Supplemental Information to:

High-density cultivation of terrestrial *Nostoc* strains leads to reprogramming of secondary metabolome

Arthur Guljamow, Marco Kreische, Keishi Ishida, Anton Liaimer, Bjørn Altermark, Lars Bähr, Christian Hertweck, Rudolf Ehwald and Elke Dittmann

Table of contents:

- 1. Table S1 Adjustment of light intensity and CO₂ supply to increasing cell densities during growth in HD culture.
- 2. Table S2 Three new anabaenopeptins from *N. punctiforme* KVJ2 and the similar congeners.
- 3. Table S3 The ¹H and ¹³C data for anabaenopeptin KVJ827 in DMSO- d_6 at 300 K
- 4. Figure S1 MALDI TOF spectra for selected peaks of *N. punctiforme* PCC 73102 (1-7)
- 5. Table S4. Observed PSD fragments of nostopeptolide 1052 and A for Figure S2.
- 6. Figure S2 MALDI TOF PSD spectra for nostopeptolides of *N. punctiforme* PCC 73102
- 7. Table S5. Observed PSD fragments of nostamide A for Figure S3.
- 8. Figure S3 MALDI TOF PSD spectrum of nostamide A
- 9. Fig. S4 HPLC profile of the HD supernatant of *N. punctiforme* PCC 73102
- 10. Fig. S5 HPLC profiles of cellular extracts and supernatants of *N. punctiforme* PCC 73102 with or without shaking or supernatant exchange
- 11. Figure S6 The key HMBC (arrow) and ¹H-¹H COSY (bold line) correlations of anabaenopeptin KVJ827
- 12. Figure S7 The ¹H NMR spectrum of anabaenopeptin KVJ827 in DMSO- d_6 .
- 13. Figure S8 The ¹³C NMR spectrum of anabaenopeptin KVJ827 in DMSO- d_6 .
- 14. Figure S9 The 1 H- 1 H COSY spectrum of anabaenopeptin KVJ827 in DMSO- d_{6} .
- 15. Figure S10 The HSQC spectrum of anabaenopeptin KVJ827 in DMSO- d_6 .
- 16. Figure S11 The HMBC spectrum of anabaenopeptin KVJ827 in DMSO- d_6 .
- 17. Table S6 Observed fragments for Figure S12.
- 18. Figure S12 The MALDITOFMS PSD spectra of anabaenopeptins KVJ827, KVJ841 and KVJ811
- 19. Figure S13 Extracted ion chromatogram (EIC) at negative ion mode of FDAA derivatives of standard amino acids.
- 20. Figure S14-S16 Extracted ion chromatogram (EIC) at negative ion mode of FDAA derivatives of acid hydrolysate

· · 1 ·	1. 1	00
wet weight	light intensity	$p CO_2$
(g/L)	over the culture	(mbar)
	(µmol photons	
	$\cdot s^{-1} \cdot m^{-2}$)	
<100	100	20
100 to 150	158	52
150 to 200	215	
200 to 250	330	00
250 to 350	440	90
>350	560	

Table S1 Adjustment of light intensity and CO_2 supply to increasing cell densities during growth in HD cultivation.

Table S2. Three new anabaenopeptins from *N. punctiforme* KVJ2 and the similar congeners.

			Amino ac	id position			
Peptide	1	2	3	4	5	6	Ref.
Anabaenopeptin KVJ827 (8)	L-Tyr	D-Lys	L-Val	L-Hph	MeGly	L-Hph	This study
Anabaenopeptin KVJ841 (9)	L-Tyr	D-Lys	L-Ile	L-Hph	MeGly	L-Hph	This study
Anabaenopeptin KVJ811 (10)	L-Phe	D-Lys	L-Val	L-Hph	MeGly	L-Hph	This study
Anabaenopeptin NZ825	L-Phe	D-Lys	L-Ile	L-Hph	MeGly	L-Hph	#1
Anabaenopeptin NZ841	L-Phe	D-Lys	L-Ile	L-Hty	MeGly	L-Hph	#1
Anabaenopeptin NZ857	L-Phe	D-Lys	L-Ile	L-Hty	MeGly	L-Hty	#1,2
Nostamide A (3)	L-Phe	D-Lys	L-Ile	L-Hph	MeGly	L-Hty	#2
Hph; homophenylalanine, Hty; homotyrosine, MeGly; <i>N</i> -methylglycine							

#1 Grach-Pogrebinsky O, Carmeli S. Tetrahedron 2008 64, 10233–10238.

