 (m, 1H), 1.62–1.53 (m, 2H), 1.38–1.30 (m, 2H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 173.1, 171.1, 141.4, 136.9, 128.5, 128.4, 128.3, 127.6, 126.1, 61.1, 54.9, 48.1, 46.4, 45.3, 33.5, 32.9, 25.8, 24.1, 14.2; IR (neat) v_{max}: 2972, 2930, 2874, 1727, 1632, 1494, 1450, 1340, 1151, 1029, 748, 701; HRMS (ESI+): exact mass calculated for [M+H]⁺(C₂₄H₃₀NO₃) requires *m/z* 380.2220, found *m/z* 380.2220.


Minor diasteromer ¹H NMR (600 MHz, CDCl₃): δ 7.35–7.27 (m, 5H), 7.19 (*app* t, *J* = 7.5 Hz, 2H), 7.12 (t, *J* = 7.3 Hz, 1H), 6.97 (d, *J* = 7.4 Hz, 2H), 4.08–3.94 (m, 3H), 3.87–3.79 (m, 1H), 3.56–3.43 (m, 2H), 3.32–3.26 (m, 1H), 3.22 (ddd, *J* = 11.1, 9.6, 3.9 Hz, 1H), 2.61–2.53 (m, 1H), 2.41–2.34 (m, 1H), 2.01–1.73 (m, 5H), 1.55–1.47 (m, 1H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 173.7, 173.0, 141.5, 137.3, 128.9, 128.7, 128.4, 128.3, 127.7, 126.0, 61.0, 54.4, 46.9, 46.0, 45.9, 32.7, 31.6, 26.2, 24.5, 14.0; IR (neat) v_{max}: 3027, 2975, 2875, 1725, 1633, 1495, 1452, 1342, 1174, 1030, 752, 701; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₄H₃₀NO₃) requires *m/z* 380.2220, found *m/z* 380.2213.

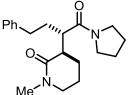
Methyl 4-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)tetrahydro-2H-pyran-4-carboxylate (2af)


83% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.25 (m, 2H), 7.22–7.10 (m, 3H), 3.89–3.78 (m, 2H), 3.72 (s, 3H), 3.55–3.29 (m, 5H), 3.23 (t, J = 12.0 Hz, 1H), 3.17–3.08 (m, 1H), 2.73–2.63 (m, 2H), 2.42–2.32 (m, 1H), 2.32–2.20 (m, 1H), 2.11 (d, J = 13.4 Hz, 1H), 2.01–1.95 (m, 2H), 1.90–1.79 (m, 4H), 1.64 (td, J = 12.8, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 175.2, 170.7, 141.3, 128.5 (2C), 128.4 (2C), 126.2, 66.0, 65.6, 52.1, 50.8, 48.6, 47.3, 45.9, 33.8, 32.9, 30.5, 28.8, 26.3, 24.5; IR (neat) v_{max}: 2954, 2871, 1725, 1633, 1444, 1340, 1220, 1199, 1034, 702; **HRMS (ESI+):** exact mass calculated for [M+Na]⁺ (C₂₁H₂₉NO₄Na) requires *m/z* 382.1989, found *m/z* 382.1990.

N,N-dimethyl-5-phenyl-3-(pyrrolidine-1-carbonyl)pentanamide (2ag)

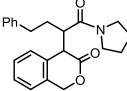
O 66% yield; ¹H NMR (600 MHz, CDCl₃): δ 7.27–7.24 (m, 2H), 7.18–7.15 (m, 3H), 3.75–3.68 (m, 1H), 3.51–3.44 (m, 1H), 3.44–3.37 (m, 1H), 3.30–3.23 (m, 1H), 3.16–3.09 (m, 1H), 2.99 (s, 3H), 2.97–2.91 (m, 1H), 2.89 (s, 3H), 2.68–2.57 (m, 2H), 2.34 (dd, J = 16.2, 3.8 Hz, 1H), 1.96–1.77 (m, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 174.0, 171.7, 141.7, 128.5, 128.4, 126.1, 46.6, 45.8, 39.5, 37.4, 36.2, 35.6, 34.5, 33.5, 26.1, 24.5; IR (neat) v_{max} : 2930, 2876, 1630, 1496, 1454, 1402, 1344, 1144, 751, 702; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₃₀H₂₆N₂O₂) requires *m/z* 303.2067, found *m/z* 303.2063.

2-Phenethyl-3-phenyl-1,4-di(pyrrolidin-1-yl)butane-1,4-dione (2ah)


86% yield, d.r. 2.3:1.

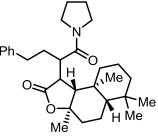
Diastereomer 1: ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.36 (m, 2H), 7.34–7.29 (m, 2H), 7.28–7.26 (m, 1H), 7.21–7.15 (m, 2H), 7.13–7.07 (m, 1H), 6.99–6.94 (m, 2H), 4.05 (d, *J* = 10.6 Hz, 1H), 4.03–3.98 (m, 1H), 3.71–3.64 (m, 1H), 3.50–3.24 (m, 6H), 3.23–3.16 (m, 1H), 2.57–2.48 (m, 1H), 2.38–2.30 (m, 1H), 1.99–1.65 (m, 9H), 1.53–1.44 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 173.8, 171.1, 141.8, 137.7, 129.2 (2C), 128.8 (2C), 128.4 (4C), 127.4, 125.9, 53.8, 47.0, 46.8, 46.3, 46.1, 45.9, 33.0, 31.9, 26.1, 26.0, 24.6, 24.2; IR (neat) v_{max}: 2924, 1632, 1439, 1342, 1032, 756, 702; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₆H₃₂N₂O₂Na) requires *m/z* 427.2356, found *m/z* 427.2359.

Diastereomer 2: ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.37 (m, 2H), 7.28–7.12 (m, 8H), 3.86 (d, *J* = 10.3 Hz, 1H), 3.56 3.47 (m, 2H), 3.43–3.33 (m, 2H), 3.26–3.12 (m, 2H), 3.01–2.94 (m, 1H), 2.93–2.87 (m, 1H), 2.68–2.51 (m, 3H), 2.10–2.01 (m, 2H), 1.91–1.82 (m, 1H), 1.81–1.69 (m, 3H), 1.57–1.49 (m, 2H), 1.38–1.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 170.2, 141.9, 137.3, 128.8 (2C), 128.7 (2C), 128.4 (2C), 128.3 (2C), 127.3, 125.9, 54.0, 48.5, 46.4 (2C), 46.1, 45.2, 33.9, 33.4, 26.0, 25.7, 24.3, 24.1; IR (neat) v_{max}:


2925, 1635, 1437, 1343, 1032, 755, 702; **HRMS (ESI+):** exact mass calculated for [M+Na]⁺ (C₂₆H₃₂N₂O₂Na) requires *m/z* 427.2356, found *m/z* 427.2359.

1-methyl-3-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)piperidin-2-one (2ai)

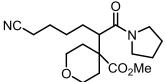
Me^{61%} yield (d.r. 7:1, major diastereomer pictured and assigned from crystal structure), NMR data reported only for major diastereomer; ¹H NMR (600 MHz, CDCl₃): δ 7.28–7.23 (m, 2H), 7.19–7.14 (m, 3H), 3.74–3.70 (m, 1H), 3.40–3.34 (m, 4H), 3.27–3.22 (m, 1H), 3.20–3.17 (m, 1H), 2.88 (s, 3H), 2.67–2.57 (m, 2H), 2.48–2.44 (m, 1H), 2.37–2.30 (m, 1H), 2.04–1.98 (m, 1H), 1.96–1.73 (m, 7H), 1.72–1.64 (m, 1H); ¹³C NMR (151 MHz, CDCl₃): δ 173.6, 171.9, 141.7, 128.5, 128.4, 126.1, 50.0, 46.8, 45.7, 44.1, 42.5, 35.2, 33.9, 32.4, 26.2, 24.5, 23.2, 22.9; IR (neat) v_{max} : 2926, 2869, 1616, 1497, 1441, 1409, 1344, 1246, 1197, 1043, 1032, 749, 730, 701, 678; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₂₀H₂₉N₂O₂) requires *m/z* 329.2224, found *m/z* 329.2216.


4-(1-Oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)isochroman-3-one (2aj)

55% yield, d.r. 1.8/1; Diastereomers not completely separable, therefore only the major isomer is reported (for NMR of the mixture of diastereomers, see below).

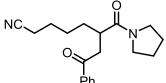
¹H NMR (400 MHz, CDCl₃): δ 7.29–7.22 (m, 4H), 7.19–7.10 (m, 5H), 5.40 (d, J = 14.5 Hz, 1H), 5.20 (d, J = 14.5 Hz, 1H), 3.99 (d, J = 11.1 Hz, 1H), 3.36–3.19 (m, 2H), 2.87–2.76 (m, 2H), 2.62–2.55 (m, 1H), 2.53–2.36 (m, 2H), 2.14–2.05 (m, 1H), 1.90–1.83 (m, 1H), 1.69–1.60 (m, 1H), 1.58–1.48 (m, 1H), 1.48–1.38 (m, 1H), 1.33–1.23 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 169.9, 140.9, 133.4, 131.0, 128.6, 128.6 (2C), 128.5 (2C), 128.3, 127.9, 126.3, 124.4, 69.6, 49.8, 45.9, 45.7, 43.3, 33.0, 31.7, 25.8, 24.1; IR (neat) v_{max} : 2922, 1737, 1630, 1451, 1233, 1191, 1032, 701; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₃H₂₅NO₃Na) requires *m/z* 386.1727, found *m/z* 386.1728.

(3aR,5aS,9aS,9bR)-3a,6,6,9a-Tetramethyl-1-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2yl)decahydronaphtho[2,1-b]furan-2(*1H*)-one (2ak)

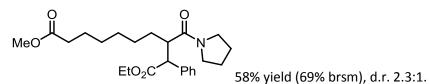


63% yield (d.r. 1.3:1 from isolation)

Major diasteromer ¹**H NMR (600 MHz, CDCl₃)**: δ 7.28–7.24 (m, 2H), 7.19–7.14 (m, 3H), 3.62–3.51 (m, 2H), 3.39–3.34 (m, 1H), 3.34–3.28 (m, 1H), 2.99 (dd, *J* = 13.1, 2.9 Hz, 1H), 2.86–2.78 (m, 2H), 2.56–2.49 (m, 1H), 2.48–2.41 (m, 1H), 2.04–1.79 (m, 8H), 1.73–1.69 (m, 1H), 1.63 (*app* td, *J* = 12.6, 4.0 Hz, 1H), 1.55–1.47 (m, 1H), 1.34–1.17 (m, 7H), 1.09 (*app* td, *J* = 13.5, 3.8 Hz, 1H), 1.00 (dd, *J* = 12.7, 2.5 Hz, 1H), 0.92 (s, 3H), 0.86 (s, 3H), 0.79 (s, 3H); ¹³**C NMR (151 MHz, CDCl₃)**: δ 175.5, 170.9, 142.0, 128.9, 128.4, 126.1, 83.3, 59.9, 56.5, 46.7, 46.5, 42.2, 41.7, 41.5, 39.2, 38.7, 38.1, 33.9, 33.4, 28.7, 26.7, 24.3, 23.2, 21.0, 20.5, 18.3, 16.6; **IR (neat) v**_{max}: 2930, 2869, 1771, 1637, 1439, 1390, 1341, 1285, 1192, 1168, 1120, 1024, 950, 730, 702; **HRMS (ESI+)**: exact mass calculated for [M+H]⁺ (C₃₀H₄₃NO₃) requires *m/z* 466.3316, found *m/z* 466.3309.

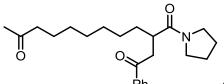

Minor diasteromer ¹H NMR (600 MHz, CDCl₃): δ 7.29 (*app* t, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 7.1 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 1H), 3.50–3.41 (m, 2H), 3.20–3.08 (m, 2H), 3.04–2.95 (m, 2H), 2.83 (dt, *J* = 11.1, 3.4 Hz, 1H), 2.73–2.65 (m, 2H), 2.16 (d, *J* = 12.8 Hz, 1H), 2.00 (dt, *J* = 11.8, 3.1 Hz, 1H), 1.90–1.74 (m, 7H), 1.63–1.54 (m, 1H), 1.35–1.25 (m, 8H), 1.07 (*app* td, *J* = 13.6, 3.9 Hz, 1H), 1.04–1.00 (m, 1H), 0.89 (s, 3H), 0.82 (s, 3H), 0.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 177.4, 171.6, 141.2, 128.8, 128.6, 126.4, 83.0, 58.3, 56.0, 45.9, 45.9, 43.2, 41.9, 39.8, 38.4, 38.2, 37.7, 33.8, 33.3, 29.4, 26.4, 24.3, 23.0, 21.0, 20.6, 18.4, 16.4; IR (neat) v_{max}: 2926, 2868, 1763, 1630, 1438, 1388, 1340, 1280, 1215, 1189, 1169, 1155, 1120, 1097, 1081, 1063, 1040, 1020, 1006, 949, 910, 726, 701, 643; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₃₀H₄₃NO₃) requires *m/z* 466.3316, found *m/z* 466.3308.

Methyl 4-(6-cyano-1-oxo-1-(pyrrolidin-1-yl)hexan-2-yl)tetrahydro-2H-pyran-4-carboxylate (2al)

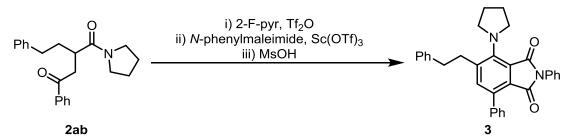

64% yield; ¹H NMR (600 MHz, acetone-d₆): δ 3.78–3.71 (m, 2H), 3.71 (s, 3H), 3.64–3.51 (m, 2H), 3.44–3.33 (m, 3H), 3.16 (td, *J* = 12.1, 1.9 Hz, 1H), 2.83 (dd, *J* = 11.7, 2.8 Hz, 1H), 2.47– 2.38 (m, 2H), 2.14–2.07 (m, 1H), 2.02–1.91 (m, 3H), 1.91–1.78 (m, 4H), 1.66–1.54 (m, 3H), 1.46–1.39 (m, 1H), 1.36–1.27 (m, 2H); ¹³C NMR (150 MHz, acetone-d₆): δ 175.4, 171.2, 120.6, 66.1, 65.8, 52.1, 51.6, 49.0, 47.9, 46.3, 33.4, 30.9, 27.8, 27.5, 26.8, 26.3, 24.9, 16.9; IR (neat) v_{max}: 2955, 2872, 1724, 1628, 1446, 1342, 1224, 1200, 1033; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₁₈H₂₈N₂O₄Na) requires *m/z* 359.1941, found *m/z* 359.1925.

8-Oxo-8-phenyl-6-(pyrrolidine-1-carbonyl)octanenitrile (2am)

Ph 65% yield (89% brsm); ¹H NMR (400 MHz, acetone-d₆): δ 8.03–7.98 (m, 2H), 7.64–7.59 (m, 1H), 7.53–7.48 (m, 2H), 3.82 (dt, J = 9.8, 6.8 Hz, 1H), 3.63–3.53 (m, 2H), 3.38–3.29 (m, 2H), 3.22–3.15 (m, 1H), 3.06 (dd, J = 17.7, 3.9 Hz, 1H), 2.47 (t, J = 7.0 Hz, 2H), 1.98 (app p, J = 6.7 Hz, 2H), 1.86–1.80 (m, 2H), 1.73–1.62 (m, 3H), 1.61–1.48 (m, 3H); ¹³C NMR (150 MHz, acetone-d₆): δ 199.4, 173.7, 137.9, 133.8, 129.4 (2C), 128.8 (2C), 120.6, 47.1, 46.3, 42.1, 39.2, 32.5, 26.9, 26.8, 26.3, 25.0, 17.0; IR (neat) v_{max} : 2923, 2854, 1683, 1624, 1452, 1258, 1225, 1033; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₁₉H₂₄N₂O₂Na) requires *m/z* 335.1730, found *m/z* 335.1726.

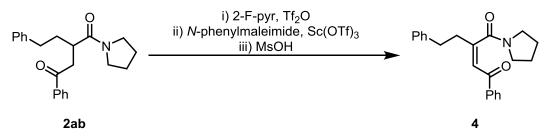

1-Ethyl 10-methyl 2-phenyl-3-(pyrrolidine-1-carbonyl)decanedioate (2an)

Diastereomer 1: ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.31 (m, 2H), 7.25–7.16 (m, 3H), 4.23–4.14 (m, 1H), 4.12–4.04 (m, 1H), 3.81 (d, *J* = 11.2 Hz, 1H), 3.64 (s, 3H), 3.26–3.12 (m, 3H), 3.01–2.93 (m, 1H), 2.86 (dt, *J* = 9.8, 7.4 Hz, 1H), 2.30–2.23 (m, 2H), 1.86–1.76 (m, 1H), 1.69–1.54 (m, 4H), 1.51–1.35 (m, 3H), 1.31–1.17 (m, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 174.4, 173.2, 171.5, 137.0, 128.3 (2C), 128.2 (2C), 127.5, 61.0, 54.8, 51.6, 48.7, 46.6, 45.2, 34.1, 32.0, 29.5, 29.1, 27.6, 25.8, 25.0, 24.1, 14.2; **IR (neat)** v_{max}: 2926, 2856, 1728, 1632, 1493, 1441, 1370, 1341, 1157, 741, 702; **HRMS (ESI+)**: exact mass calculated for [M+Na]⁺ (C₂₄H₃₅NO₅Na) requires *m/z* 440.2407, found *m/z* 440.2414.

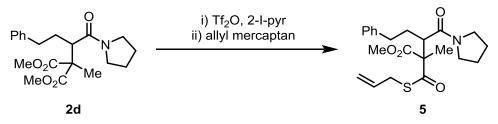

Diastereomer 2: ¹H NMR (600 MHz, CDCl₃): δ 7.37–7.27 (m, 5H), 4.08–3.98 (m, 2H), 3.97–3.91 (m, 2H), 3.65 (s, 3H), 3.55–3.46 (m, 3H), 3.19–3.13 (m, 1H), 2.23 (t, *J* = 7.5 Hz, 2H), 2.06–1.96 (m, 2H), 1.94–1.84 (m, 2H), 1.55–1.48 (m, 2H), 1.45–1.39 (m, 1H), 1.28–1.20 (m, 1H), 1.18–1.05 (m, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 174.3, 173.8, 173.5, 137.5, 128.8 (2C), 128.6 (2C), 127.6, 60.9, 54.4, 51.6, 47.0, 46.6, 45.9, 34.1, 30.6, 29.5, 29.0, 26.7, 26.2, 24.9, 24.6, 14.0; IR (neat) v_{max}: 2933, 2859, 1727, 1634, 1438, 1369, 1342, 1171, 1029, 702; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₄H₃₅NO₅Na) requires *m/z* 440.2407, found *m/z* 440.2414.

