
SUPPLEMENTARY MATERIAL

Contents

1. Sources of Ion Current Modulation in Nanopore Experiments 2
2. Conversion of Ion Current to DNA Position 3
3. The Master Equation 6
4. Statistical Analysis of Michaelis-Menten Parameters for [ATP]-dependent f|f Steps 8
5. Comparing f|f and f|b [ATP]-dependent steps 11
6. Derivation of a Dwell time Distribution Function for General f|b Steps 13
7. Analysis of Probability of Backwards Steps 14
8. Analysis of f|f and f|b [ATP]-independent Dwell time Distributions Using the AIC 16
9. Voltage and Temperature Variation 17
10. Calculation of Average Dwell Time of f|f [ATP]-dependent Steps Using the Steady-state

Approximation 20
11. Derivation of the Probability of a b|f Step for [ATP]-dependent Steps in Model 1 and Model 2 23
12. Estimation of Kinetic Parameters for [ATP]-dependent Steps 26
13. Materials and Methods 31
14. References 32

1



2 SUPPLEMENTARY MATERIAL

1. Sources of Ion Current Modulation in Nanopore Experiments

Understanding the ion current through the nanopore is essential in properly analyzing enzyme kinetics
with SPRNT. There are several potential sources of ion current modulation in nanopore systems:

(1) Enzyme / DNA motion
(2) Access resistance changes caused by the enzyme resting close to MspA
(3) Fluctuations caused by contamination of ions other than K+ and Cl−

(4) Interactions between the DNA bases and MspA

Our goal is to decouple current changes caused by enzyme activity from the other sources of current
modulation.

In the Hel308 ion current traces, we observed that many ion current steps (both [ATP]-dependent and
[ATP]-independent) tended to have short-lived decreases in ion current amplitude (5-50 ms) that could not
be associated with any Hel308 ion current state, before returning to the previous ion current step (Fig. s1a).
We call such ion current states ‘flickers’. Because flickers occurred as only downwards spikes in the current
trace, it is also unlikely that flickers are caused by DNA motion through the pore, as we would expect this
to lead to both current increases and decreases (27). To test if flickers were caused by ion contamination or
interactions between the DNA bases and MspA, we performed an experiment in which we placed both phi29
DNA polymerase (29) and Hel308 into the reaction volume. Flickers were observed only in the translocation
events with Hel308, suggesting that Hel308 is required for flickering, and thus flickers are not an effect of the
ion contamination or MspA-DNA interactions. We thus attribute flickering behavior to a transient access
resistance caused by interactions between Hel308 and MspA. We conclude that the flickers are not caused
by enzymatic activity. Therefore, when examining dwell times we must include flickers together with the
associated step.

We analyzed the data by performing sequence alignment of the current amplitudes for each event to a
reference consensus (27,28). Flickers tended to be aligned to an incorrect step, so we corrected each alignment
manually using a custom-made GUI.



SUPPLEMENTARY MATERIAL 3

2. Conversion of Ion Current to DNA Position

As an enzyme walks along a DNA strand and feeds it into the MspA pore, we observe a series of discrete
ion current steps (Fig. s1a). Previously, we found that these ion current steps observed during nanopore
sequencing are a discrete sampling of a smooth underlying curve of ion current versus DNA position(27).
This smooth curve is what one would observe if they were to smoothly feed DNA through the pore and
plot the measured ion current vs. the DNA position within the pore. Using alignment algorithms similar
to Needleman-Wunch alignment(28,37,38) this smooth curve can also be used as a direct mapping from
measured ion current to DNA position within the pore.

To make this conversion, one needs to know the underlying smooth current vs. position curve for the
particular sequence of DNA used. Previously, we found that the Hel308 helicase steps in two approximately
half-nucleotide steps on ssDNA (27) ([ATP]-dependent step forwards to ATP-independent:0.55±0.03 nt and
[ATP]-independent forwards to [ATP]-dependent: 0.45± 0.03 nt). In this manuscript, we approximate this
smooth underlying curve with a spline curve determined from the consensus of current values observed while
Hel308 helicase steps DNA through the pore. Consensus DNA positions are spaced according to our previous
measurement (0, 0.45 nt, 1.0 nt, 1.45 nt, 2.0 nt, ...; fig s1b). A given raw SPRNT current measurement can
then be converted from ion current to position via the following steps:

(1) Find and extract average ion current values for steps in the data (Fig. s1a). This is described in
detail in (26).

(2) Align extracted ion current step means to the previously measured consensus. For alignment we
use a dynamic programming algorithm similar to Needleman-Wunch alignment (28,37,38). For a
detailed explanation of alignment of nanopore currents, see Laszlo 2016, Appendix C (26). Average
ion current steps for 20 example events have been aligned to the consensus in Figure s1b.