#2 Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. Chem Biol. 2010 17, 265-273.

		lsomer1		lsomer2	
Position		¹ H (<i>J</i> Hz)	¹³ C	¹ H (<i>J</i> Hz)	¹³ C
Tyr	1	\$ <i>k</i>	173.76 (s)		173.83 (s)
5	2	4.25 (ddd 16.0, 8.2, 5.2)	54.0 (d)	4.26 (ddd 15.5, 8.3, 5.4)	54.0 (d)
	3	2.74 (m)	36.66 (t)	2.74 (m)	36.66 (t)
		2.85 (m)		2.85 (m)	
	4		127.3 (s)		127.2 (s)
	5.9	6.94 (d 8.5)	130.10 (d)	6.95 (d 8.5)	130.13 (d)
	6.8	6 64 (d 8 5)	1150(s)	6 65 (d 8 5)	115 0 (s)
	7	0.01 (0.0.0)	156.0(s)	0.00 (0.0.0)	156 0 (s)
	NH	6 18 (d 8 2)	10010 (0)	6 21 (d 8 3)	100.0 (0)
	Ureido C=O	0.10 (0.0.2)	156 97 (s)	0.21 (0.0.0)	157 07 (s)
lvs	1		172 8 (s)		172 1 (s)
2,0	2	3 87 (m)	54 4 (d)	3 87 (m)	54 7 (d)
	3	1.53 (m)	31 1 (t)	1 53 (m)	31 1 (t)
	0	1.00 (m)	01.1 (t)	1.60 (m)	0111(1)
	4	1 08 (m)	20.2 (m.)	1 08 (m)	20.8 (m)
	•	1 17 (m)	20:2 ()	1 17 (m)	20.0 (11)
	6	1.33 (m)	28.0 (t)	1 33 (m)	28 0 (t)
	•	1.35 (m)	2010 (1)	1.35 (m)	20.0 (1)
	7	2 89 (m)	38 2 (t)	2 71 (m)	38 2 (t)
	•	3 28 (m)	00.2 (1)	3 43 (m)	00.2 (1)
	1-NH	6.50 (m)		6 49 (m)	
	6-NH	7 12 (m)		7 19 (m)	
Val	1	1.12 (11)	172 5 (s)	1.10 (11)	171.6 (s)
	2	3 94 (t 7 8)	57.8 (d)	3 79 (t 7 5)	59 1 (d)
	3	1.82 (m)	29.7 (t)	1.85 (m)	29.7 (t)
	4	0.834 (d.6.6)	18.8(t)	0.80(d.6.7)	19.1
	5	0.93 (d.6.8)	18.8 (t)	0.828 (d.6.6)	19.0
	NH	6 76 (d 7 2)	10.0 (1)	7 13 (m)	10.0
Hph1	1	0.10 (0.1.2)	171.2 (s)	1110 (11)	171.6 (s)
	2	4.66 (dt 8.6. 5.4)	49.2 (d)	4,46 (br)	49.0 (d)
	3	1.85 (m)	32.8 (t)	1.88 (m)	32.8 (t)
		1.92 (m)			
	4	2.58 (m)	30.9 (t)	2.59 (m)	31.4 (t)
	-	2.75 (m)		2.64 (m)	
	5		141.2 (s)		141.1 (s)
	6.10	7.21 (m)	128.32 (d)	7.24 (m)	128.17 (d)
	7.9	7.23 (m)	128.23 (d)	7.23 (m)	128.23 (d)
	8	7.17 (m)	125.98 (d)	7.17 (m)	126.00 (d)
	NH	8.90 (d 5.4)		8.25 (br)	
<i>N</i> -MeGlv	1		168.4 (s)		168.9 (s)
5	2	3.40 (d 16.2)	52.17 (t)	3.62 (d 16.6)	53.9 (t)
		4.43 (d 16.2)	- (-)	4.57 (d 16.6)	(-)
	<i>N</i> -Me	3.01 (s)	36.8 (a)*	2.81 (s)	33.8 (a)*
			37.0 (q)*	- (-)	33.9 (q)*
Hph2	1		171.0 (s)		171.0 (s)
•	2	4.15 (ddd 10.5, 8.7, 4.6)	52.2 (d)	4.08 (ddd 11.3, 8.6, 3.3)	52.9 (d)
	3	1.77 (m)	33.3 (t)	1.90 (m)	32.5 (t)
		2.10 (m)		2.11 (m)	
	4	2.42 (m)	31.9 (t)	2.45 (m)	31.5 (t)
		2.52 (m)	(-)	2.60 (m)	(-)
	5	()	141.33 (s)		141.25 (s)
	6,10	7.10 (m)	128.32 (d)	7.13 (m)	128.36 (d)
	7.9	7.28 (m)	128.36 (d)	7.28 (m)	128.32 (d)
	8	7.17 (m)	125.8 (d)	7.17 (m)	125.7 (d)
	NH	7.90 (d 8.8)		8.55 (d 8.6)	x - 7

Table S3. The ¹H and ¹³C data for anabaenopeptin KVJ827 in DMSO- d_6 at 300 K.