1-Phenyl-3-(pyrrolidine-1-carbonyl)dodecane-1,11-dione (2ao)

Ph 43% yield (71% brsm); ¹H NMR (400 MHz, CDCl₃): δ 7.97–7.93 (m, 2H), 7.55–7.50 (m, 1H), 7.45–7.40 (m, 2H), 3.85 (dt, J = 9.7, 6.9 Hz, 1H), 3.62 (dd, J = 17.8, 9.3 Hz, 1H), 3.55–3.39 (m, 3H), 3.20–3.10 (m, 1H), 2.96 (dd, J = 17.8, 3.8 Hz, 1H), 2.40 (t, J = 7.4 Hz, 2H), 2.11 (s, 3H), 2.03–1.93 (m, 2H), 1.89–1.81 (m, 2H), 1.71–1.63 (m, 1H), 1.59–1.47 (m, 3H), 1.34–1.24 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 209.3, 199.6, 174.1, 137.0, 133.2, 128.6 (2C), 128.2 (2C), 46.8, 45.9, 43.9, 41.8, 39.0, 33.0, 30.0, 29.7, 29.4, 27.4, 26.2, 24.5, 23.9; IR (neat) v_{max}: 2926, 2854, 1712, 1682, 1627, 1446, 1359, 1221, 1170, 750, 692; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₃H₃₃NO₃Na) requires m/z394.2353, found m/z 394.2342.

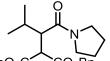

4.3.1. Product Derivatizations and Other Products 5-Phenethyl-2,7-diphenyl-4-(pyrrolidin-1-yl)isoindoline-1,3-dione (3)

To a solution of 2-phenethyl-4-phenyl-1-(pyrrolidin-1-yl)butane-1,4-dione (2ab, 33.5 mg, 0.100 mmol, 1.00 equiv.) and 2-fluoropyridine (18.9 µL, 0.220 mmol, 2.20 equiv.) in dichloromethane (2 mL, 0.05 M) at 0 °C, triflic anhydride (18.5 µL, 0.110 mmol, 1.10 equiv.) was added and the resulting mixture was allowed to warm to ambient temperature (25 °C) over the course of 4 h. After this time, Nphenylmaleimide (17.3 mg, 0.100 mmol, 1.00 equiv.) and scandium(III) triflate (4.90 mg, 0.010 mmol, .10 mol%) were added and the reaction mixture was stirred at ambient temperature for 12 h. After this time, a saturated aqueous solution of sodium bicarbonate (5 mL) was added and the resulting biphasic mixture was extracted with dichloromethane $(3 \times 5 \text{ mL})$. The combined organic extracts were concentrated under reduced pressure and the resulting residue was redissolved in a mixture of toluene and acetonitrile (PhMe/MeCN 3 mL/2 mL, 0.02m). After the subsequent addition of mesylic acid (26.0 µL, 0.400 mmol, 4.00 equiv.), the reaction mixture was heated at 60 °C for 18 h. After this time, excess acid was quenched by the addition of a saturated aqueous solution of sodium bicarbonate (5 mL) and the biphasic mixture was extracted with dichloromethane (3 × 5 mL). The combined organic phases were dried over anhydrous sodium sulfate, the dried solution was filtered and the filtrate was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (SiO₂, heptanes/ethyl acetate 3/1) to afford 38 mg (80%) of **3**.


¹H NMR (400 MHz, CDCl₃): δ 7.51–7.39 (m, 10H), 7.38–7.30 (m, 3H), 7.26–7.18 (m, 3H), 3.41–3.35 (m, 4H), 3.18–3.12 (m, 2H), 2.99–2.93 (m, 2H), 2.15–2.09 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 166.7, 150.4, 147.4, 141.6, 138.7, 137.7, 136.8, 132.0, 129.6 (2C), 129.1 (2C), 128.6 (4C), 128.4, 128.0 (2C), 127.9, 127.8, 127.5, 127.1 (2C), 126.3, 52.7 (2C), 37.6, 34.8, 26.6 (2C).; IR (neat) v_{max}: 2923, 2853, 1711, 1500, 1470, 1454, 1373, 1129, 1114, 743, 696; HRMS (ESI+): exact mass calculated for [M+H]⁺ (C₃₂H₂₉N₂O₂) requires *m/z* 473.2224, found *m/z* 473.2225.

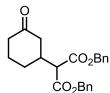
(Z)-2-Phenethyl-4-phenyl-1-(pyrrolidin-1-yl)but-2-ene-1,4-dione (4)

A schlenk tube containing molecular sieves was flame dried under vacuum before being backfilled with argon. 2-phenethyl-4-phenyl-1-(pyrrolidin-1-yl)butane-1,4-dione (2ab) (33.5 mg, 0.1 mmol, 1.0 equiv.) was added followed by dichloromethane (2 mL), 2-fluoropyridine (8.6 μ L, 0.1 mmol, 1.0 equiv.) and TEMPO (34.3 mg, 0.22 mmol, 2.2 equiv.). After cooling to 0 °C, triflic anhydride (18.5 μ L, 0.11 mmol, 1.1 equiv.) was added dropwise and the reaction was then allowed to warm to room temperature where it was stirred for 2.5 hours. Water was then added, the layers separated and the aqueous layer extracted once with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and the solvent removed *in vacuo*. The crude reaction mixture was purified on silica gel (EtOAc/heptanes) to yield **4** as a yellow oil (25.0 mg, 75%). ¹**H NMR (600 MHz, CDCl₃)**: δ 7.85–7.81 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.44 (*app* t, *J* = 7.7 Hz, 2H), 7.32 (*app* t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 7.1 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 6.73 (s, 1H), 3.59 (t, *J* = 6.8 Hz, 2H), 3.23 (t, *J* = 6.6 Hz, 2H), 3.00–2.96 (m, 2H), 2.80–2.75 (m, 2H), 1.94–1.86 (m, 4H).; ¹³**C NMR (151 MHz, CDCl₃**): δ 189.1, 169.2, 154.1, 140.4, 137.5, 133.1, 128.6, 128.6, 128.6, 128.5, 128.4, 126.3, 120.7, 46.9, 45.2, 37.1, 33.1, 25.9, 24.3; **IR (neat)** v_{max}: 2951, 2875, 1735, 1666, 1610, 1495, 1445, 1365, 1337, 1239, 1192, 1043, 784, 750, 701; **HRMS (ESI+)**: exact mass calculated for [M+H]⁺ (C₂₂H₂₄NO₂) requires *m/z* 334.1802, found *m/z* 334.1794.

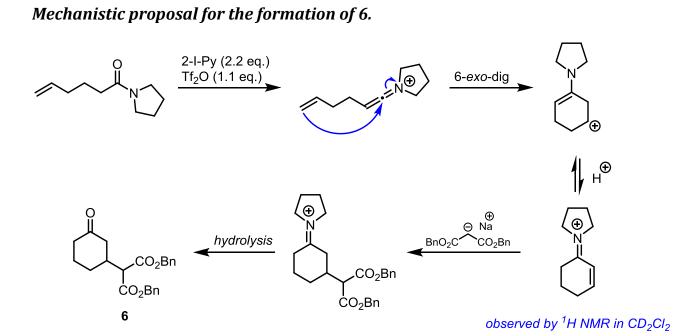


To a solution of dimethyl 2-methyl-2-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)malonate (**2d**, 36.1 mg, 0.100 mmol, 1.00 equiv.) and 2-iodopyridine (21.3 μ L, 0.200 mmol, 2.0 equiv.) in dichloromethane (1 mL, 0.1M) at 0 °C, triflic anhydride (18.5 μ L, 0.110 mmol, 1.10 equiv.) was added and the resulting mixture was allowed to warm to ambient temperature (25 °C) over the course of 1 h. After this timeallyl mercaptan (70%, 35.4 μ L, 0.300 mmol, 3.00 equiv.) was added and the reaction mixture was stirred at ambient temperature for 1 h. After this time, a saturated aqueous solution of sodium bicarbonate (2 mL) was added and the resulting biphasic mixture was extracted with dichloromethane (3 × 5 mL). The combined organic phases were dried over anhydrous sodium sulfate, the dried solution was filtered and the filtrate was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (SiO₂, heptanes/ethyl acetate 3/2) to afford **5** as two diastereomers (43%, d.r. 1.3:1; diastereomer 1: 10 mg (25%); diastereomer 2: 7.4 mg (18%)).

Diastereomer 1: ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.24 (m, 2H), 7.20–7.15 (m, 3H), 5.79–5.67 (m, 1H), 5.22 (app dq, *J* = 16.9, 1.4 Hz, 1H), 5.08 (app dq, *J* = 9.9, 1.2 Hz, 1H), 3.74 (s, 3H), 3.61–3.53 (m, 1H), 3.52–3.34 (m, 5H), 3.29–3.22 (m, 1H), 2.70–2.60 (m, 1H), 2.59–2.49 (m, 1H), 2.25–2.15 (m, 1H), 1.89–1.75 (m, 5H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 171.3, 170.8, 141.3, 132.6, 128.5 (4C), 126.2, 118.4, 64.3, 53.0, 47.3, 47.0, 45.9, 34.0, 32.3, 31.3, 26.3, 24.5, 17.0; IR (neat) v_{max}: 2951, 1739, 1664, 1635, 1231, 1105, 962, 701; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₂H₂₉NO₄SNa) requires *m/z* 426.1710, found *m/z* 426.1711.

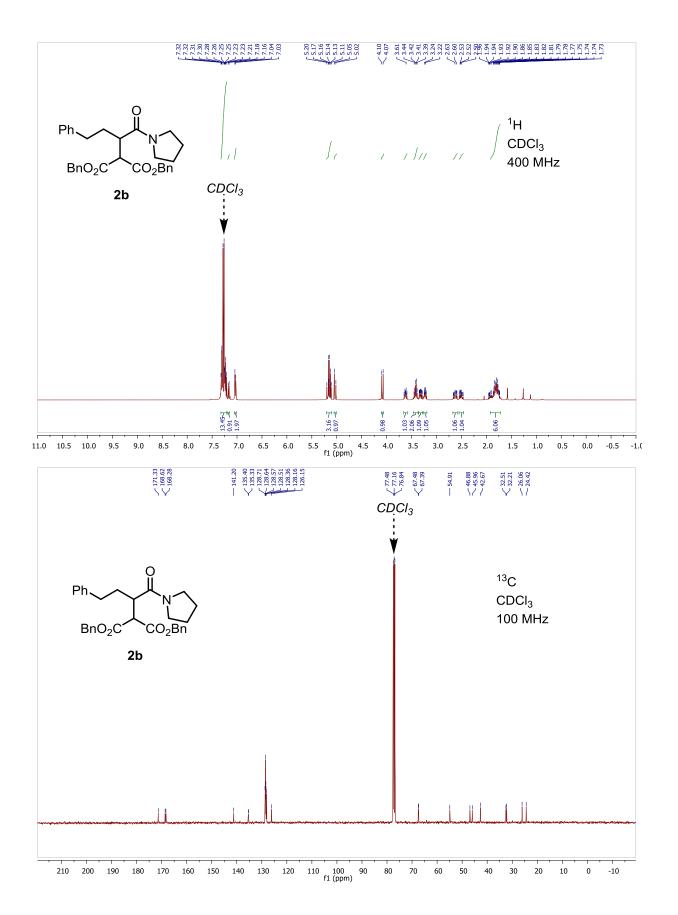

Diastereomer 2: ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.24 (m, 2H), 7.20–7.14 (m, 3H), 5.85–5.73 (m, 1H), 5.26 (app dq, *J* = 16.9, 1.3 Hz, 1H), 5.13 (app dq, *J* = 10.0, 1.1 Hz, 1H), 3.74–3.69 (m, 1H), 3.66 (s, 3H), 3.60 (dd, *J* = 10.9, 3.3 Hz, 1H), 3.55 (dt, *J* = 6.9, 1.0 Hz, 2H), 3.44 (t, *J* = 7.0 Hz, 2H), 3.31 (dt, *J* = 10.1, 7.0 Hz, 1H), 2.67–2.59 (m, 1H), 2.57–2.49 (m, 1H), 2.14–2.02 (m, 1H), 1.94–1.79 (m, 7H), 1.73–1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.5, 171.6, 141.3, 132.5, 128.5 (2C), 128.4 (2C), 126.2, 118.5, 64.4, 53.0, 47.3, 46.2, 46.0, 33.9, 32.4, 30.9, 26.3, 24.9, 15.8; IR (neat) v_{max}: 2951, 1741, 1683, 1636, 1434, 1377, 1231, 955; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₂H₂₉NO₄SNa) requires *m/z* 426.1710, found *m/z* 426.1711.

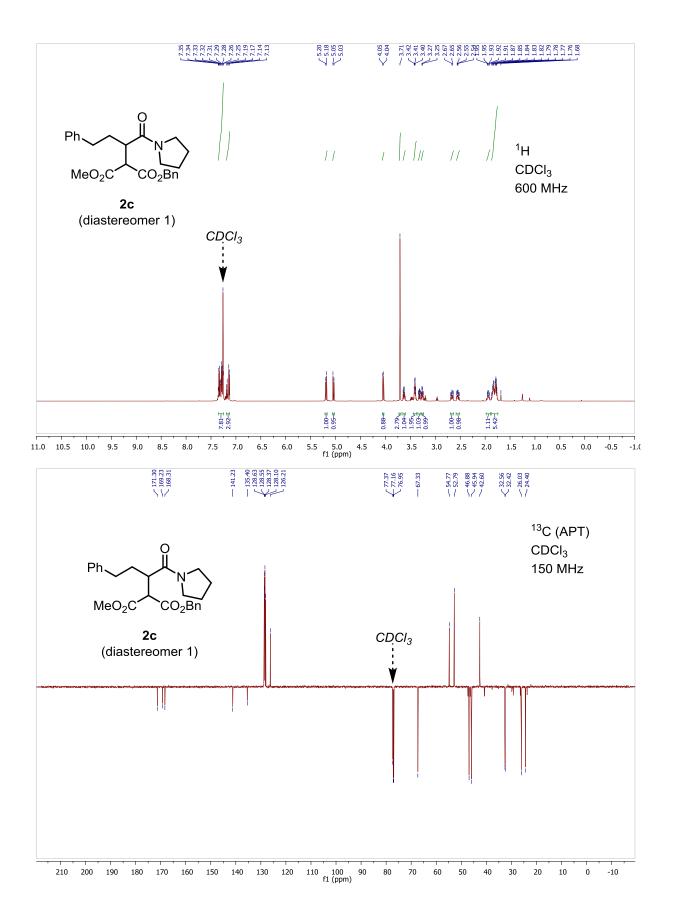
Dibenzyl 2-(3-methyl-1-oxo-1-(pyrrolidin-1-yl)butan-2-yl)malonate (6)

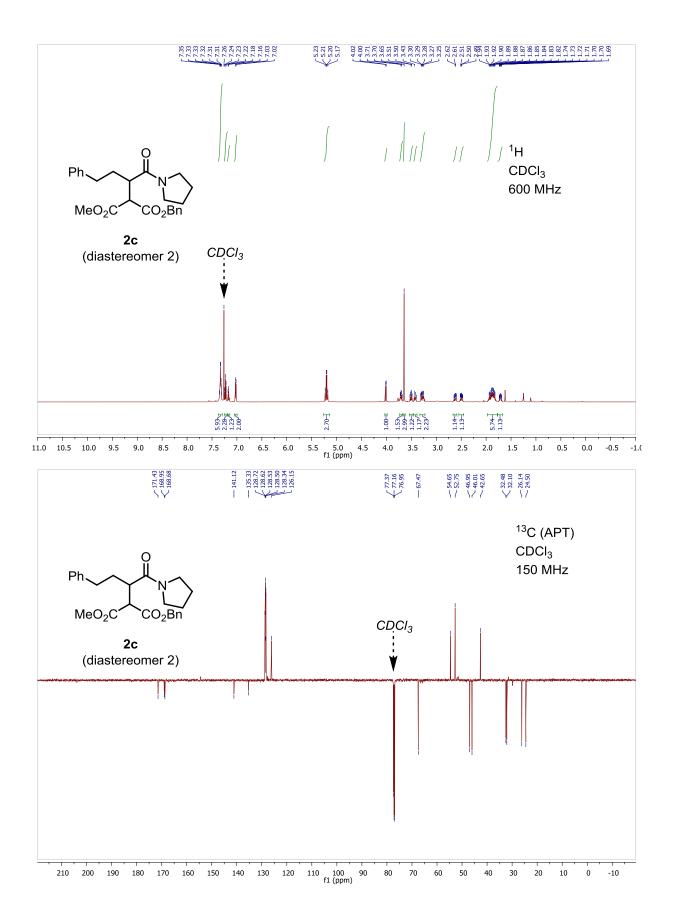


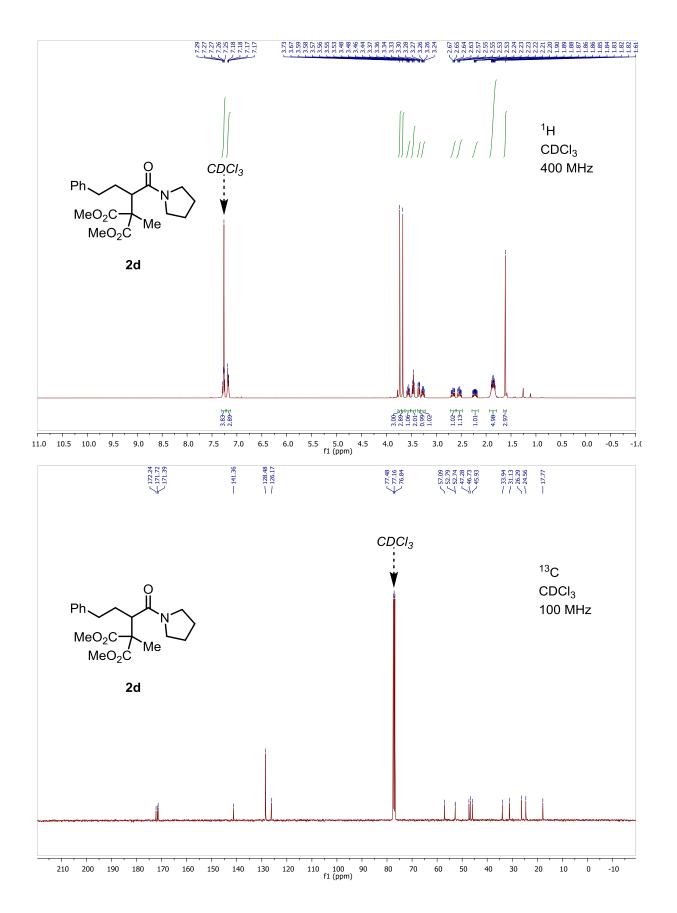
BnO₂C[•]CO₂Bn[•] Synthesized following general procedure C, section 4.1; 20% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.16 (m, 10H), 5.15–5.10 (m, 3H), 5.06–5.00 (m, 1H), 4.13 (d, J = 10.7 Hz, 1H), 3.74–3.67 (m, 1H), 3.49–3.31 (m, 3H), 3.23 (dd, J = 10.7, 4.9 Hz, 1H), 1.91–1.75 (m, 5H), 0.95 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 168.9, 168.6, 135.5, 135.3, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 67.4, 67.3, 53.6, 48.0, 47.4, 45.8, 29.7, 26.1, 24.5, 20.7, 18.8; IR (neat) v_{max}: 2958, 2922, 2873, 1730, 1631, 1440, 1373, 1355, 1261, 1215, 1184, 1166, 1150, 1080, 991, 908 738, 698; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₆H₃₁NO₅Na) requires *m/z* 460.2094, found *m/z* 460.2090.