(3) Use the alignment from (2) to match each ion current datapoint from the ion current measurement
to the corresponding DNA position. Bulk alignment of ion current steps to the consensus provides
initial context that allows individual ion current datapoints to be matched to the underlying smooth
curve. Because the measured currents are not unique to a particular position (i.e. multiple positions
along the DNA result in similar or identical ion current measurements), bulk alignment of current
steps allows us to determine where on the spline to look for a corresponding ion current/position
pair. Matching is done via a T-test comparison of each measured current value to all spline current
values that lie within 3 nt of the bulk-aligned position. The spline has some uncertainty in it because
there is variability in the observed currents from measurement to measurement (see aligned levels
in Fig s1b), this uncertainty is used as the standard deviation, σ, in the T-test. For each measured
ion current datapoint, the T-test yields a liklihood of match for each current/position pair of the
spline (within 3 nt of the bulk alignment). It sometimes occurs that there are two or three best
possible current matches. This happens when the measured enzyme step is close to a peak or trough
in the underlying smooth curve, thus a measured current point can match spline current values to
the left and right of the peak/trough. We resolve this ambiguity by using our knowledge of the
overall alignment to assign a prior probability to the T-test output. We thus multiply the position
likelihood scores by an assigned prior probability that is a normalized Gaussian of width σ = 0.7 nt,
centered at the position of the alignment. Figure s1 panels c, d, and e show in schematic form how
ion current is transduced into position using the smooth current vs. position curve.
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Figure s1. Conversion of ion current to DNA position. (a) Raw data trace of ion current
versus time for the same event shown in figure 1c. Flickers are indicated by an ‘f’ (b) Smooth
ion current versus DNA position curve, constructed by averaging together many reads like
those in (a)(27). The DNA sequence in the MspA constriction is displayed above, with ‘X’
indicating an abasic site. (c-e) Each data point in the ion current versus time trace (c) is
mapped to the underlying smooth curve (d) as indicated by the arrows, thereby determining
the DNA position versus time (e).
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Experiment [ATP ](µM) [ADP ](µM) V oltage(mV ) Temperature(◦C) Nevents
ATPt 10 0 180 22 34*
ATPt,ADPi,Voltage II 50 0 180 22 47*
ATPt 100 0 180 22 38
ATPt 250 0 180 22 59*
ATPt,Temperature,Voltage I 500 0 180 22 36*
ATPt 1000 0 180 22 99*
ATPt 2000 0 180 22 35
ATPt 3000 0 180 22 57*
ADPi 50 10 180 22 22
ADPi 50 25 180 22 44
ADPi 50 50 180 22 30
ADPi 50 100 180 22 32
ADPi, Ratio [ATP]:[ADP]=1:4 50 200 180 22 27
Ratio [ATP]:[ADP]=1:4 300 1200 180 22 15
Ratio [ATP]:[ADP]=1:4 500 2000 180 22 33
Ratio [ATP]:[ADP]=1:4 700 2800 180 22 34
Voltage I 500 0 140 22 37
Voltage I 500 0 160 22 27
Voltage I 500 0 200 22 41
Voltage I 500 0 220 22 37
Voltage I 500 0 240 22 55
Voltage I 500 0 260 22 37
Voltage I 500 0 280 22 35
Voltage II 50 0 140 22 34
Voltage II 50 0 220 22 45
Voltage II 50 0 260 22 26
Temperature 500 0 180 28 17
Temperature 500 0 180 34 65
Temperature 500 0 180 45 28
Ratio [ATP]:[ADP]=1:2 10 20 180 37 39
Ratio [ATP]:[ADP]=1:2 50 100 180 37 30
Ratio [ATP]:[ADP]=1:2 100 200 180 37 22
Ratio [ATP]:[ADP]=1:2 250 500 180 37 40
Ratio [ATP]:[ADP]=1:2 500 1000 180 37 24
Ratio [ATP]:[ADP]=1:2 750 1500 180 37 48
Ratio [ATP]:[ADP]=1:2 1500 3000 180 37 27

Table s1. Experimental conditions and number of Hel308 events. The experiments tags
are as follows. ATPt refers to experiments in which only the ATP concentration was varied.
An asterisk indicates some data was used in a previous publication (27). ADPi refers to
experiments in which the ADP concentration was varied at [ATP ] = 50 µM . Voltage
I and Voltage II refer to experiments in which the voltage was varied while maintaining
[ATP ] = 500 µM and [ATP ] = 50 µM , respectively. Ratio refers to experiments in which
we maintained a constant ratio of [ATP ] : [ADP ] = 1 : 4 or [ATP ] : [ADP ] = 1 : 2. Temp
refers to experiments in which the temperature was varied at [ATP ] = 500 µM . In total
N = 1357 single-molecule data traces were obtained for this study.
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3. The Master Equation