*: Two carbons are detected.

Figure S1 | MALDI TOF spectra for selected peaks of *N. punctiforme* PCC 73102 as shown in Figures 3 and 4. Peak numbers correspond to compound numbers in Fig. 3 and 4. Peaks 1 to 3 are shown as M+H, peaks 4, 5 and 7 contained metabolites with M=2117 Da, M=2145 Da and M=2173 Da, calculated from M+Na⁺. Values for m/z are shown for the lightest isotope signal. Peaks 1 to 3 were identified as nostopeptolide 1052, A and nostamide A. See Fig. S2 for MS/MS fragmentation spectra. Both nostopeptolide peaks contained a cleavage fragment, indicative for their cyclic portion of M+H=898 Da.

Tuble 51 00561 ved 1 5D hughlents of hostopeptonde 1052 und 11 for 1 gule 52.		
lon; <i>m/z</i> 1081(1053)	Observed fragment (Positive ion mode)	
966(938)	Bu(Ac)-Ile-Ser-mPro-LeuAc-Leu-Gly-Asn-Tyr	
898(898)	Ser-mPro-LeuAc-Leu-Gly-Asn-Tyr-Pro	
829(829)	mPro-LeuAc-Leu-Gly-Asn-Tyr-Pro-OH	
797(769)	Bu(Ac)-Ile-Ser-O-Pro-Tyr-Asn-Gly-Leu [-H ₂ O]	
634(606)	Bu(Ac)-Ile-Ser(O-Pro)-mPro-LeuAc	
551(551)	mPro-LeuAc-Leu-Gly-Asn	
519(491)	Bu(Ac)-Ile-Ser-mPro-LeuAc [-H ₂ O]	
451(451)	Pro-O-Ser-mPro-LeuAc	
368(340)	Bu(Ac)-Ile-Ser-O-Pro	
296(296)	Pro-Ser-mPro	
267(267)	mPro-LeuAc/Leu-Gly-Asn [-H ₂ O]	
	· · · · · · · · · · · · · · · · · · ·	

Table S4. Observed PSD fragments of nostopeptolide 1052 and A for Figure S2.

Nostopeptolide 1052 (R=H) Nostopeptolide A (R=CH₂CH₃)

Figure S2. MALDI TOF PSD spectra (positive ion mode) of nostopeptolide 1052 (**A**) and nostopeptolide A (**B**). Structures of nostopeptolide 1052 and A (**C**). Red highlighted ions are assigned fragment ions as listed in Table S5.

lon; <i>m/z</i> 842	Observed fragment (Positive ion mode)
814	M-CO
729	M-lle
681	M-Hph
677	M-Phe
655	M-Hty
651	M-Phe-CO
594	M-MeGly-Hty
568	M-Ile-Hph
540	M-Ile-Hph-CO
523	Ile-Hph-MeGly-Hty
346	Ile-Php-MeGly
320	Phe-CO-Lys
275	lle-Hph
249	MeGly-Hty
233	Hph-MeGly

Table S5. Observed PSD fragments of nostamide A for Figure S3.

Figure S3. MALDI TOF PSD spectra (positive ion mode) of nostamide A. Structure of nostamide A. Red highlighted ions are assigned fragment ions as listed in Table S6.

Figure S4 HPLC profile of the HD supernatant of *N. punctiforme* PCC 73102 obtained at day 17 of HD cultivation and used for the treatment of C+HD cultures. Compound numbers relate to peak numbers shown in Figures 3 and 4 and Figures S1-S3.

Figure S5 HPLC profiles of cellular extracts and supernatants of *N. punctiforme* PCC 73102 grown either as conventional stationary culture (C stationary) or as conventional shaken culture (C shaken) for 24d with or without supernatant exchange (supernatant was obtained by centrifugation at day 17 and re-added to the same culture). Neither mechanical shaking now mechanical supernatant exchange had a significant influence on the metabolites produced or secreted. Numbers relate to compound numbers in Figure 3 and 4. 1: nostopeptolide 1052, **2**: nostopeptolide A

Figure S6. The key HMBC (arrow) and ¹H-¹H COSY (bold line) correlations of anabaenopeptin KVJ827.