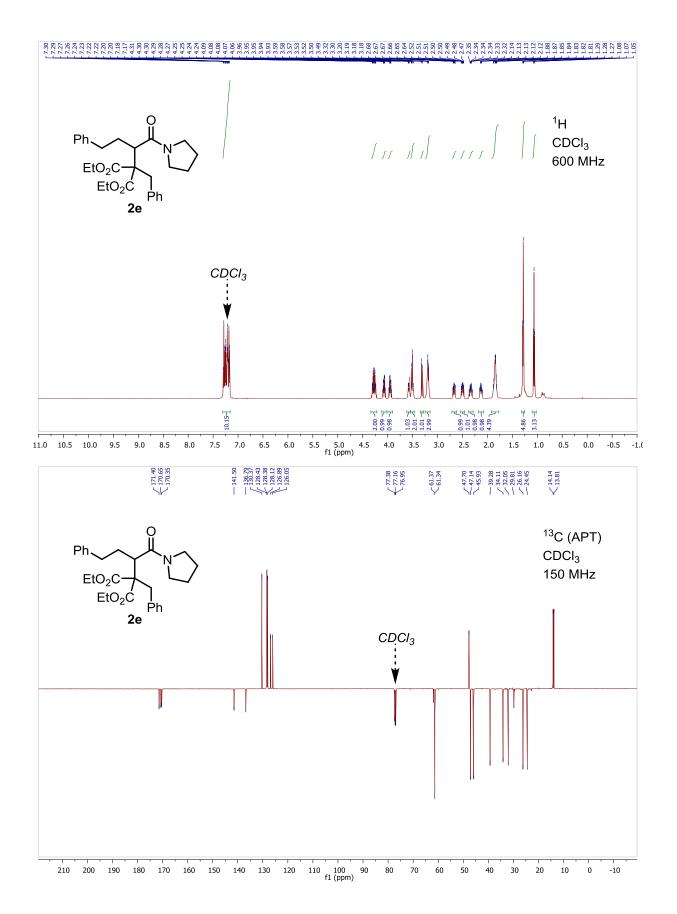
Dibenzyl 2-(3-oxocyclohexyl)malonate (7)

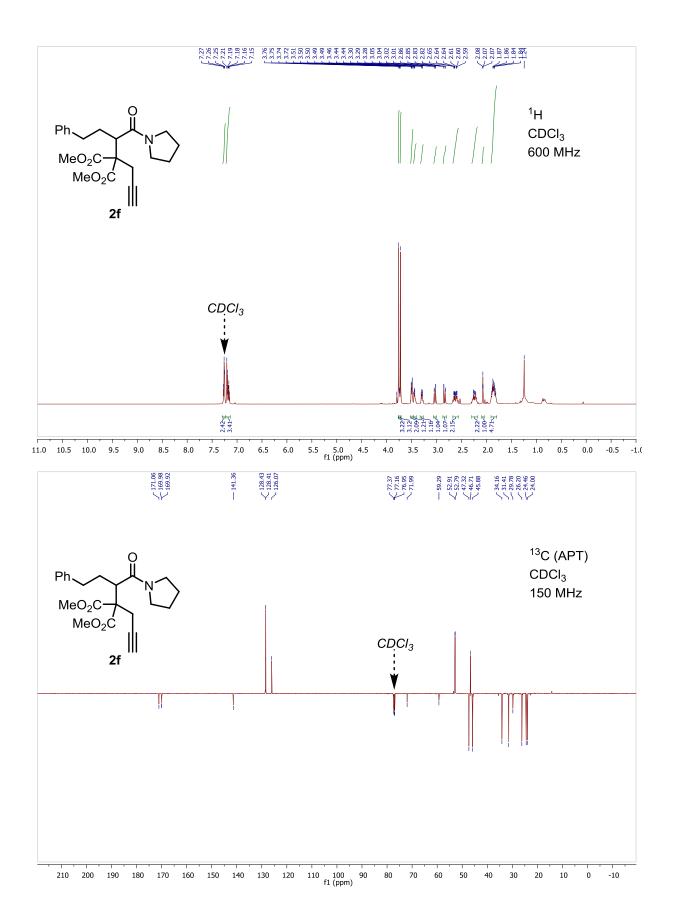


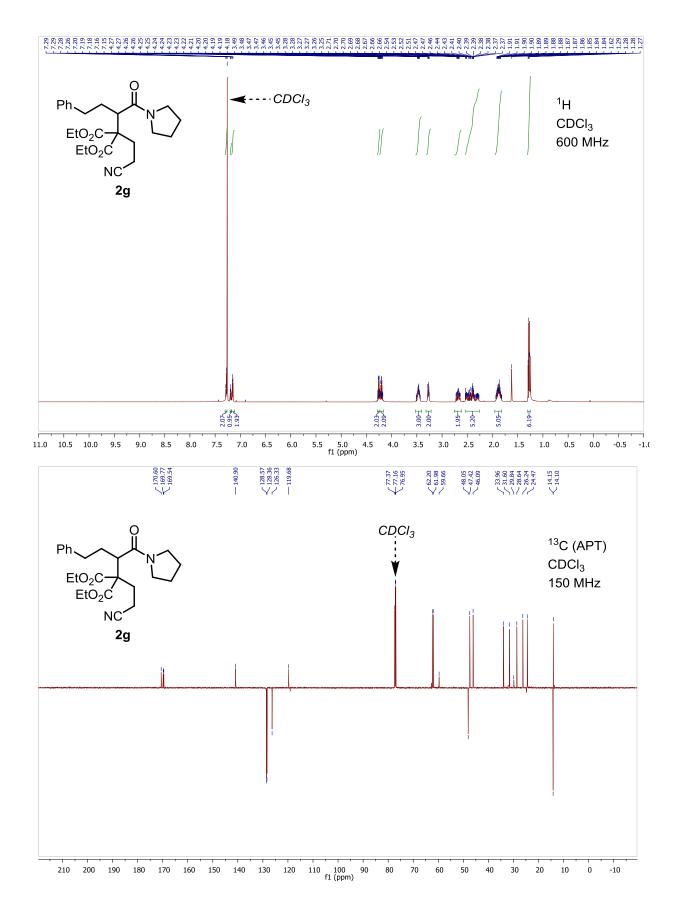

CO₂Bn Synthesized following general procedure C, section 4.1; 71% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.27–7.22 (m, 6H), 7.21–7.15 (m, 4H), 5.09–5.02 (m, 4H), 3.33 (d, J = 7.7 Hz, 1H), 2.53–2.41 (m, 1H), 2.39–2.32 (m, 1H), 2.31–2.25 (m, 1H), 2.19–2.14 (m, 1H), 2.14–2.06 (m, 1H), 1.97–1.88 (m, 1H), 1.85–1.77 (m, 1H), 1.61–1.47 (m, 1H), 1.44–1.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 209.4, 167.6, 167.5, 135.2 (2C), 128.7 (4C), 128.5 (2C), 128.3 (4C), 67.3 (2C), 56.8, 45.1, 41.0, 38.2, 28.7, 24.6; IR (neat) v_{max} : 3065, 3034, 2946, 1728, 1711, 1587, 1498, 1454, 1255, 1224, 1147, 1002, 907, 740, 698; HRMS (ESI+): exact mass calculated for [M+Na]⁺ (C₂₃H₂₄O₅Na) requires *m/z* 403.1516, found *m/z* 403.1517.