To analyze different kinetic models at the single-molecule level we use the master equation formalism (41),
which describes the way that probability flows between different enzyme states. The master equation can
be used to answer questions such as: what is the average dwell time of an observable state as a function
of the substrate concentration? What is the probability that the motor enzyme steps backwards? What is
the distribution of dwell times for f |f steps? Consider the toy model shown in figure s2, a four state model
consisting of chemical states A, B1, B2, and C which transition between one another. Transitions between
A and B1, and B2 and C result in a change in ion current signal, while transitions between B1 and B2 are
hidden. Assume that at time 0 (i.e. the start of a new DNA position measurement) the enzyme is in state
B1. The rate of change of the probability that the enzyme occupies state B1 is obtained by summing the
rate of probability flow into state B1, and subtracting the rate of probability flow out of state B1:

(s1)
dpB1

dt
= pB2

· k−1 − pB1
· (k−0 + k1)

Equations of this form can be written for states, A, B2 and C as well. Then we note that these are a linear
system of differential equations, which allows us to write the matrix equation:

(s2)
d~p

dt
=

d

dt


pA
pB1

pB2

dpC

 = M · ~p(t) =


0 k−0 0 0
0 −k−0 − k1 k−1 0
0 k1 −k−1 − k2 0
0 0 k2 0

 ·

pA
pB1

pB2

pC

 .
equation S2 is called the ‘master equation’ for this system. The entries of ~p(t) are the probabilities that the
individual states are occupied at time t and M is the called ‘connection matrix’. Diagonal entries of M are
outflow rates from a given state, while off diagonal entries Mij are the rate of probability flow from state j
into state i. The columns of M must always sum to 0 to conserve probability. In this example we start in
state B1, therefore the initial conditions for equation s2 are:

(s3) ~p(t = 0) =


0
1
0
0

 .
The master equation together with the initial conditions completely specify the system. The solution to

equation s2 is easily written in terms of the eigenvalues of the connection matrix:

(s4) ~p(t) = Σici · ~ξi · exp(λi · t),

where λi and ~ξi are the eigenvalues and eigenvectors of M , and ci are the coefficients of integration. The ci
can be solved according to the initial conditions:

(s5) ~c = V −1 · ~p(t = 0)

where V is a matrix whose columns are the ~ξi. In principle, we have fully solved the problem, however
for complex kinetic models with many states and parameters the eigenvalues cannot be analytically solved.
Thus using equation s4 can be difficult. In the remainder of this supplement we will use several different
techniques to analyze solutions to the master equation, such as the steady-state approximation, numerical
solutions, direct integration and laplace transform.

It is important to discuss here how this formalism connects to experimental data. For example, when

displaying the kinetic model in figure s2 why did we not include the transition A
k0→ B1 and C

k−2→ B2? These
terms are certainly important, but not relevant to the experimental question we are asking: what is that
probability distribution of dwell times for the enzyme to go between observable states given that we begin

in state B1? This is an example of the ‘first-passage time’ problem. If we were to include A
k0→ B1 in this

diagram and the master equation, then we would be including information from multiple different observable
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Figure s2. A simple kinetic model to illustrate the master equation.

states into our model, which complicates interpretation of the data. The term A
k0→ B1 would be included

in discussing the master equation for a different observable state.



8 SUPPLEMENTARY MATERIAL

[ATP ](µM) 10 50 100 250 500 1000 2000 3000
N i
total 424 1807 576 1159 493 1658 541 944

N i
ave 18 75 24 48 21 69 23 39

Table s2. The total number of measured f|f steps for the [ATP]-dependent step (N i
total)

and average number of measurements for each step (N i
ave) at the given ATP concentration.

4. Statistical Analysis of Michaelis-Menten Parameters for [ATP]-dependent f|f Steps

We tested whether the variation among measured Michaelis-Menten parameters (figure s3a) for f |f [ATP]-
dependent steps Vf |f and Kf |f , as defined by the Michaelis equation could have been produced by statistical
fluctuations. We asked the following statistical question: what is the probability of observing the joint
distribution of experimentally measured Vf |f and Kf |f , given that Vf |f and Kf |f do not depend on DNA
position (the null-hypothesis). We generated data for the null-hypothesis by placing all of the data for each
[ATP]-dependent step (all half-integer DNA positions) at a given [ATP] into a single bin. The number of
data points in a single concentration i is N i

total. Let the average number of times a given DNA position
is measured at a concentration i be N i

ave (table s2). For each concentration we drew N i
ave measurements

of the dwell time at random from the N i
total measurements. We took the mean and standard deviation of

the mean of each of these bins, and performed a weighted fit to the Michaelis-Menten equation, extracting
the values of Vf |f and Kf |f . These parameters represent 1 Monte Carlo sample in our null hypothesis. We

repeated this process 105 times, which is justified because 105 � Choose(N i
total, N