Figure S7. The ¹H NMR spectrum of anabaenopeptin KVJ827 in DMSO- d_6 .

Figure S9. The ${}^{1}\text{H} - {}^{1}\text{H}$ COSY spectrum of anabaenopeptin KVJ827 in DMSO- d_{6} .

Figure S11. The HMBC spectrum of anabaenopeptin KVJ827 in DMSO-*d*₆.

Observed fragment (Positive ion mode)
M-CO
M-COO
M-Val or –Ile
d-CO
M-Hph
M-Phe or –Tyr
f-CO
M-Val(IIe)-Hph1
h-H ₂ O
h-CO
i-CO
M-Val(IIe)-Hph1-MeGly
Val(IIe)-Hph1-MeGly-Hph2
M-Hph1-MeGly-Hph2
Hph1-MeGly-Hph2
MeGly-Hph2-Lys
Val(IIe)-Hph1-MeGly
Val(IIe)-Hph1
Hph1-MeGly/MeGly-Hph2
s -H ₂ O
Hph1/2-CO
Lys-CO-NH

 Table S6. Observed fragments for Figure S12.

Figure S12. The MALDITOFMS PSD spectra of anabaenopeptin KVJ827, KVJ841, KVJ811. anabaenopeptin KVJ811 (A), KVJ827 (B), and KVJ841 (C). Observed ions as listed in Table S5 are highlighted in pink.

Figure S12. Continuation.

Figure S12. Continuation.

Figure S13. Extracted ion chromatogram (EIC) at negative ion mode of FDAA derivatives of standard amino acids by HPLC-MS. Data profile shows EIC as follows. *N*-MeGly-L-FDAA; *m/z* 341.8±0.5 (M-H)⁻, D,L-Val-L-FDAA; *m/z* 369.7±0.5 (M-H)⁻, D,L-Ile-L-FDAA; *m/z* 383.5±0.5 (M-H)⁻, D,L-Phe-L-FDAA; *m/z* 417.3±0.5 (M-H)⁻, D,L-Lys-*N*,*N*-di-L-FDAA; *m/z* 649.6±0.5 (M-H)⁻, D,L-Hph-L-FDAA; *m/z* 431.4 (M-H)⁻, D,L-Tyr-*N*,*O*-di-L-FDAA; *m/z* 684.4±0.5 (M-H)⁻. Hph; homophenylalanine.

Figure S14. Extracted ion chromatogram at negative ion mode of FDAA derivatives of acid hydrolysate of anabaenopeptin KVJ811 (10) by HPLC-MS. L-Phe was initially not detected as the ureido bond was not hydrolysed by 6M HCl. To circumvent the problem, 10 was also hydrolyzed by hydrazine and derivatized by L-FDAA (red chromatogram). Data profile shows EIC as shown above figure S10.

Figure S15. Extracted ion chromatogram at negative ion mode of FDAA derivatives of acid hydrolysate of anabaenopeptin KVJ827 (8) by HPLC-MS. As the ureido bond is often not hydrolysed by 6M HCl, 8 was also hydrolyzed by hydrazine and derivatized by L-FDAA (red chromatogram). Data profile shows EIC as shown above figure S10.

Figure S16. Extracted ion chromatogram at negative ion mode of FDAA derivatives of acid hydrolysate of anabaenopeptin KVJ841 (9) by HPLC-MS. L-Tyr was initially not detected as the ureido bond was not hydrolysed by 6M HCl. To circumvent the problem, 9 was also hydrolyzed by hydrazine and derivatized by L-FDAA (red chromatogram). The stereochemistry of Ile was not elucidated by this method. Further stereochemistry determination shows Figure S14. Data profile shows EIC as shown above figure S10.

Figure S17. Stereochemistry determination of Ile in anabaenopeptin KVJ841 (9) by using Sanger reagent DNFB (1-fluoro-2,4-dinitrobenzene). Extracted ion chromatogram of DNB (dinitrobenzene) derivatives of standard amino acids and acid hydrolysate of 9 at m/z 383.5±0.5 (M-H) corresponding to Ile-DNB. Top 2 chromatograms show coinjections of acid hydrolysate of 9 and amino acid standards and bottom 2 chromatograms show amino acid standard derivatives, only. This method determined Ile of 9 is L-Ile.