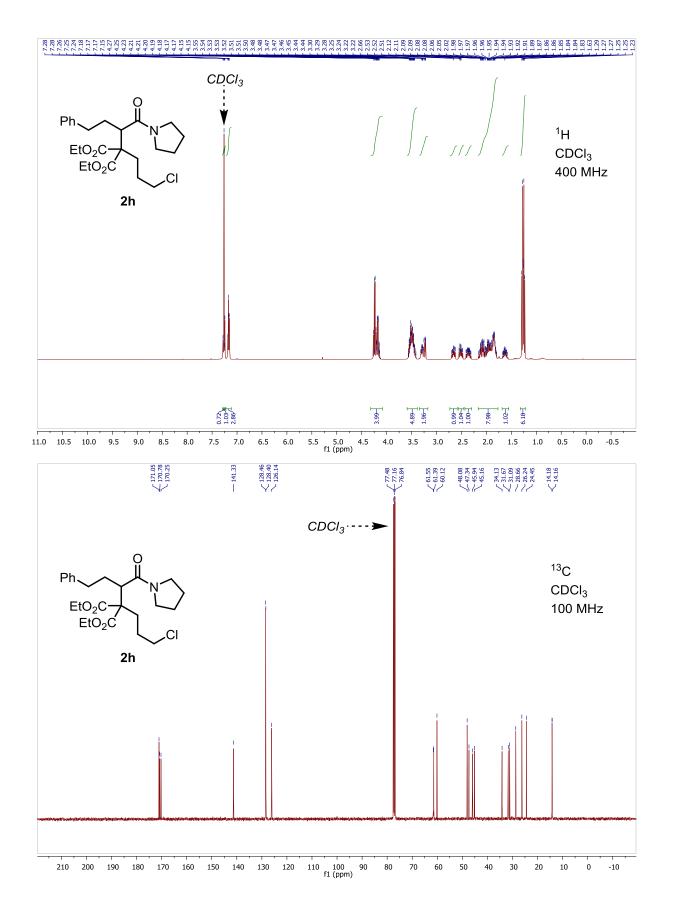


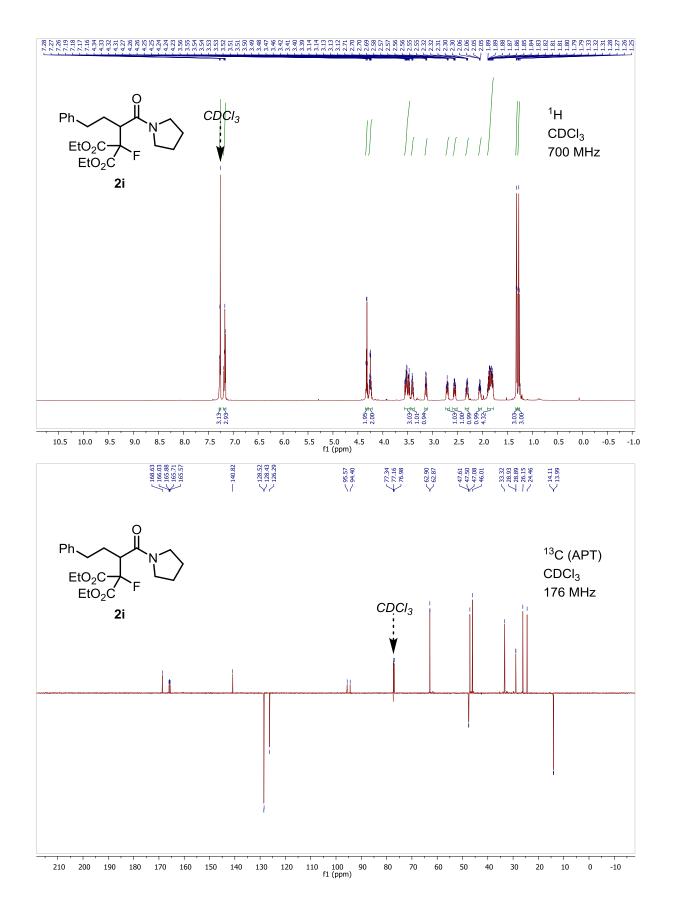

5. NMR Spectra

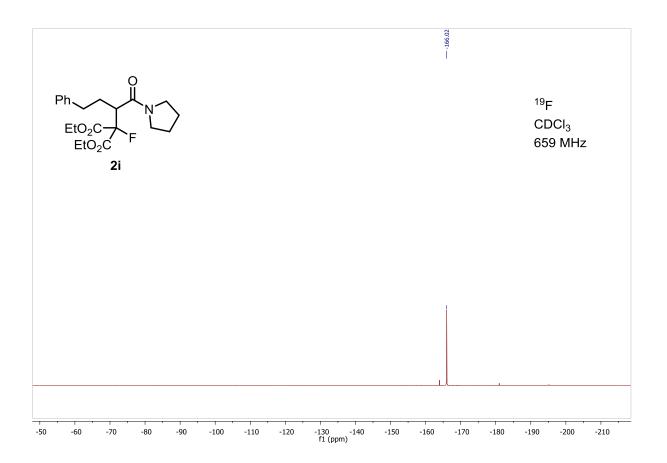


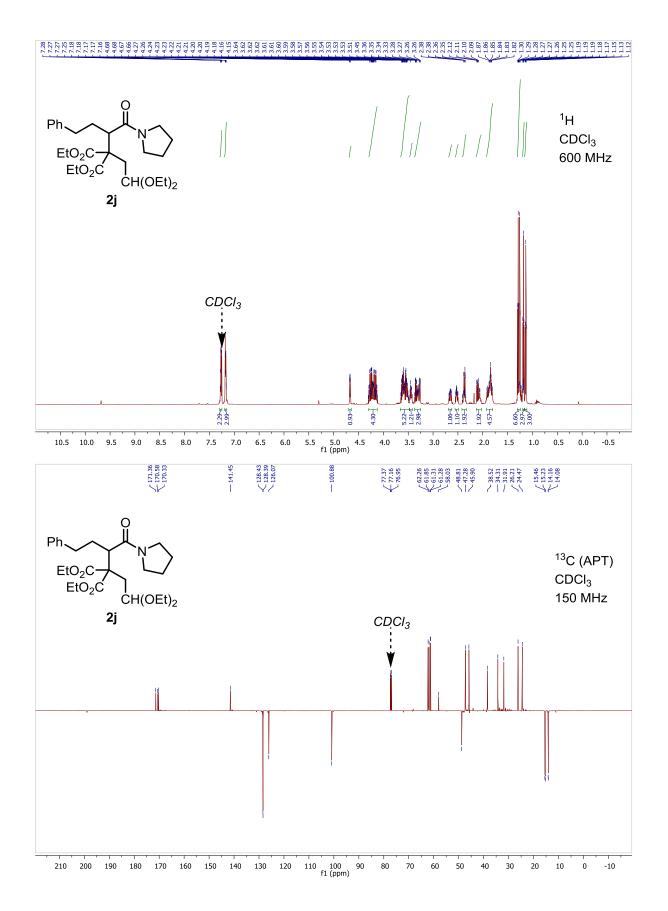


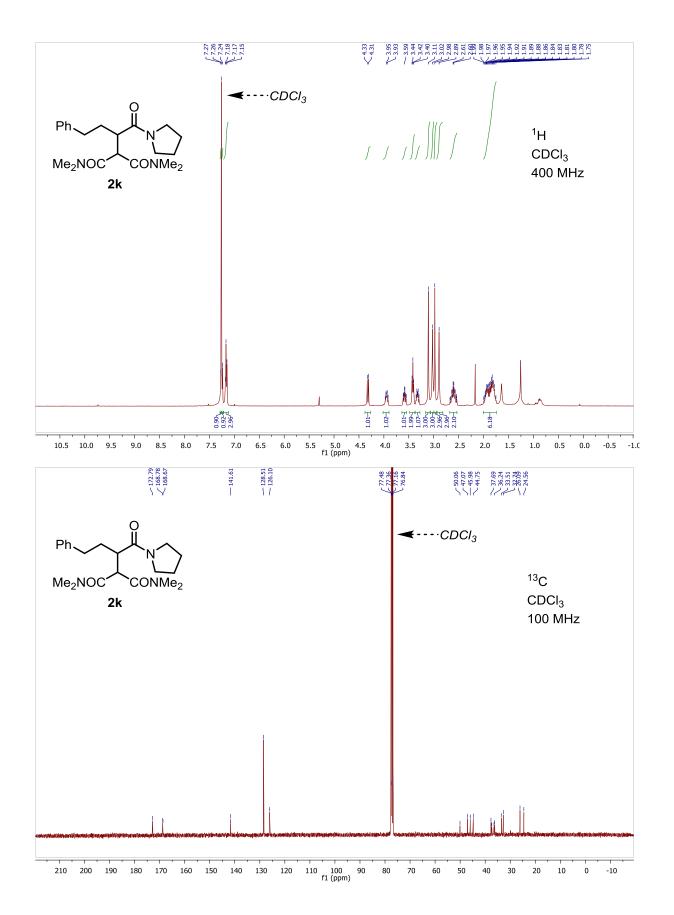


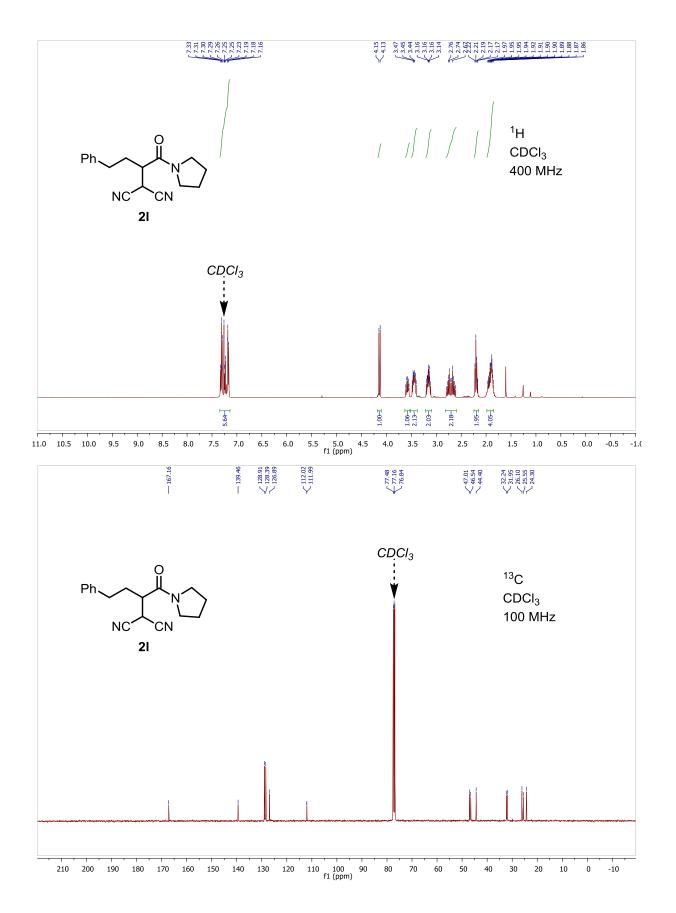


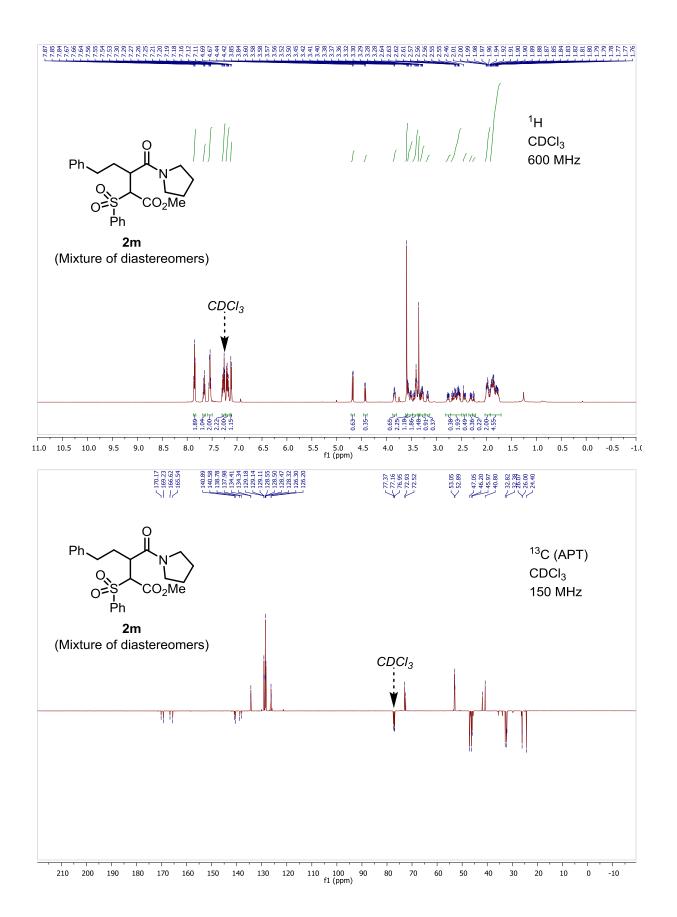


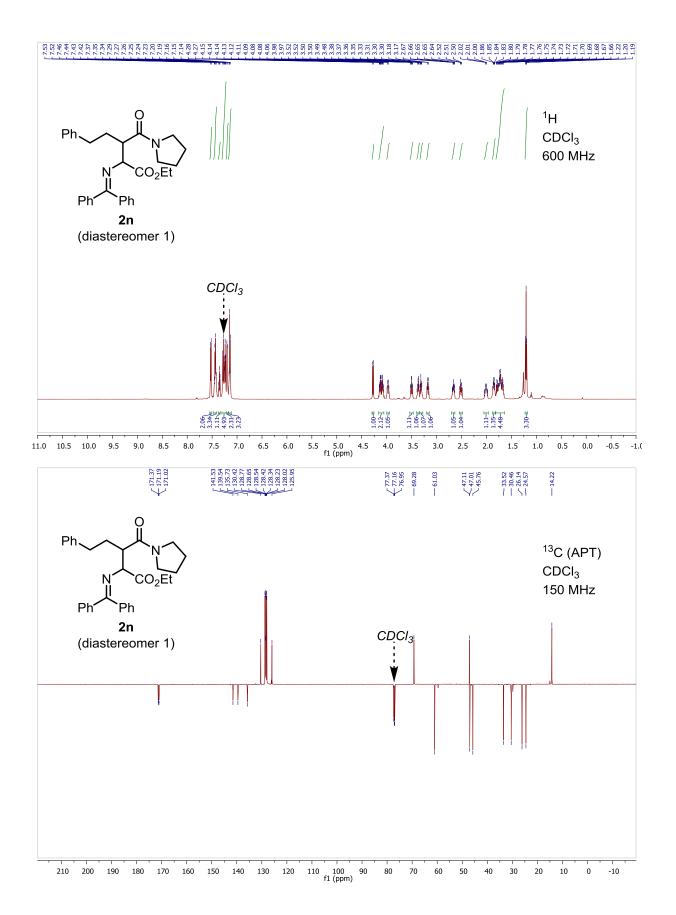


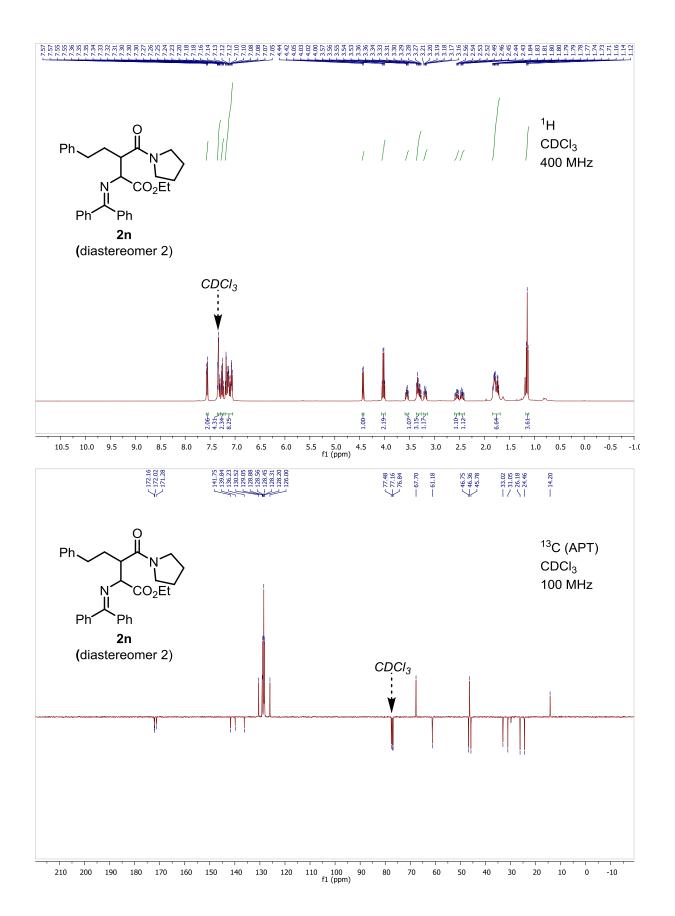


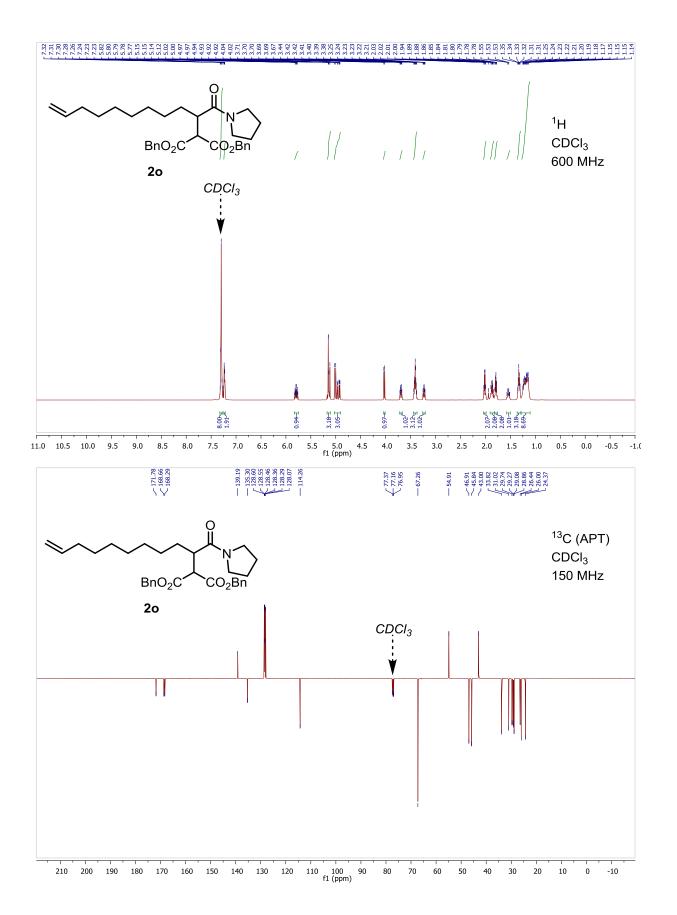


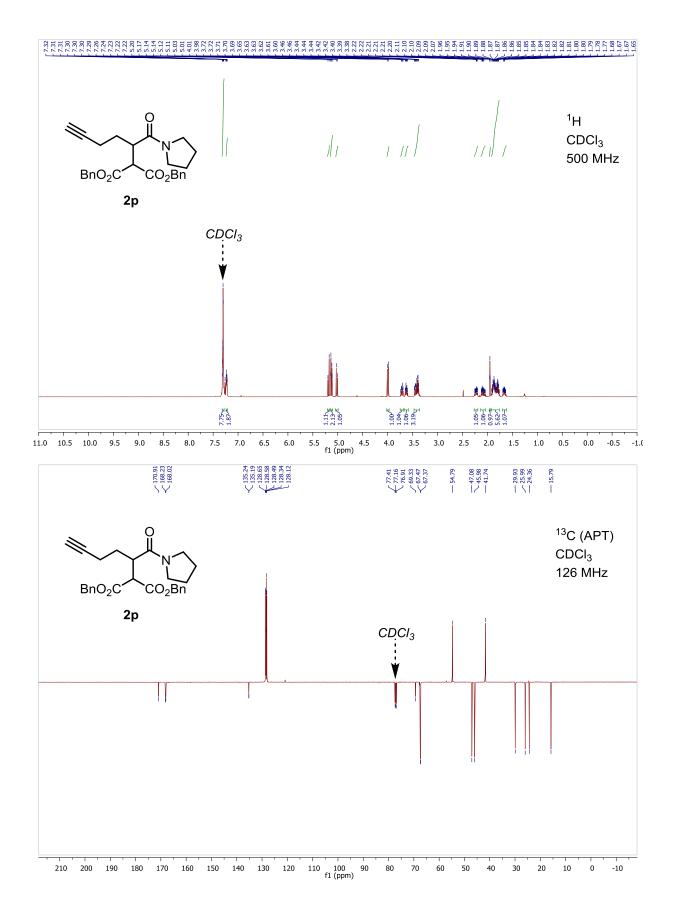


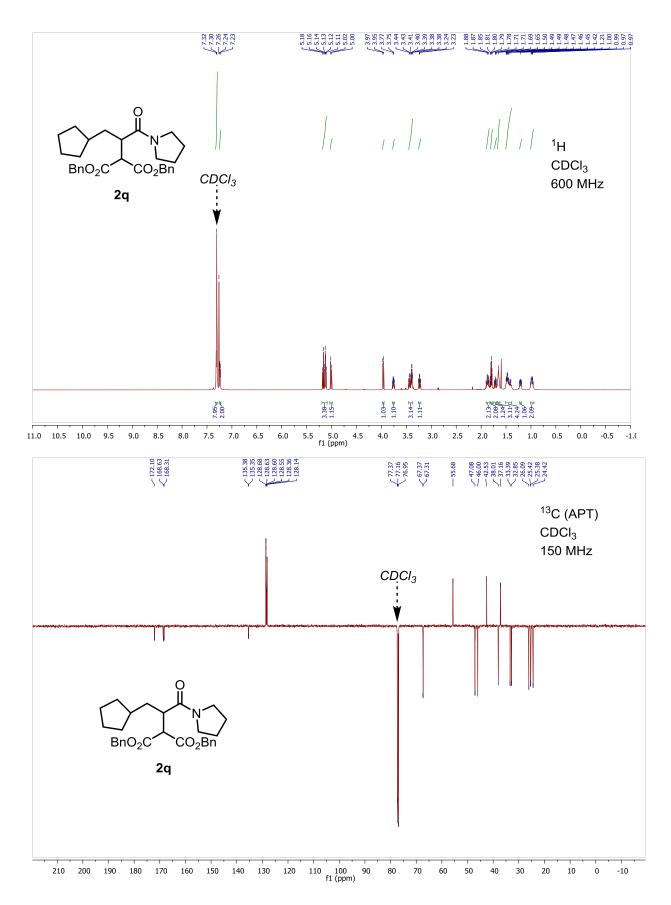


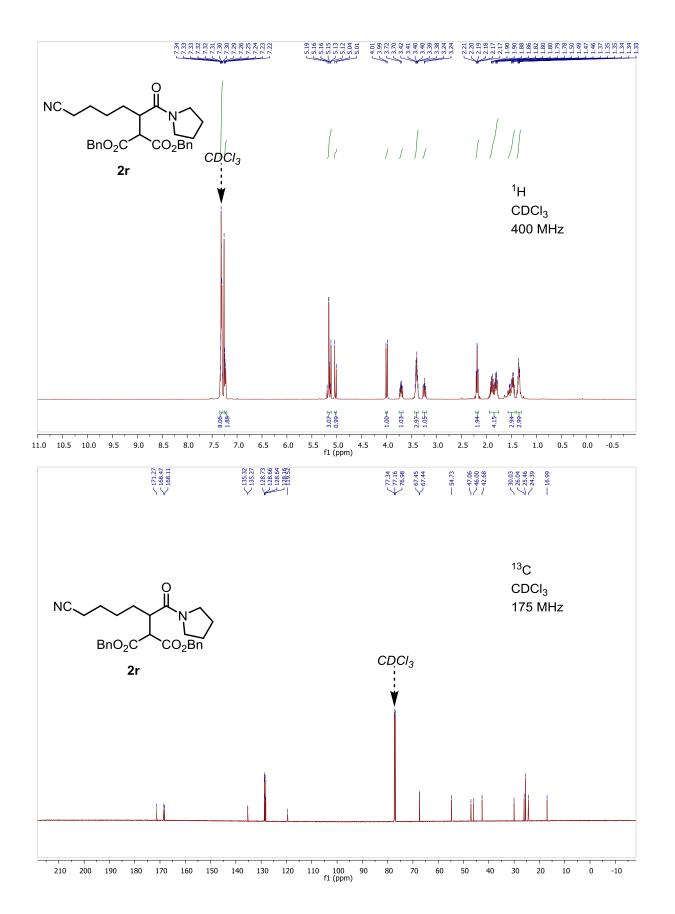


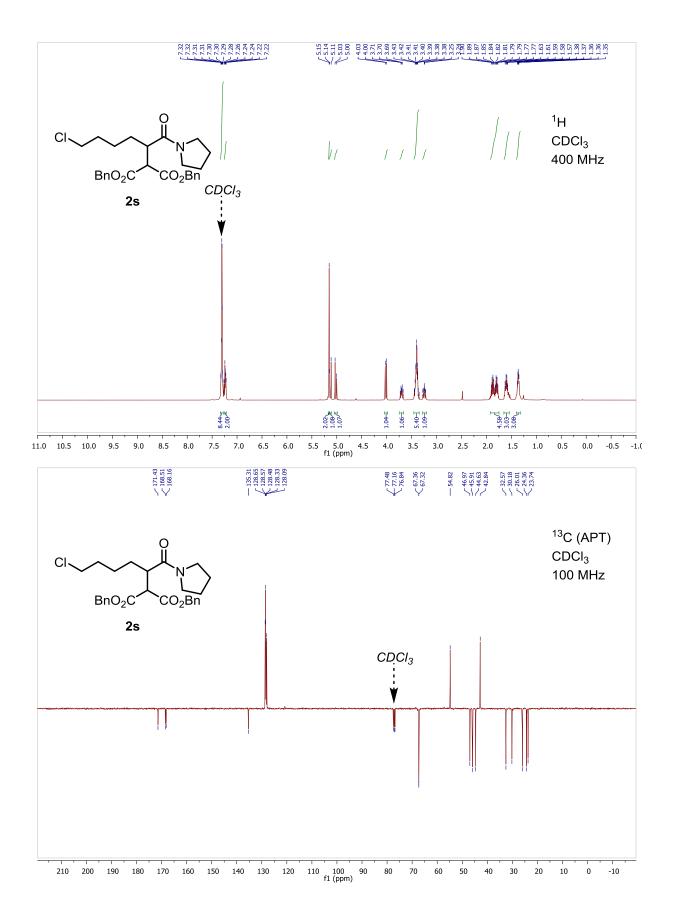

S47

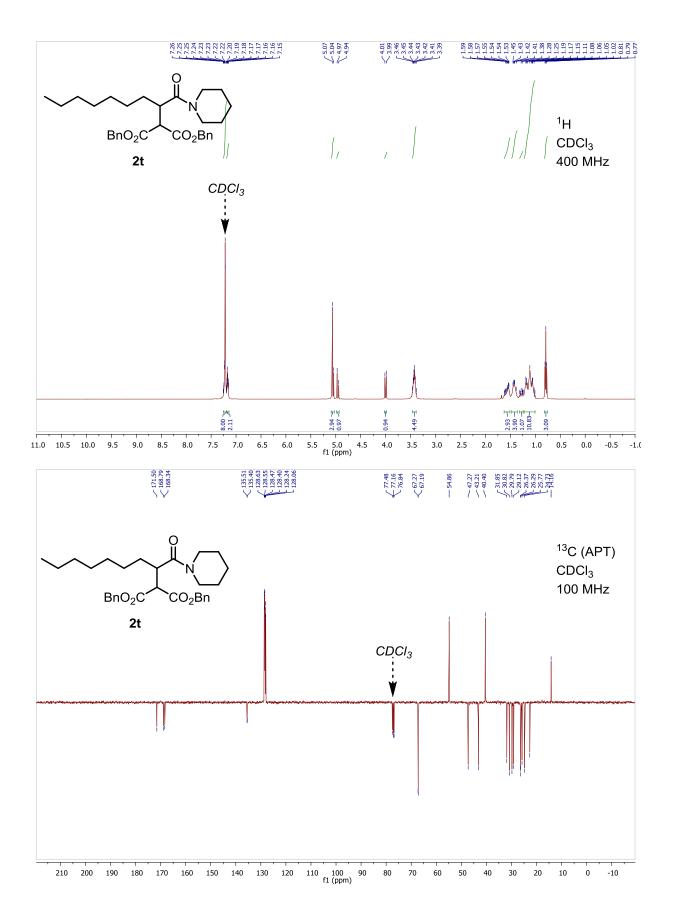


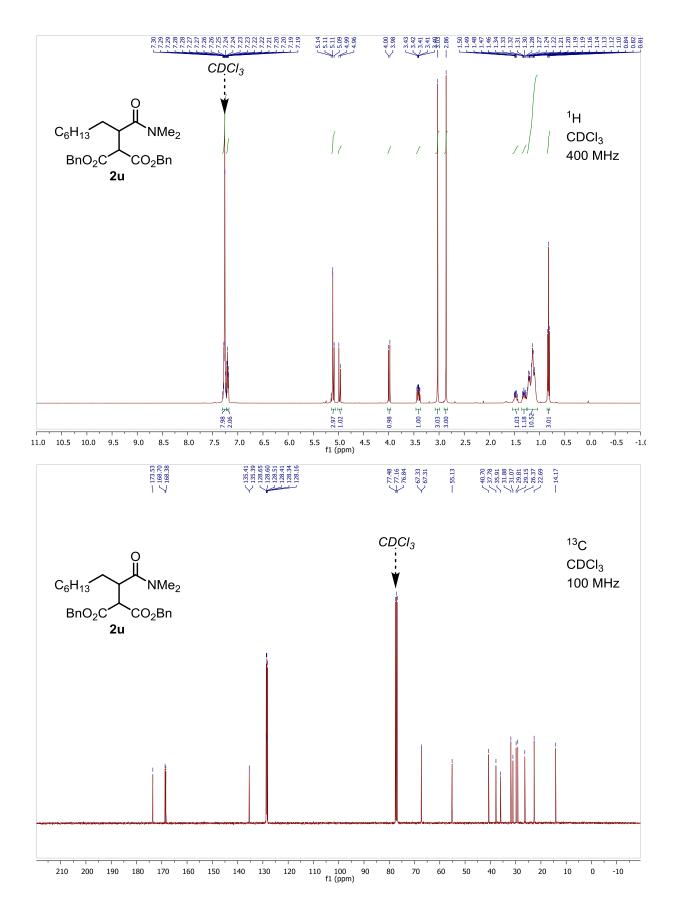


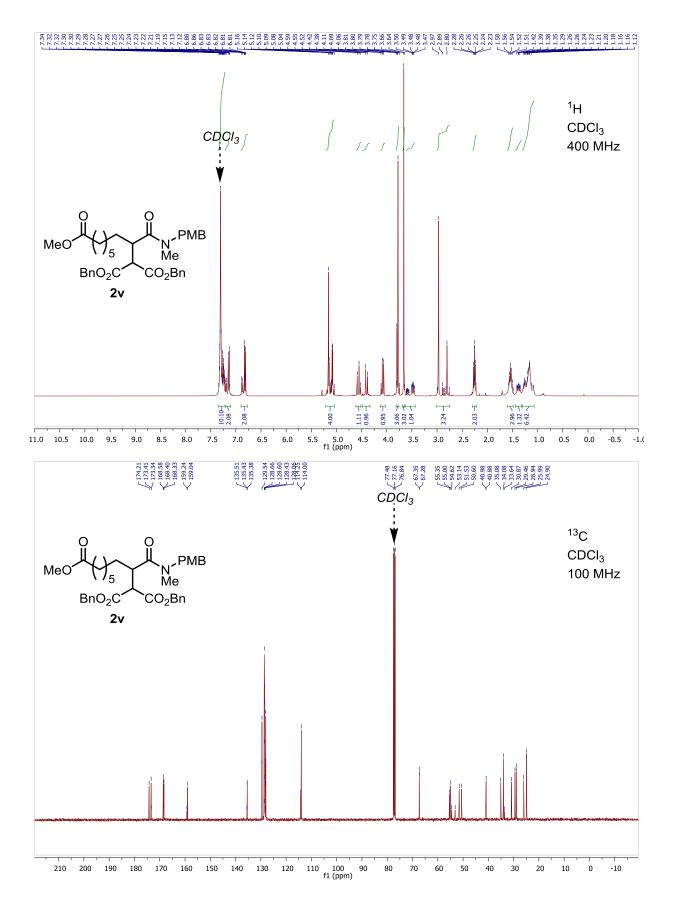


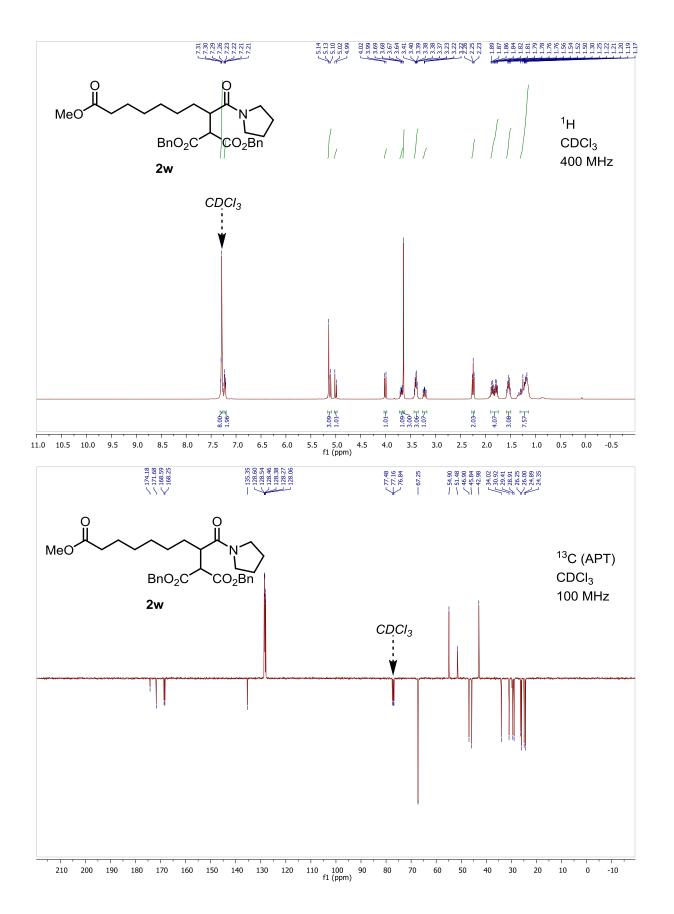


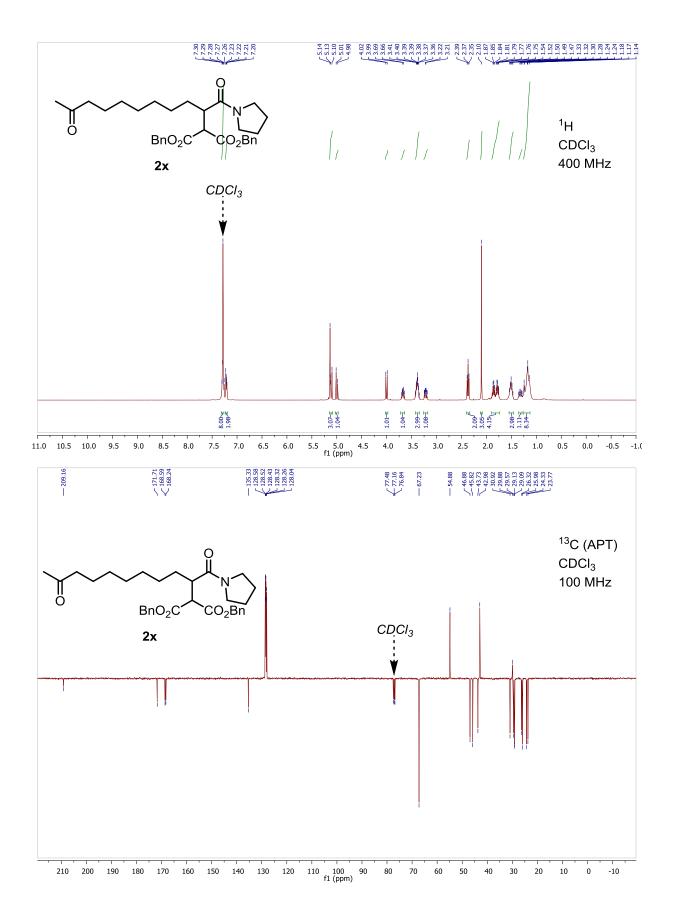


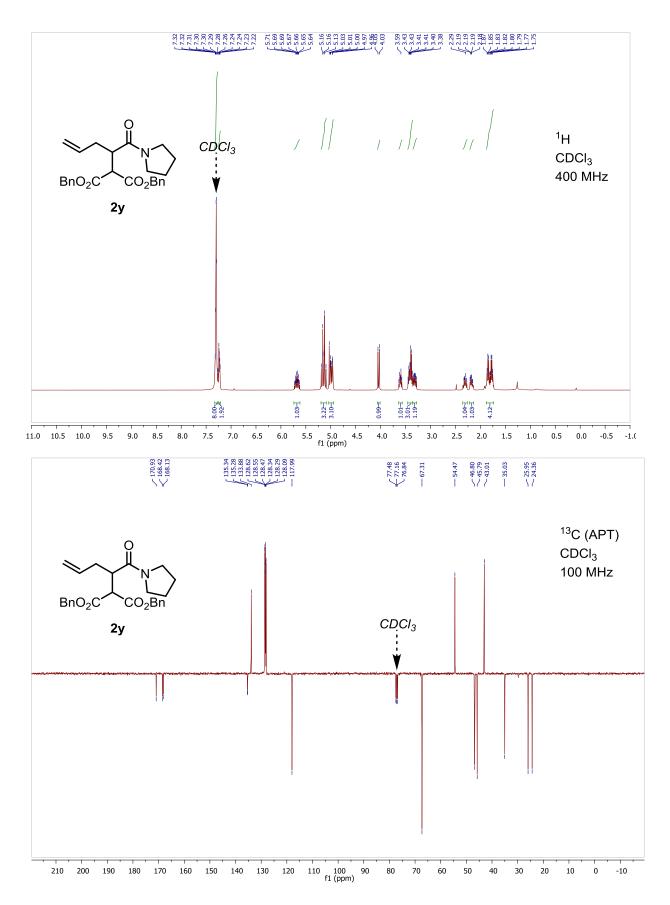


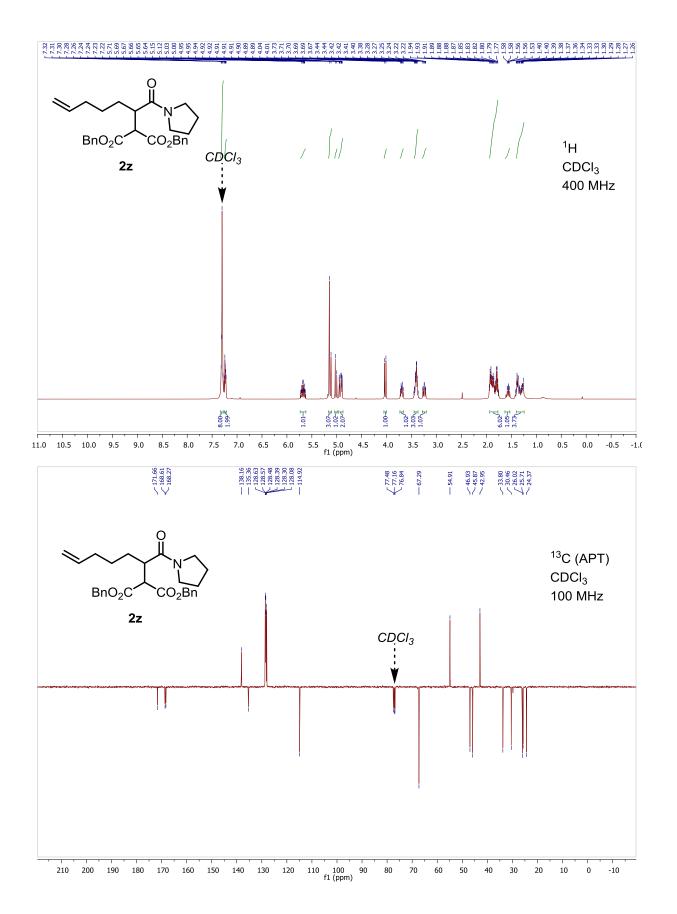


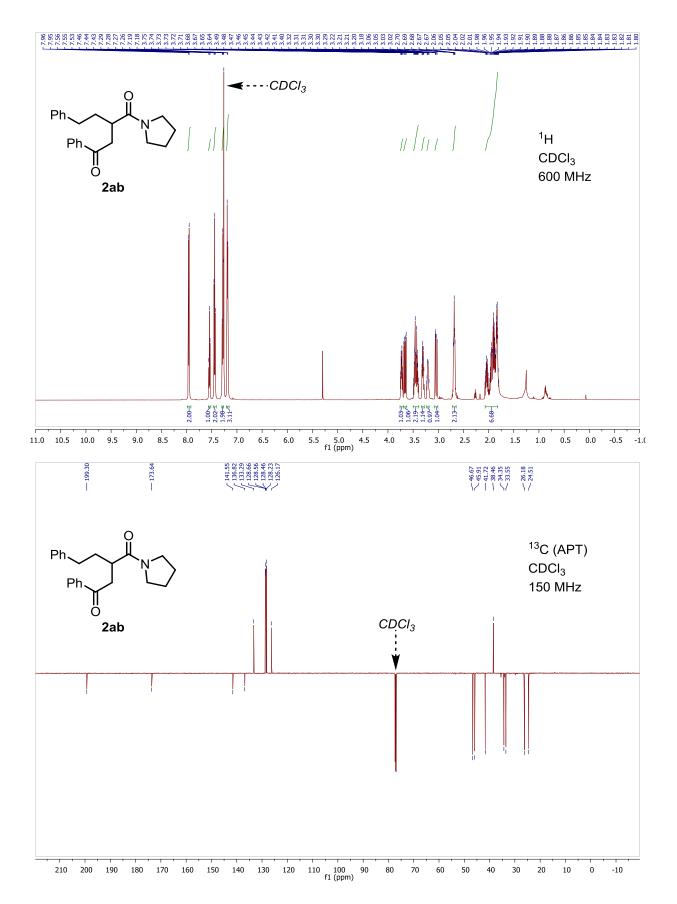


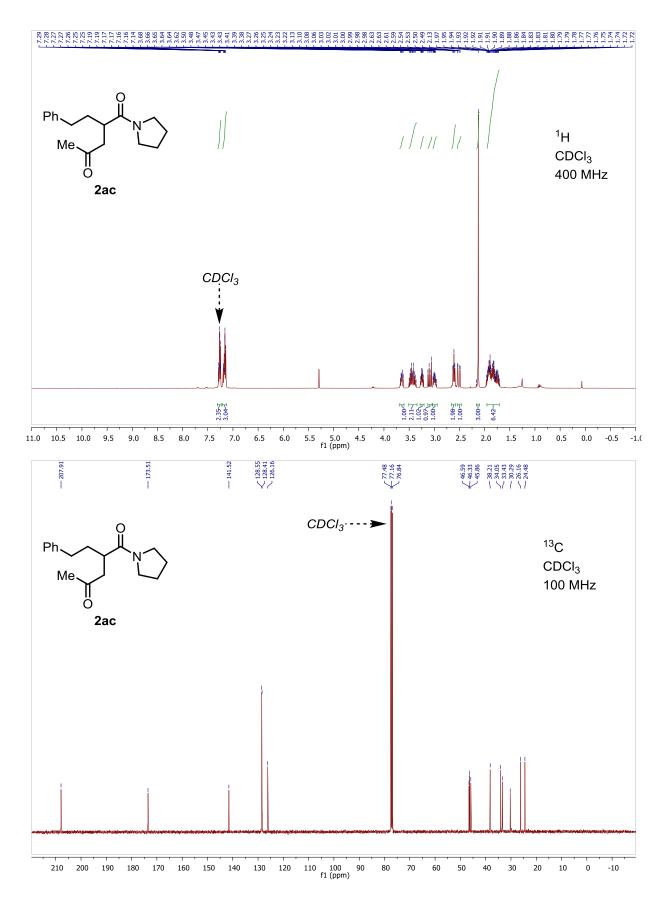


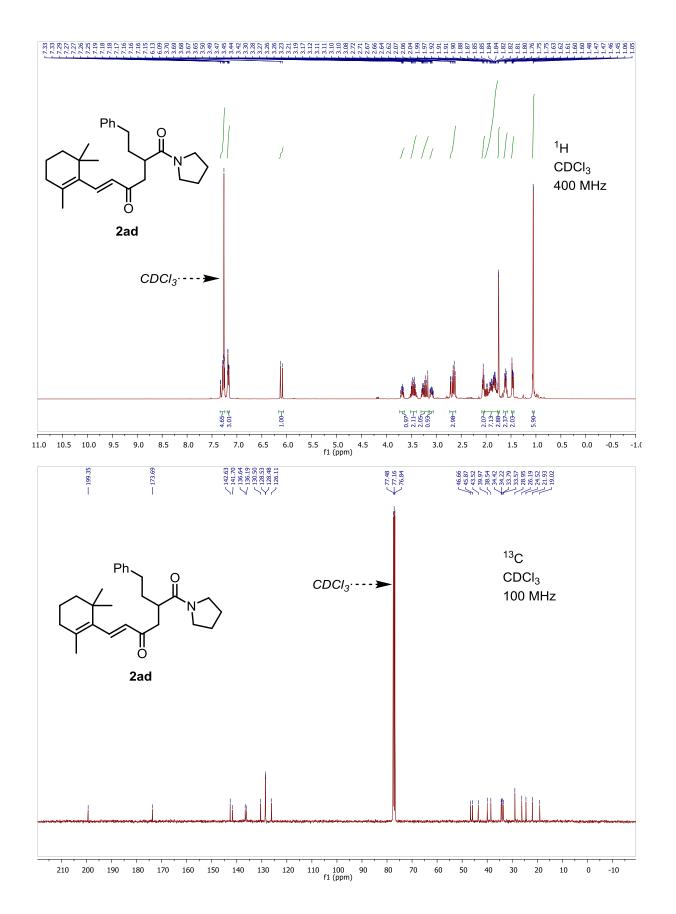


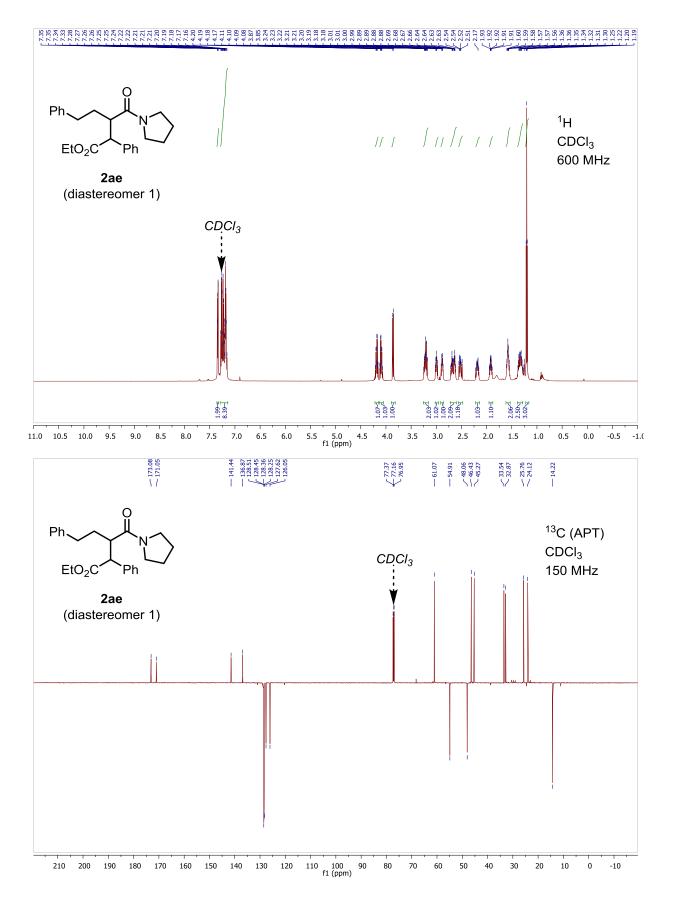


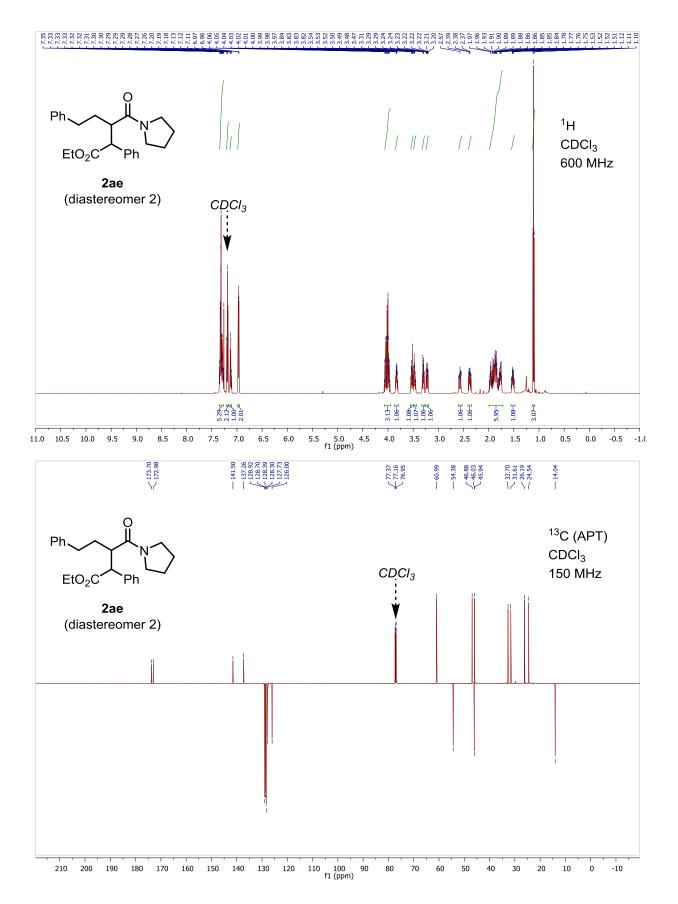


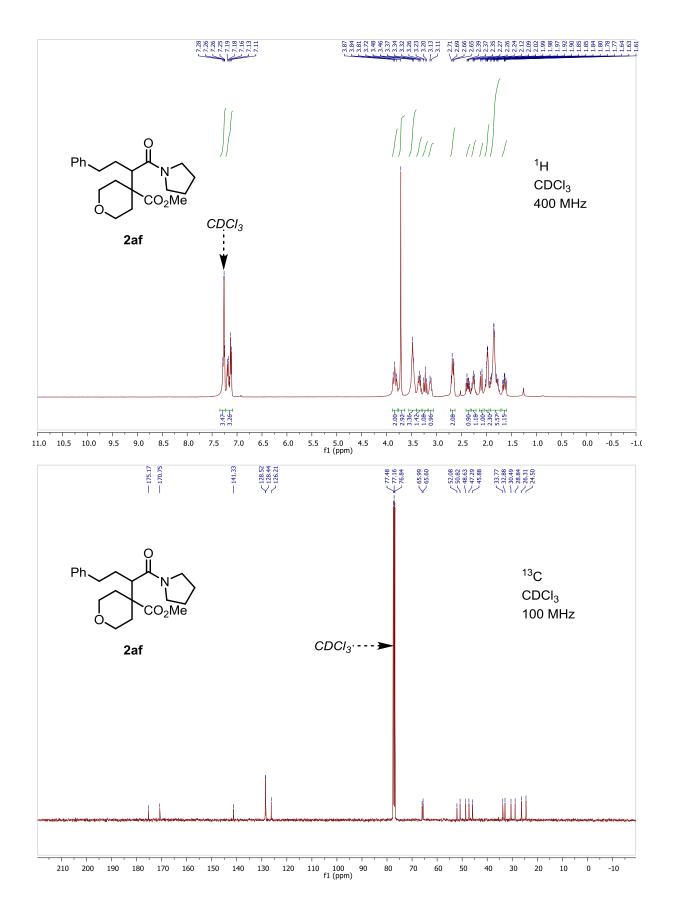


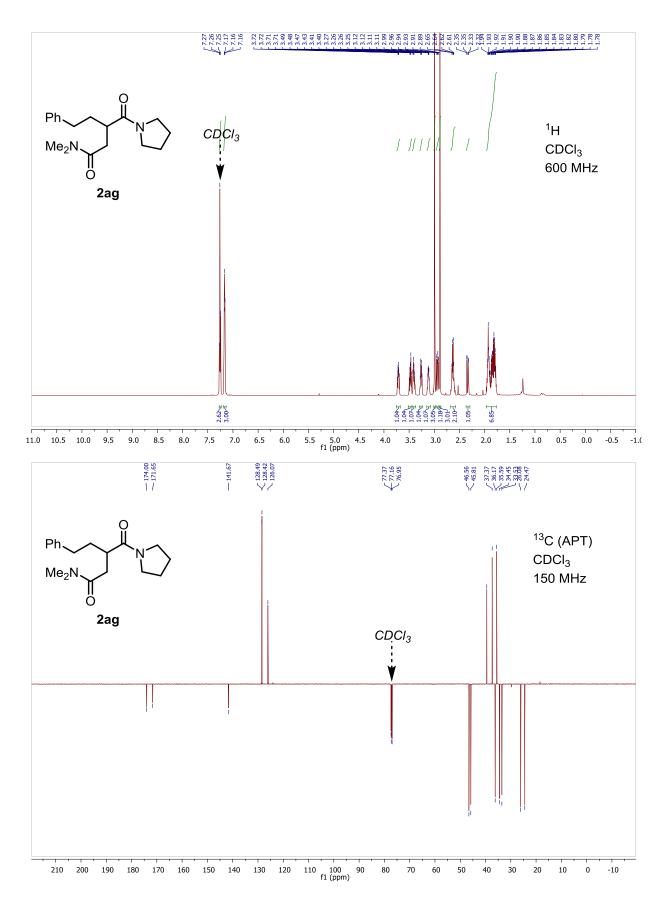


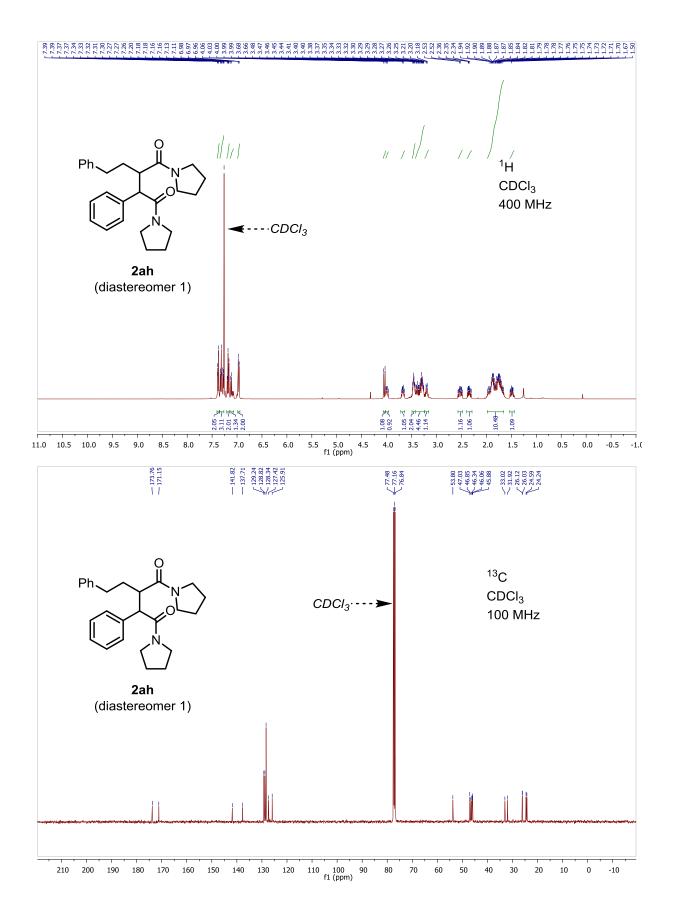


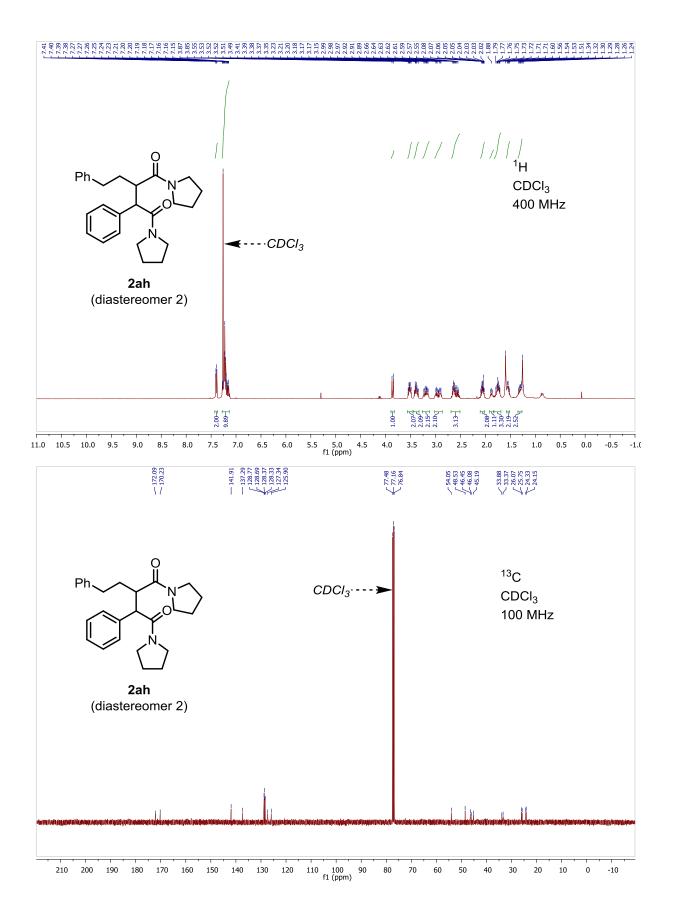


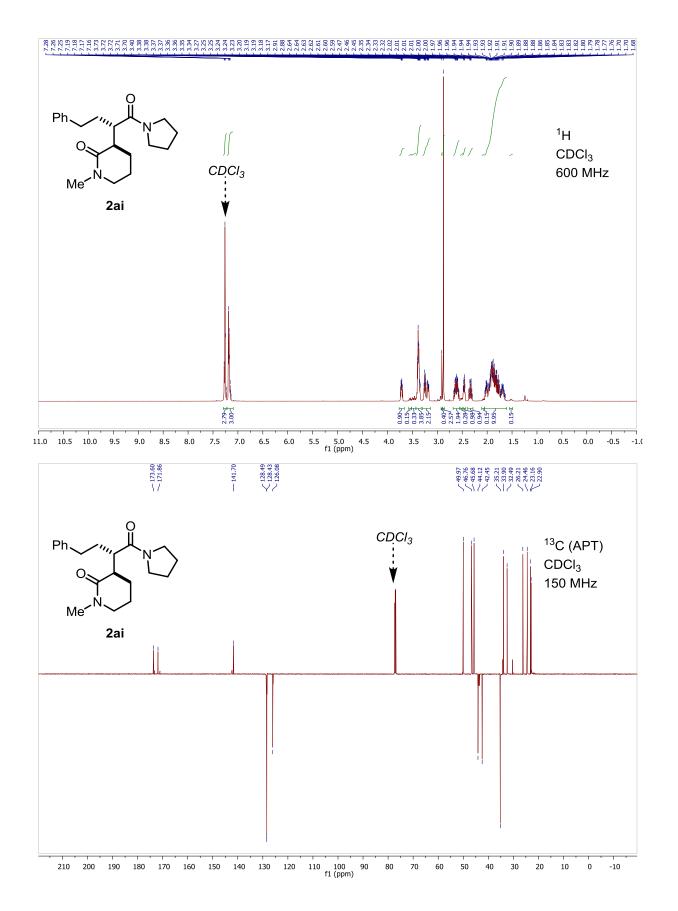


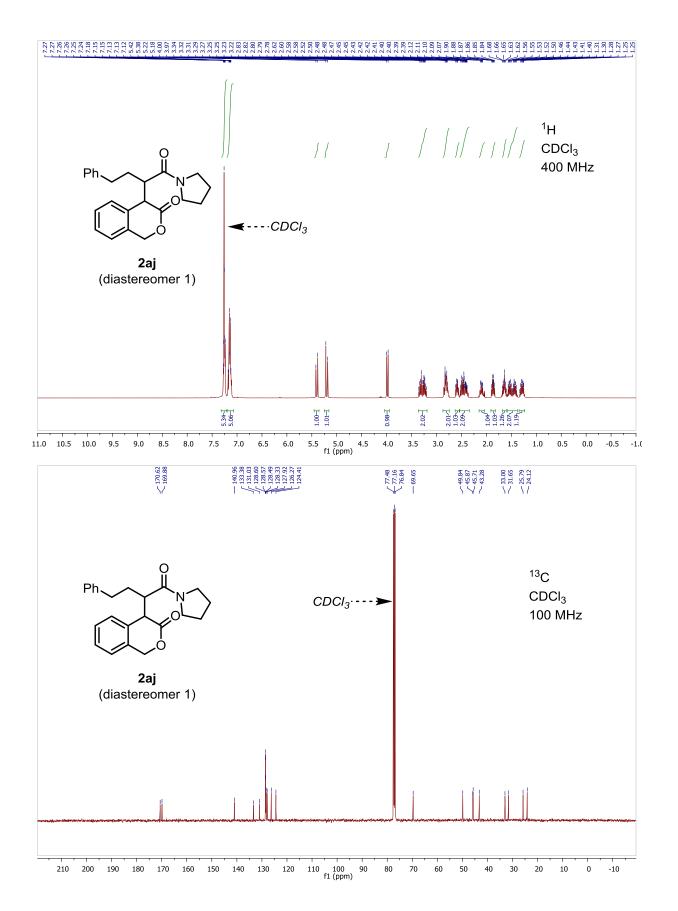

S65

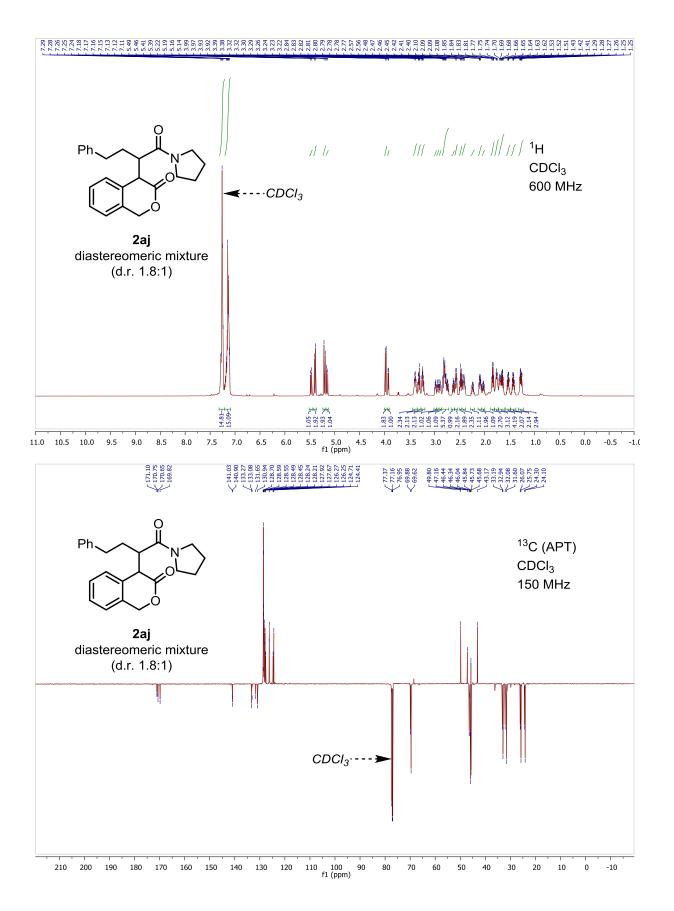


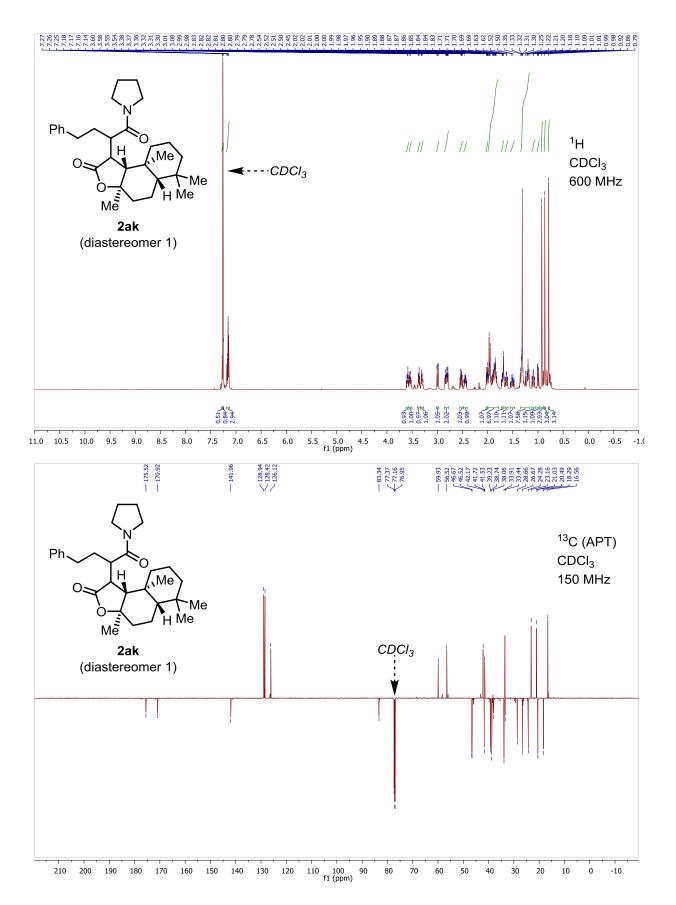


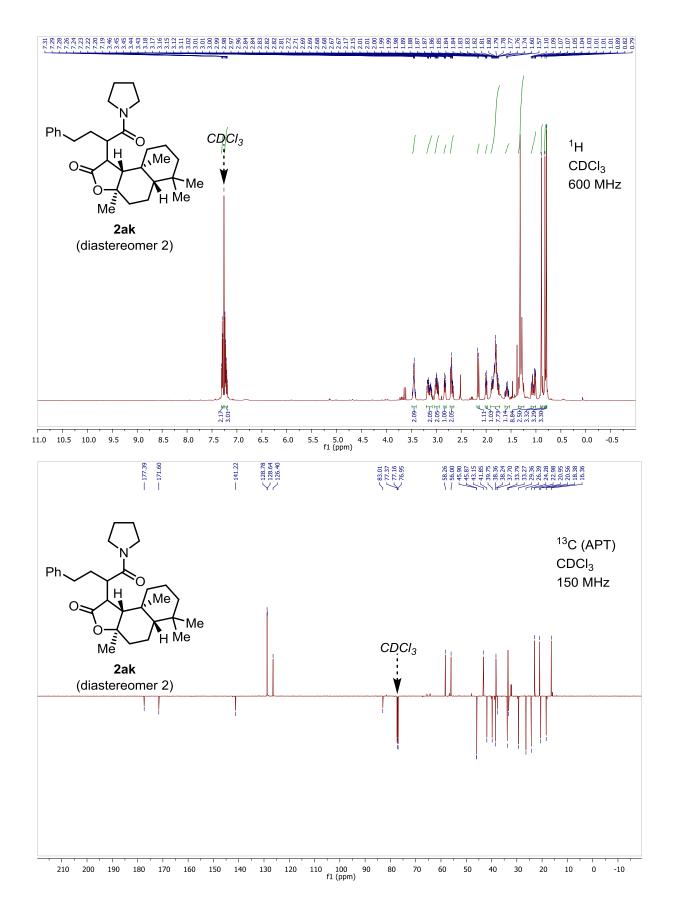


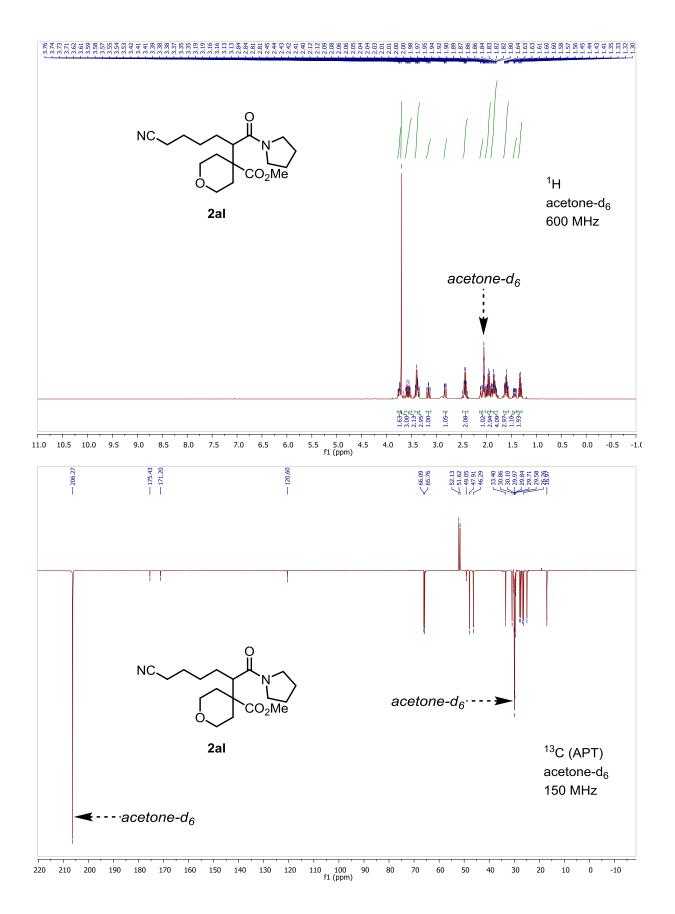


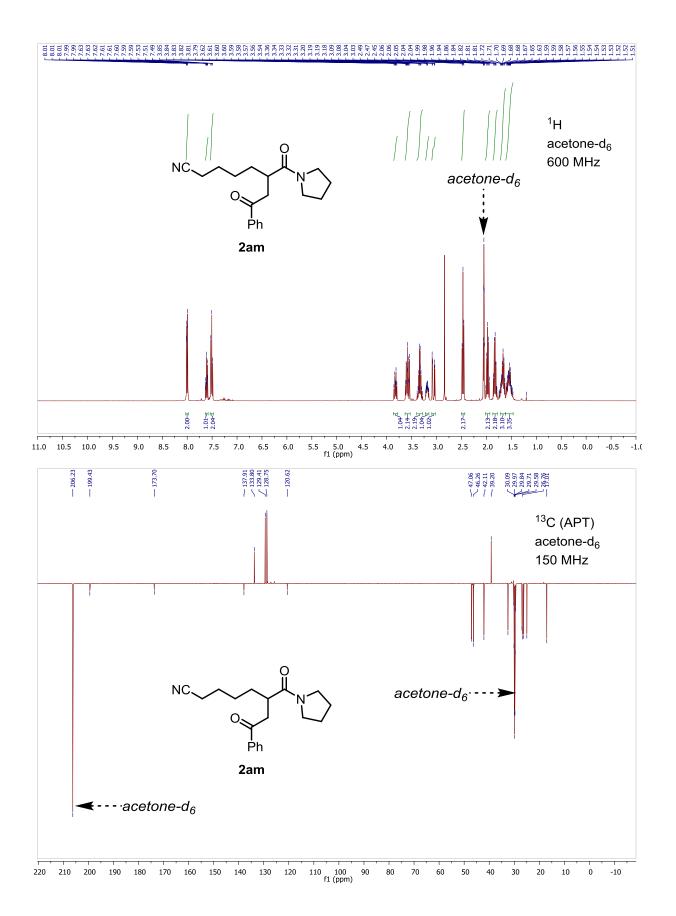