i
ave) for each experiment,

ensuring that each Monte Carlo sample is independent. Figure s3b shows the joint distribution of Kf |f and
Vf |f for both the Monte Carlo samples and the measured values (blue and red, with solid and dashed black
lines representing the error ellipses, respectively). It is clear that many of the experimental data points could
not have been produced randomly at confidence p < 105. As such, we reject the null hypothesis that the
measured distribution of Kf |f and Vf |f could have been randomly produced at confidence p� 105.
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Figure s3. (a) The rate of [ATP]-dependent f|f steps versus [ATP] at several DNA positions
(positions 16.5 20.5 and 21.5 are ommitted due to degenerate ion current signals). The best
fit of the Michaelis-Menten equation to the data is plotted on top (yellow line). The red
line indicates the best fit value of the maximum rate of reaction (Vf |f ). The horizontal blue
line corresponds to Vf |f/2 , with the vertical blue line showing the position of Kf |f . (b)
The distribution of Michaelis parameters for [ATP]-dependent steps (red). Crosses are the
1 S.E.M. measured error. Each blue dot is a Monte Carlo simulation, generated by taking
the data from each step, drawing randomly and fitting a Michaelis Menten equation to the
resulting mean values. The solid and dashed black curves are error ellipses for the Monte
Carlo simulation and the measured data, respectively.
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Figure s4. The average dwell time of f|f [ATP]-dependent steps (yellow, half-integer DNA
positions) and [ATP]-independent steps (blue, integer DNA positions) as a function of the
[ADP]. The best linear fits are plotted on top. The average dwell time of the [ATP]-
dependent step increases linearly with [ADP], while the average dwell time of the [ATP]-
independent step does not depend on [ADP].
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5. Comparing f|f and f|b [ATP]-dependent steps

To compare f|f to f|b [ATP]-dependent steps, we analyzed only those DNA positions in which the following
[ATP]-independent step went backwards sufficiently often to accumulate enough statistics to analyze the
ATP dependence of f|b [ATP]-dependent steps. Figure s5a shows the rate of reaction for f|f and f|b [ATP]-
dependent steps. Each of these curves are nearly identical, and produce similar values of V and K when fit
to the Michaelis-Menten equation. The expressions for V and K for f|f and f|b steps from Model 1 are:

(s6) Vf |f = k2 ·
kD

k2 + kD
, Vf |b = k2

(s7) Kf |f =
k−T + k2

kT
· kD
k2 + kD

,Kf |b =
k−T
kT

where the subscript indicates the step type (figure 6a, for derivations see Discussion s6, s10). If we have that
kD � k2 then Vf |f = Vf |b, and if we additionally have that k−T � k2 then Kf |f = Kf |b. Evaluating the

model parameters for the [ATP]-dependent step confirms this to true in most cases (on average k−T ≈ 30 s−1,
kD ≈ 170 s−1, k2 ≈ 17 s−1, for all DNA positions see table s7). In some cases k−T is similar in value to k2,
but the errors on the fit value of K are fairly large (≈ 20− 40% for individual steps), so it may be difficult
to distinguish differences between Kf |f and Kf |b.

Figure s5b shows the dwell time distributions for the DNA positions (2.5, 7.5, 9.5 and 24.5) at subsatu-
rating ([ATP ] = 50 µM , top row) and saturating ([ATP ] = 1 mM, 2 mM, 3 mM , bottom row) [ATP]. We
used the 2-sample KS test to evaluate the similarity of each of the [ATP]-dependent f|f and f|b dwell time
distributions (Fig. s5), and found that each pair of histograms was statistically indistinguishable (p > 0.05
for each pair of histograms). These results can be explained by one the following two arguments:

(1) If the preceding b|f [ATP]-independent step is an off-pathway backwards step resulting from an
unproductive forwards step, then we would expect that the initial conditions do not modify the
kinetics, because the initial conditions are actually unmodified.

(2) If the preceding b|f [ATP]-independent step is an on-pathway backwards step, then because the ATP
and ADP off rates (k−T and kD) are large when compared with k2, thus we would expect that f|f
and f|b steps both effectively start in the free enzyme state (unbound Hel308), which would lead to
similar kinetics.

It is impossible to distinguish between which of these cases is actually occurring due to the similarity of b|f
and f|f [ATP]-independent steps (Fig s5) and the values of the Model 1 parameters (Table s7).
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Figure s5. Comparing f|f and f|b [ATP]-dependent steps. (a) The rate of reaction for f|f
(yellow) and f|b (grey) [ATP] dependent steps vs. [ATP] for several different DNA positions.
Best fit to the Michaelis-Menten equation is plotted on top. The x-axis is logarithmic. (b)
(Top) Dwell time distributions of the [ATP]-dependent step at given positions along the DNA
at [ATP]=50µM for f|f steps (yellow) and f|b steps (grey). The p-value for the two-sample
KS test is displayed in red, indicating that the histograms are statistically indistinguishable.
(c) A kinetic model to analyze f|b steps.
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6. Derivation of a Dwell time Distribution Function for General f|b Steps

To examine modified initial conditions in our experiments, we considered a simple kinetic model shown
in figure s5. The connection matrix for this model is:

(s8) M =

−k1 k−1 0
k1 −k2 − k−1 0
0 k2 0

 .
We solve the master equation (eq. s2) subject to the initial conditions that at time 0 we start in state B:

(s9) ~p(t = 0) =

0
1
0

 .
After some algebra, the dwell time distribution is shown to be:

(s10)
dq

dt
(t) = k2p2(t) = η · λ+e−λ+·t + (1− η) · λ−e−λ−·t

where η = k2 ·
1+

k1
λ+

2|D| , D2 is the discriminant of the characteristic equation, Det(Iλ−M) = 0, and −λ± are

the non-zero eigenvalues of M . By averaging over equation s10 for Model 1 (Fig. 6A) in the absence of ADP
we can show:

(s11) 〈t〉 =

∫ ∞
0

t · dq
dt
· dt =

Kf |b + [ATP ]

Vf |b · [ATP ]
,

where Vf |b = k2 and Kf |b = k−T /kT . In the limit that k3 � k2 and k−T � k2 we have that Kf |f ≈ Kf |b
and Vf |f ≈ Vf |b. Evaluating the parameters for this model (discussion s11) suggests that this is the case,
which could potentially explain the similarity of the curves in figure s5.
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7. Analysis of Probability of Backwards Steps

We define the probability of a backwards step for a DNA position j as:

(s12) pback,j =
Nb|f,j

Nb|f,j +Nf |f,j
,

where Nf |f,j and Nb|f,j are the observed number of forwards and backwards steps following forwards steps
for step j. For figures 4 and 6 in the main text we average over all DNA positions so that

(s13) pback,condition =
ΣjNb|f,j

ΣjNf |f,j +Nb|f,j
.

The error on this measurement is calculated using the binomial distribution:

(s14) δpback =

√
pback · (1− pback)

Nf |f +Nb|f
.

Figure s6 shows the probability of a backstep for the [ATP]-independent step at different DNA positions,
averaged over each ATP and ADP titration experiment.
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Figure s6. (a) Probability of a b|f step versus DNA position for the [ATP]-independent
step. An ‘x’ indicates the the measurement could not be made due to adjacent ion current
levels being too similar. (b) The distribution of dwell times for [ATP]-independent f|f steps
(light blue), constructed by taking data from each ATP and ADP titration experiment. The
best-fit curve to equation s17 is plotted on top in black. (c) Dwell time distributions for
f|f (blue) and b|f (pink) [ATP]-independent steps with N ≥ 50 counts of the b|f step. The
p-value for the two-sample KS test are displayed. In many instances the distributions are
statistically indistinguishable (Those steps with p > 0.05, indicated in red).
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8. Analysis of f|f and f|b [ATP]-independent Dwell time Distributions Using the AIC

We analyzed the dwell time distributions of [ATP]-independent steps using the corrected Akaike Informa-
tion criterion (AIC (39)) to analyze f|f and f|b steps. Information (i.e. the predictive power of the model)
is lost when data is used to approximate a ‘true’ underlying distribution function, and when overly complex
models are applied to describe the data. The AIC chooses a model by minimizing the information loss of
candidate models. The AIC is given by:

(s15) AIC =
k · (k + 1)

N − k − 2
+ k − log(L(θ̂|t)),

where k is the number of parameters in the model, N is the number of measured data points, L is the

likelihood function, and θ̂ is the maximum likelihood estimator for the parameters of the model. The model
with the smallest value of the AIC is the one which minimizes the information loss of the data out of the
candidate models. We analyzed the following four classes of distribution function:

(s16)
dp

dt
(t|a) = a · e−a·t

(s17)
dp

dt
(t|a, b) =

a · b
a− b

· (e−b·t − e−a·t)

(s18)
dp

dt
(t|a, b, c) = a · b · c

[
e−a·t

(c− a)(b− a)
+

e−b·t

(c− b)(a− b)
+

e−c·t

(a− c)(b− c)

]

(s19)
dp

dt
(t|a, b, c) = a · b · e−b·t + (1− a) · c · e−c·t

Equations s16-s18 are the convolutions of 1, 2 and 3 exponentials, respectively, as would be expected for
a Markov chain model (40). Equation s19 is a possible model for f|b steps (see section 6).

Because the dwell time distribution changes along DNA position for f|f and f|b steps (Fig. 5), we calculate
the maximum likelihood estimators for each DNA position (i) and each class of distribution function (j),

θ̂ij , and sum the AICs for each DNA position together to compute the total information loss, and compare
the models. That is:

(s20) AICtotal,model j = Σ
Nsteps
i=1 AICij .