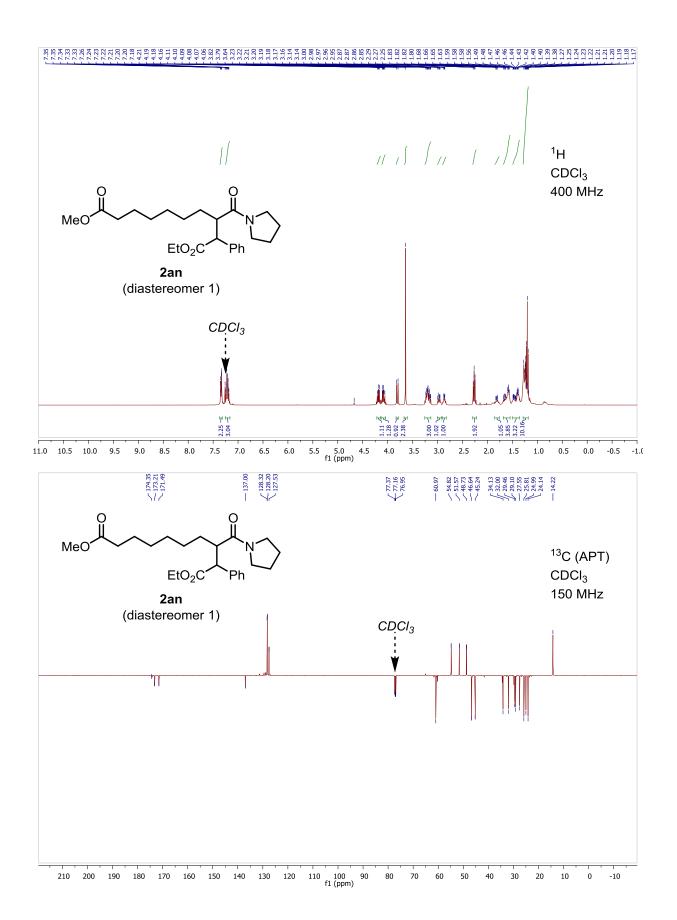


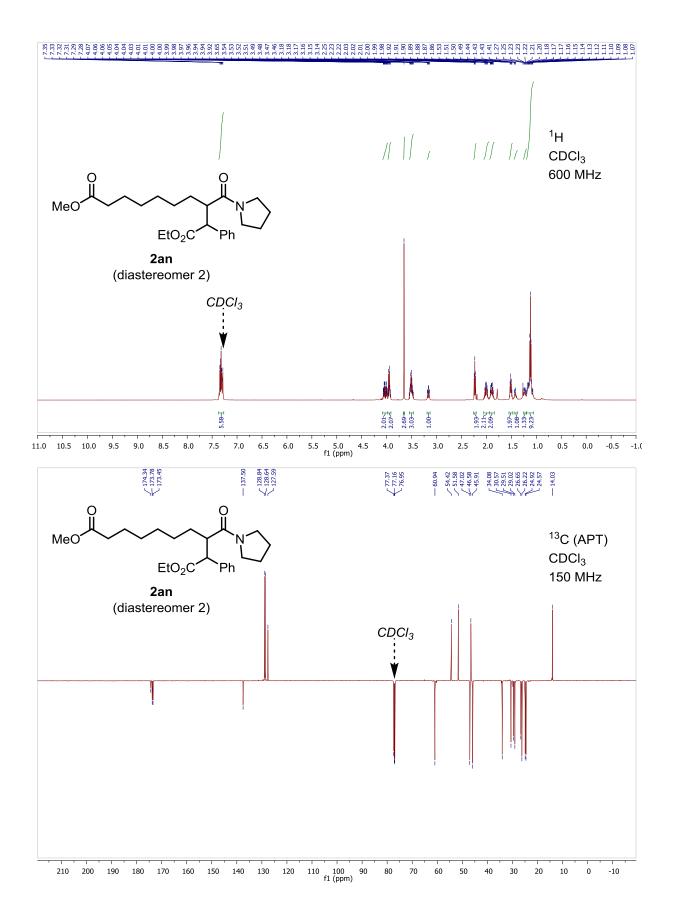


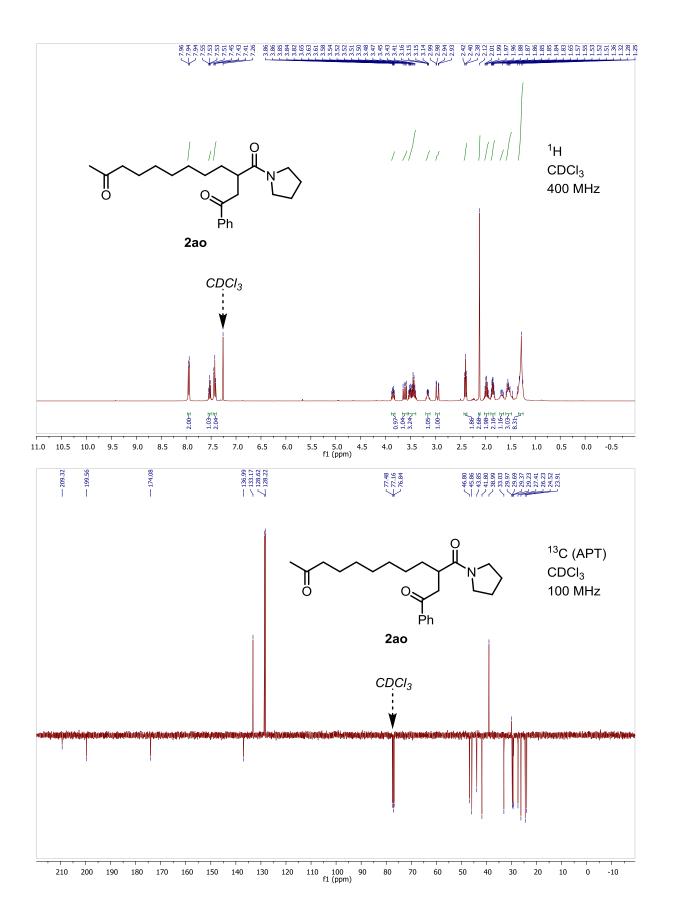


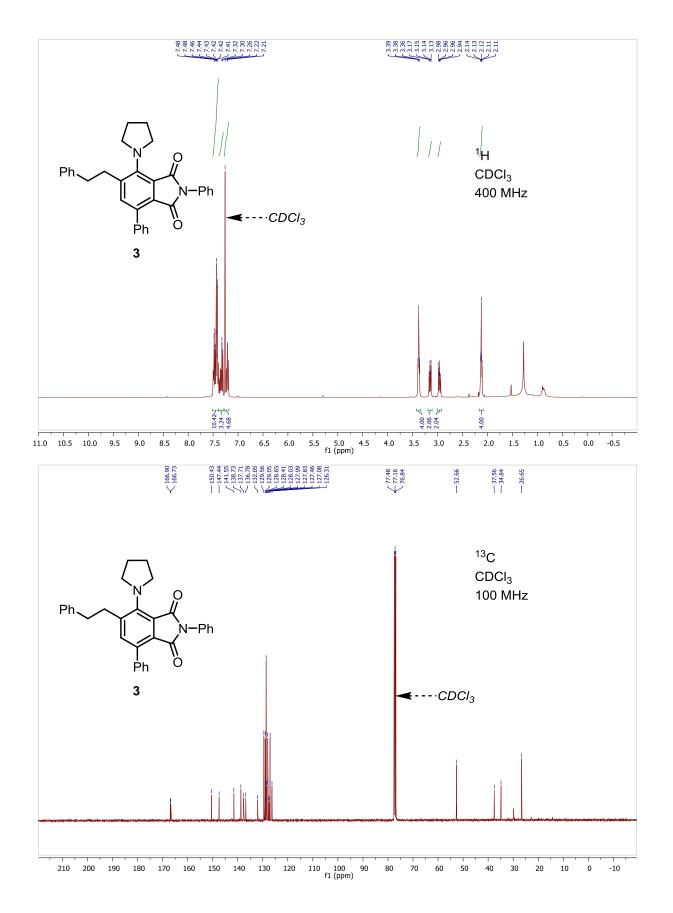


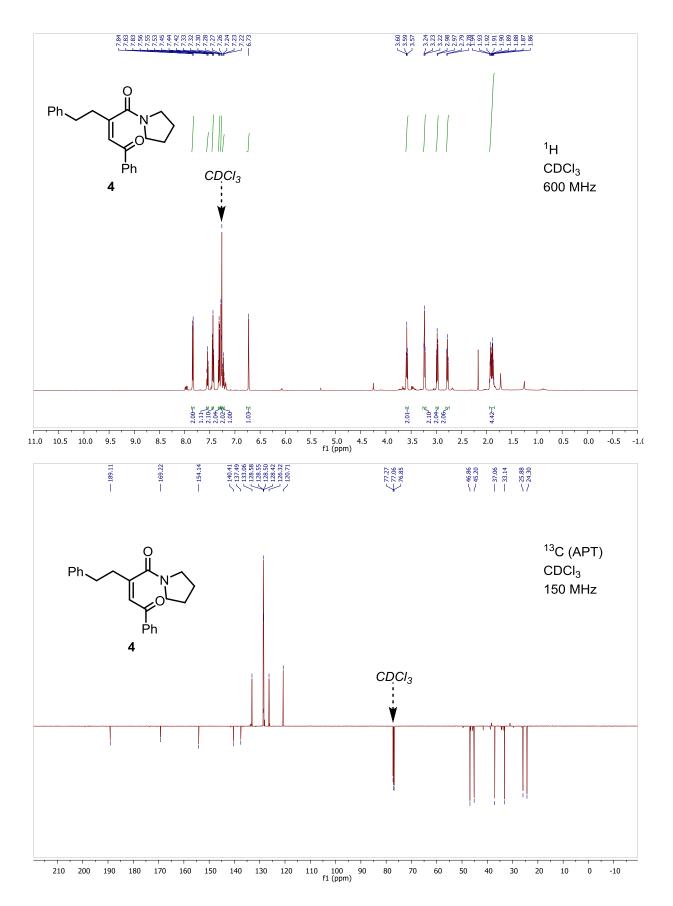


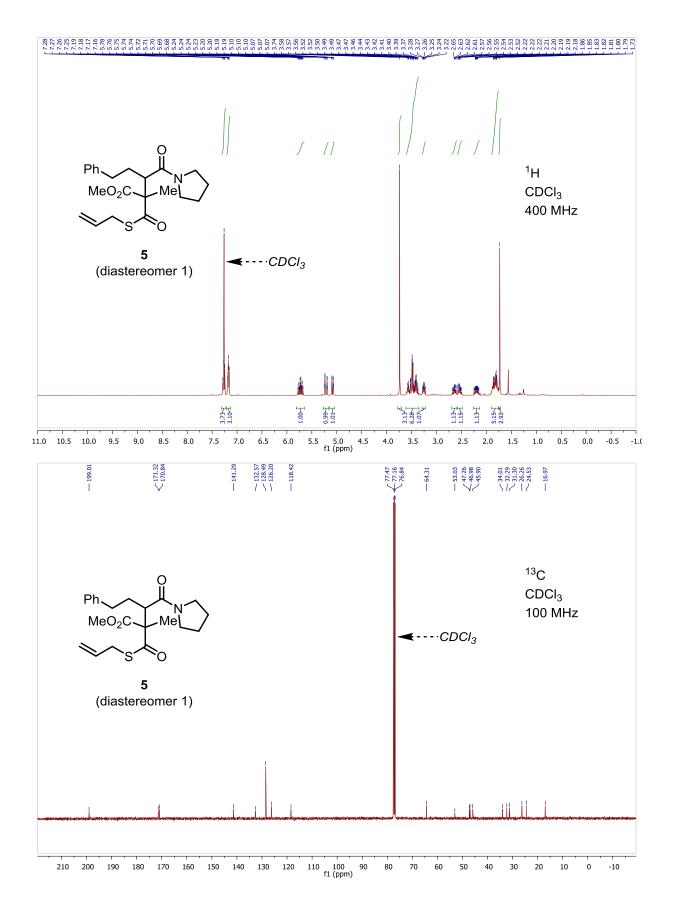


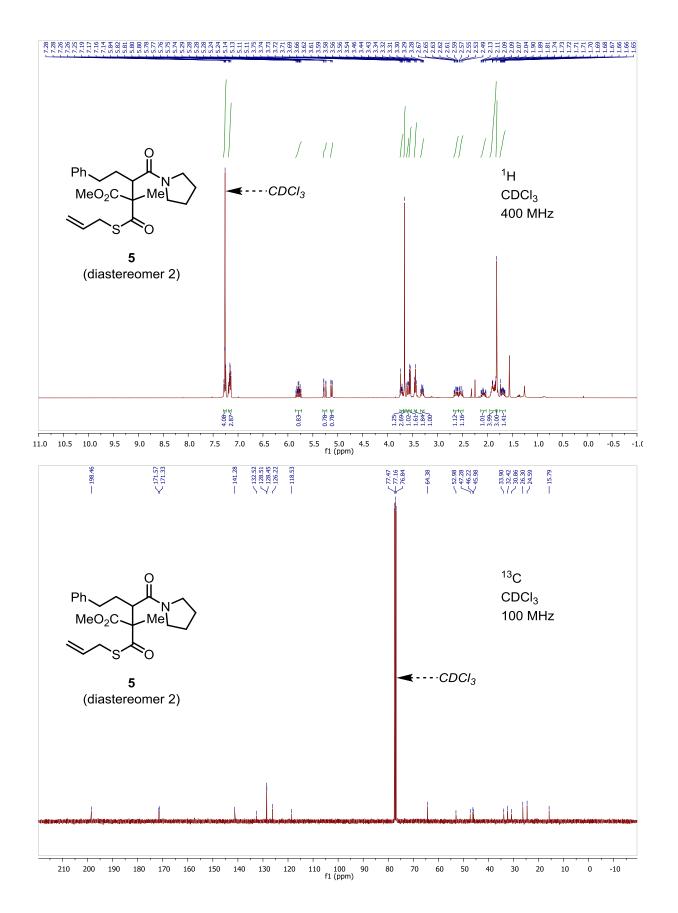


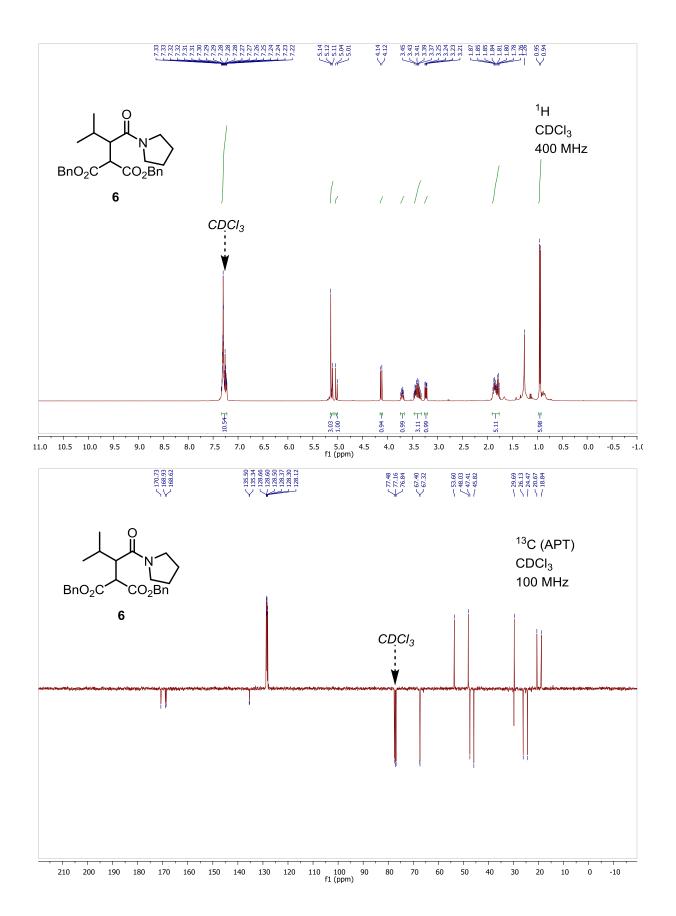


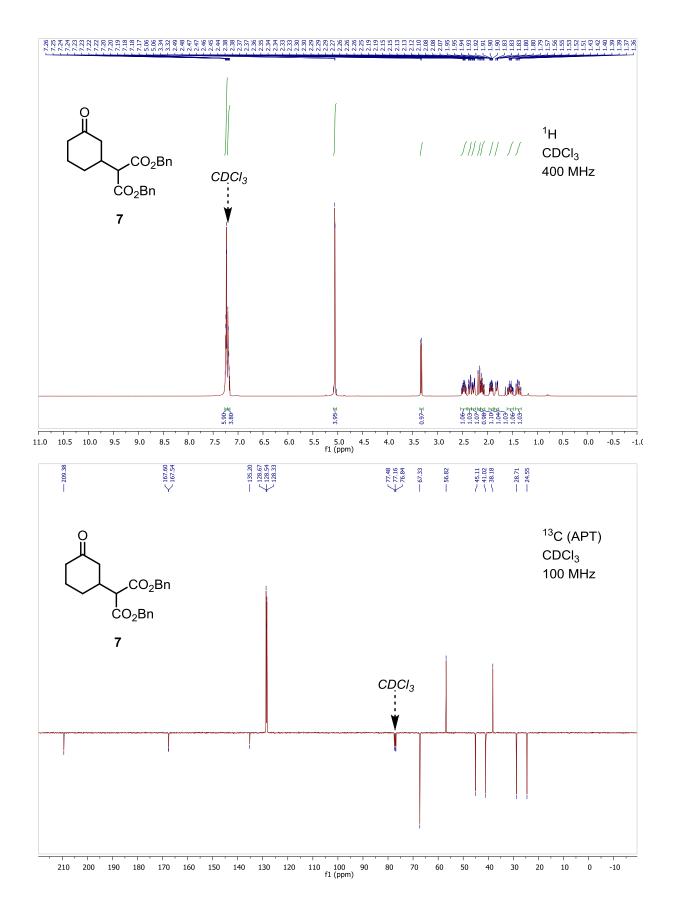


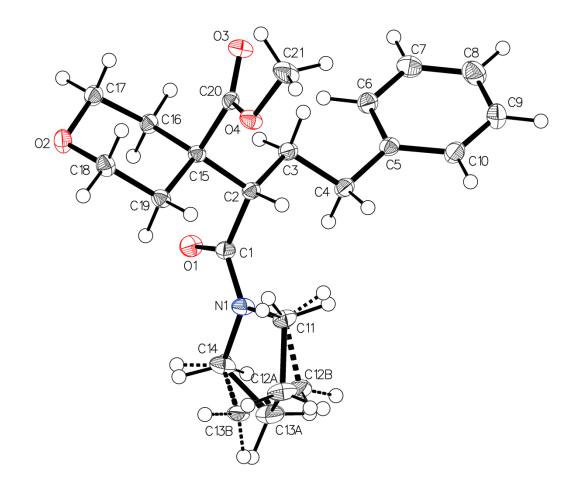











6. X-Ray Crystallographic Data

The X-ray intensity data were measured on Bruker X8 APEX2 diffractometer equipped with multilayer monochromator, Mo K/a INCOATEC micro focus sealed tube and Kryoflex cooling device. The structures were solved by *direct methods* and refined by *full-matrix least-squares techniques*. Non-hydrogen atoms were refined with *anisotropic displacement parameters*. Hydrogen atoms were inserted at calculated positions and refined with a riding model. The following software was used: *Bruker SAINT software package*⁹ using a narrow-frame algorithm for frame integration, *SADABS*¹⁰ for absorption correction, *OLEX2*¹¹ for structure solution, refinement, molecular diagrams and graphical user-interface, *Shelxle*¹² for refinement and graphical user-interface *SHELXS-2013*¹³ for structure solution, *SHELXL-2013*¹⁴ for refinement, *Platon*¹⁵ for symmetry check. Experimental data and CCDC-Codes can be found in Table 1. Crystal data, data collection parameters, and structure refinement details are given in Tables 2 to 5. Crystal structures visualized in Figures 1 and 2.

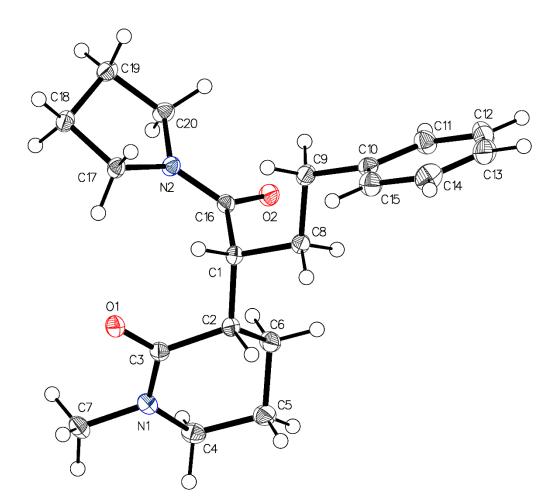