The values for the AICtotal,modelj are displayed in table s3. From this table we conclude that, out of the
four candidate distribution functions, the information loss is minimized for f|f steps by the convolution of
two exponetial distributions, suggesting that there are two rate-limiting steps in the f|f [ATP]-independent
step. In contrast, for f|b steps the information loss is minimized by the mixed-exponential model s19.
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Model k AICf |f AICf |b
single exponential (eq s16) 1 -3617.0 -281.4

2 convolved exponentials (eq s17) 2 -4264.4 -278.3
3 convolved exponentials (eq s18) 3 -4263.5 -267.3

mixed exponentials (eq s19) 3 -3694.2 -297.7

Table s3. The AIC values for the [ATP]-independent f|f and f|b steps for several candidate
distribution functions. The value which minimizes the AIC minimizes the information loss by
assuming the given model. In total Nf |f = 10052 and Nf |b = 365 dwell time measurements
of the f |f and f |b steps were used, respectively.

DNA position (nt) af|f (s−1, eq. s17) bf|f (s−1, eq. s17) af|b (eq. s19) bf|b (s−1, eq. s19) cf|b (s−1, eq. s19)
1 2.4± 0.2 35± 16 - - -
2 8.2± 0.5 43± 7 - - -
3 7.8± 0.4 38± 7 - - -
4 7.1± 0.4 28± 4 1 12± 4 -
5 5.8± 0.3 32± 6 - - -
6 2.3± 0.1 13± 3 0.15± 0.14 1.3± 0.8 6.3± 1.4
7 4.2± 0.2 24± 4 - - -
8 6.5± 0.3 45± 8 - - -
9 7.2± 0.6 18± 3 - - -
10 4.1± 0.2 27± 5 1 6.8± 1.4 -
11 4.0± 0.3 19± 4 - - -
12 2.5± 0.2 11± 2 0.44± 0.19 2.0± 0.8 12± 5
13 4.3± 0.2 32± 6 - - -
14 3.6± 0.2 17± 3 - - -
15 5.8± 0.5 16± 3 0.72± 0.15 6.3± 1.5 68± 45
16 7.5± 0.6 20± 4 - - -
18 6.9± 0.5 27± 6 - - -
19 3.0± 0.2 13± 2 1 11± 3 -
23 8.2± 0.5 24± 4 0.09± 0.08 1.1± 0.9 16± 5
24 5.3± 0.4 14± 3 1 11± 5 -
25 5.7± 0.3 23± 4 0.47± 0.26 4.3± 1.8 22± 13
26 2.0± 0.1 19± 4 0.65± 0.07 2.2± 0.4 55± 15

Table s4. Fit parameters for [ATP]-independent steps. The rate parameters for fits to
equation s17 for f|f steps are displayed in columns 2 and 3, while the parameters for fits to
equations s19 for f|b steps are shown in columns 4, 5, and 6. If there were < 20 counts of
the f|b step then those columns were left blank. For certain DNA positions fits to eq. s19
the parameter a came out as exactly 1 or 0, meaning that for those DNA positions a single
exponential is a better model to describe the data, and therefore only the single exponential
fit eq. s16 is reported, with the final column left blank.

9. Voltage and Temperature Variation

The force dependence of the dwell time 〈t〉(F ) in motor enzymes is typically described by the following
formula (44):

(s21) 〈t〉(F ) = A · exp(∆E + F · δx
RT

),

where A is a prefactor with units of time, ∆E is the activation energy of the reaction, F is the force applied
to the DNA against the direction of motion of the motor, δx is the characteristic enzyme step size, and
RT is the temperature in units of energy. In SPRNT we assume that the electrostatic force on the DNA is
proportional to the applied voltage V :

(s22) 〈t〉(V ) = A · exp(∆E + α · V
RT

),

where α has units of charge. At constant temperature we can write:

(s23) 〈t〉(V ) = A′ · exp(β · V ).

Figures s7a and s7b show the average dwell time of f|f steps for both [ATP]-dependent and [ATP]-independent
steps, averaged over DNA position, plotted against voltage at [ATP ] = 500 µM and [ATP ] = 50 µM ,
respectively. The results of fitting equation s23 to the data are displayed in table s5. In each case we find
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β ≈ 0, suggesting that the kinetics are independent of voltage in the range of voltages applied. In figure s7b
the average duration appears to decrease slightly with increasing voltage, however, the fit is highly skewed
by the data point at V = 140 mV . In addition, because Hel308 is pulling the DNA out of the pore against
the force, we would expect that the average dwell time increases with increasing force. We therefore suggest
that the decrease in dwell time with voltage in figures7b is not statistically significant.

Setting α = 0 in equation s22 gives:

(s24) 〈t〉 = A · exp(∆E

RT
).

Figure s7c shows the average dwell time of f|f [ATP]-dependent and [ATP]-independent steps versus the
inverse temperature of the solution. Fits to equation s24 yield ∆E[ATP ]−dep = 60 ± 11 kJ · mol−1 and

∆E[ATP ]−indep = 77± 15 kJ ·mol−1. Becasue there are multiple chemical substates within both the [ATP]-
dependent and [ATP]-independent pathways, and because we average over DNA position in constructing
these curves, these numbers represent approximately the average activation energy of the rate-limiting step
for each observable step type.
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State [ATP ] (µM) β (mV −1)
[ATP]-dep 500 0.001± 0.002
[ATP]-indep 500 0.001± 0.001
[ATP]-dep 50 −0.002± 0.005
[ATP]-indep 50 0.0001± 0.004

Table s5. Best fit value of β to equation s23 for the curves shown in figure s7.

Figure s7. (a) The average dwell time of [ATP]-dependent (yellow) and [ATP]-independent
(blue) steps averaged over DNA position vs. voltage at [ATP ] = 500 µM . The y-axis is
logarithmic. Best fits to equation s23 are plotted on top. The fit parameters are displayed in
table s5. (b) The average dwell time of [ATP]-dependent (yellow) and [ATP]-independent
(blue) steps averaged over DNA position vs. voltage at [ATP ] = 50 µM . The y-axis is
logarithmic. Best fits to equation s23 are plotted on top. The fit parameters are displayed
in table s5. (c) The average dwell time taken over all [ATP]-dependent (yellow) and [ATP]-
independent (blue) steps averaged over DNA position vs. inverse temperature at [ATP ] =
500 µM . The y-axis is logarithmic. Best fits to equation s22 are plotted on top. All error
bars are S.E.M. The error bars in temperature in (c) represent day-to-day and experiment-
to-experiment fluctuations in temperature.
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10. Calculation of Average Dwell Time of f|f [ATP]-dependent Steps Using the
Steady-state Approximation

The goal of this section is to calculate the average dwell time of f|f [ATP]-dependent steps for both Model
1 and Model 2 as a function of [ATP] and [ADP]. Because there are four states in Model 1, the eigenvalues of
the connection matrix come from a cubic polynomial, and solutions are difficult to calculate. Similarly, for
Model 2 there are five states, which requires solving a quartic polynomial to obtain the eigenvalues. Thus,
we seek to rewrite this problem to make use of the steady-state approximation (32), which can be used
to determine average dwell times by solving a linear system of equations. First we note that none of the
processes which determine the dwell time of the [ATP]-independent step can affect the average dwell time of
the [ATP]-dependent step, so we compress the rate constants k±H , k±P , and k1 into a single rate parameter
Ω. Restricting ourselves to f|f steps means we can ignore k−2. We use the fact that for the [ATP]-dependent
step pb|f � 1 to conclude that k−1 � kD (Model 1) or k−1 � kT [ATP ] (Model 2), so we can ignore k−1 as
well. Figure s8 summarizes each of these observations into a single kinetic path for Model 1. In this form,
we can use the steady-state approximation so that:

(s25) M · ~pave = ~0,

where M is the connection and ~pave is the average probability that a given state is occupied. The normal-
ization condition is:

(s26) Σi pave,i = 1,

where i indexes the entries of ~pave. The connection matrix for Model 1 in this approximation is:

(s27) MModel 1 =


−kD k−D[ADP ] 0 Ω
kD −k−D[ADP ]− kT [ATP ] k−T 0
0 kT [ATP ] −k−T − k2 0
0 0 k2 −Ω


Equations s26 and s27 are used to solve for pave,i. Following Keller (32), the total reaction rate for Model

1 is the average probability that the ATP bound state of Hel308 is occupied multiplied by the transition
rate:

(s28) rtotal,Model 1 =
1

〈t〉total,Model 1
= k2 · pave,Hel308·ATP ,

We are interested in the rate of just the f |f [ATP]-dependent step. The average total time to progress
through the entire pathway is the sum of the time to go through the [ATP]-dependent step plus the time to
go through the [ATP]-independent step:

(s29) 〈t〉total,Model 1 = 〈t〉[ATP ]d→[ATP ]i + 〈t〉[ATP ]i→[ATP ]d = 〈t〉[ATP ]d→[ATP ]i +
1

Ω

The transition rate for [ATP]-dependent steps can be solved by rearranging equation s29.

(s30) rate[ATP ]d→[ATP ]i =
1

〈t〉[ATP ]d→[ATP ]i

= (〈t〉total −
1

Ω
)−1

Plugging the results of s26, s27 and s28 into s30 for Model 1 yields:

(s31) rateModel 1 =
V · [ATP ]

K + [ATP ] + d · [ADP ]

Applying an identical calculation to Model 2 gives:

(s32) rateModel 2 =
V ′ · [ATP ]

K ′ + [ATP ] + d′ · [ADP ] + e · [ATP ] · [ADP ]
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where K = k−T+k2
kT

· kD
k2+kD

, V = k2·kD
k2+kD

, d = K · k−DkD , V ′ = kT k2kDkH
D , K ′ = k−T k2kD+k−T k2k−H+k2kDkH

D ,

d′ = k−Dk−T k−H
D , e = k−DkT (kH+k−H)