Sample	Machine	Source	Temp.	Detector Distance	Time/ Frame	#Frames	Frame width	CCDC
	Bruker		[K]	[mm]	[s]		[°]	
2af	X8	Мо	100	35	30	2580	0.5	1569559
2ai	X8	Мо	100	35	16	4433	0.5	1577972

Table 1 Experimental parameter and CCDC-Code.

Methyl 4-(1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)tetrahydro-2*H*-pyran-4-carboxylate [2af] for "Journal of the American Chemical Society".

Figure 1 Asymmetric Unit of [**2af**], drawn with 50% displacement ellipsoids. Bond Precision on C-C Bonds: 0.0017 Ang. Main Residue Disorder : 8%.

Table 2 Sample and crystal data of [2af].


Chemical formula	C21H29NO4	Crystal system	monoclinic	
Formula weight [g/mol]	359.45	Space group	P21/c	
Temperature [K]	100	Z	4	
Measurement method	\f and \w scans	Volume [ų]	1852.29(18)	
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	6.0618(3)	90
Crystal size / [mm ³]	0.16 × 0.09 × 0.045		18.1122(10)	92.091(3)
Crystal habit	clear colourless block		16.8821(10)	90

Density (calculated) / [g/cm³]	1.289	Absorption coefficient / [mm ⁻ ¹]	0.088			
Abs. correction Tmin	0.5151	Abs. correction Tmax	0.746			
Abs. correction type	multi-scan	F(000) [e ⁻]	776			

 Table 3 Data collection and structure refinement of [2af].

Index ranges	-8 ≤ h ≤ 8, -25 ≤ k ≤ 25, -23 ≤ l ≤ 23	Theta range for data collection [°]	4.498 to 60.58	
Reflections number	59598	Data / restraints / parameters	5493/0/254	
Refinement method	Least squares	Final R indices	all data	R1 = 0.0604, wR2 = 0.1149
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	Final K mulces	l>2σ(l)	R1 = 0.0429, wR2 = 0.1048
Goodness-of-fit on F ² 1.068		Moishting	$w=1/[\sigma^2(F_0^2)+(0.0428P)^2+0.7327P]$	
Largest diff. peak and hole [e Å ⁻³]			where $P=(F_0^2+2F_c^2)/3$	

(R*)-1-methyl-3-((S*)-1-oxo-4-phenyl-1-(pyrrolidin-1-yl)butan-2-yl)piperidin-2-one [2ai] for "Journal of the American Chemical Society".

Figure 2 Asymmetric Unit of [**2ai**], drawn with 50% displacement ellipsoids. The chiral atoms C1 and C2 are defined as R,S and S,R forced by the space group $P2_1/c$ in detail by center of symmetry.

Index ranges	-25 ≤ h ≤ 24, -8 ≤ k ≤ 8, -24 ≤ l ≤ 23	Theta range for data collection [°]	4.704 to 60.378	
Reflections number	79104	Data / restraints / parameters	5150/0/218	
Refinement method	Least squares	Final R indices	all data	R1 = 0.0490, wR2 = 0.1128
Function minimized	$\Sigma w (F_0^2 - F_c^2)^2$	Final R Indices	l>2σ(l)	R1 = 0.0407, wR2 = 0.1071
Goodness-of-fit on F ² 1.051		Weighting	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0507P)^{2}+0.6729P]$	

Table 4 Data collection and structure refinement of [2ai].

Largest diff. peak and hole [e Å ⁻³]	0.40/-0.21	scheme	where $P = (F_0^2 + 2F_c^2)/3$
---	------------	--------	--------------------------------

Table 5 Sample and crystal data of [2ai].

Chemical formula	C20H28N2O2	Crystal system	monoclinic	
Formula weight [g/mol]	328.44	Space group	P21/c	
Temperature [K]	100	Z	4	
Measurement method	\f and \w scans	Volume [ų]	1747.7(2)	
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	17.8604(14)	90
Crystal size / [mm ³]	$0.5 \times 0.14 \times 0.08$		5.8441(5)	104.184(3)
Crystal habit	clear colourless block		17.2700(14)	90
Density (calculated) / [g/cm³]	1.248	Absorption coefficient / [mm ⁻ ¹]	0.08	
Abs. correction Tmin	0.594	Abs. correction Tmax	0.746	
Abs. correction type	multi-scan	F(000) [e ⁻]	712	

7. References

[1] Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem. Int. Ed. 2014, 53, 5462.

[2] Zhang, F.; Das, S.; Walkinshaw, A. J.; Casitas, A.; Taylor, M.; Suero, M. G.; Gaunt, M. J. *J. Am. Chem. Soc.* **2014**, *136*, 8851.

- [3] De la Torre, A. ; Kaiser, D. ; Maulide, N. J. Am. Chem. Soc. 2017, 139, 6578.
- [4] Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; González, L.; Maulide, N. *J. Am. Chem. Soc.* **2016**, *138*, 8348.
- [5] Nagao, Y.; Seno, K.; Kawabata, K.; Miyasaka, T.; Takao, S.; Fujita, E. Tetrahedron Lett. 1980, 21, 841.

[6] Seidensticker, T.; Furst, M. R. L.; Frauenlob, R.; Vondran, J.; Paetzold, E.; Kragl, U.; Vorholt, A. J.

ChemCatChem 2015, 7, 4085.

- [7] Moeller, K. D.; Wang, P. W.; Tarazi, S.; Marzabadi, M. R.; Wong, P. L. J. Org. Chem. 1991, 56, 1058.
- [8] Oussaid, A.; Mazieres, S.; Garrigues, B. J. Maroc. Chim. Hétérocyclique 2004, 3, 27.
- [9] Bruker SAINT v7.68A Copyright © 2005-2016 Bruker AXS.
- [10] Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

[11] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H., OLEX2, (2009), J. Appl. Cryst. 42, 339-341.

[12] C. B. Huebschle, G. M. Sheldrick and B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, J.

Appl. Cryst., 44, (2011) 1281-1284.

- [13] Sheldrick, G. M. (1996). SHELXS. University of Göttingen, Germany.
- [14] Sheldrick, G. M. (1996). SHELXL. University of Göttingen, Germany.
- [15] Spek, A. L. (2009). Acta Cryst. D65, 148-155.