D , with D = kT k2kD + kT k2k−H + kT k2kH + kT kDkH . Equations s31
and s32 are independent of Ω, as they must be. These expressions differ qualitatively only by the existence
of the term e · [ATP ] · [ADP ] that couples the ATP and ADP concentrations in equation s32.
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Figure s8. (a) The kinetic model from main text figure 6a, reduced to a form that allows
easy application of the steady-state approximation.(b) A hypothetical model to illustrate
how to calculate the backstep probability in a chain Markov model.
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11. Derivation of the Probability of a b|f Step for [ATP]-dependent Steps in Model 1 and
Model 2

Because SPRNT gives us access to both forwards and backwards steps, we sought to derive a general
formula for the probability of a backstep in terms of the underlying rate constants of a given kinetic model.
Consider the hypothetical kinetic model shown in figure s8b. Assume that at time 0 the enzyme is in the
state B1. In the first passage time problem, the only states that can be occupied at time ∞ are A and C,
corresponding to a backwards step and a forwards step, respectively. The probability of a backstep is thus:

(s33) pback = lim
t→∞

pA(t).

As done previously, we solve the equation d~p
dt (t) = M ·~p(t), however in this case we use the Laplace transform

method. We define ~p(s) = L(~p(t)) to be the laplace transform of ~p(t). The solution in transform space is
easily shown to be:

(s34) ~p(s) = (sI −M)−1 · ~p(t = 0),

where I is the identity matrix. The inverse transformation is done by the Bromwich integral(43):

(s35) pj(t) = Σ
Npoles
i=1 Ress=si [pj(s) · es·t]

where j indexes the entries of ~p. Ress=si [pj(s)e
s·t] is the residue evaluated at the poles si of pj(s), and s is

taken as a complex variable. The backstep probability can be written using equations s33 and s35 as:

(s36) pback = lim
t→∞

Σ
Npoles
i=1 Ress=si [pA(s) · es·t].

This sum is over a finite number of poles, so we interchange the limit and residue expressions, and because
pA(s) is not a function of time:

(s37) pback = Σ
Npoles
i=1 Ress=si [pA(s) · lim

t→∞
esi·t].

Note that we have explicitly evaluated the residue in the exponential term esi·t. Next we use the fact that
the poles of pi(s) are eigenvalues of the matrix M , which in the first-passage time problem have the property
that si ≤ 0. The limit as t → ∞ vanishes for all negative eigenvalues, collapsing the sum and leaving us
with the simple expression:

(s38) pback = Ress=0[pA(s)],

where PA(s) is determined from equation s34. If the pole at s = 0 is first order then this expression reduces
to:

(s39) pback = lim
s→0

s · pA(s).

Other expressions have been derived for the backstep probability (30,31), but to our knowledge, the form
of equation s39 has not been derived. This expression is simple to apply, because both the matrix inversion
and residues of rational functions are easy to evaluate. Applying equation s39 to Model 1 and Model 2 yields:

(s40) pback,Model 1 =
k−1k−D(k2 + k−T )[ADP ] + k−1k2kT [ATP ]

k−1k−D(k2 + k−T )[ADP ] + (k−1 + kD)k2kT [ATP ]
,

(s41) pback,Model 2 =
k−1(k2kDkH + k−T k2kD + k2k−Hk−T + k−Dk−Hk−T [ADP ])

k−1(k2kDkH + k−T k2kD + k2k−Hk−T + k−Dk−Hk−T [ADP ]) + k2kDkHkT [ATP ]
.

To apply equation s39 to Model 1 with the additional diffusion term, we simply need to note that in this
model we have pback = limt→∞(pHel308∗·ADP + pHel308∗), giving:
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(s42)

pback,Model 1+diffusion =
2kdif (k−1 + kD)(k2 + k−T ) + k−1k−D(k2 + k−T )[ADP ] + k−1k2kT [ATP ]

2kdif (k−1 + kD)(k2 + k−T ) + k−1k−D(k2 + k−T )[ADP ] + (k−1 + kD)k2kT [ATP ]
.

First, we note that in the limiting case of [ADP ] → 0 in equation s40, pback,Model 1 → k−1

k−1+kD
, as must be

the case for a simple branched pathway. In order to do fitting with these models, we rearrange expressions
s40-s42 into more accessible forms using the forms of V ,K,d,V ′,K ′ and d′ from equations s31-s32:

(s43) pback,Model 1 =
d[ADP ] + V

kD
[ATP ]

d[ADP ] + V
kD

[ATP ](1 + kD
k−1

)

(s44) pback,Model 2 =
K ′ + d′[ADP ]

K ′ + d′[ADP ] + V ′

k−1
[ATP ]

(s45) pback,Model 1+diffusion =
2
kdif
kD

(1 + kD
k−1

)K + d[ADP ] + V
kD

[ATP ]

2
kdif
kD

(1 + kD
k−1

)K + d[ADP ] + V
kD

[ATP ](1 + kD
k−1

)
.

We have managed to write s40-s42 in terms of the same proportionality constant (d or d′) with which
the average dwell time depends on [ADP ] at fixed [ATP ]. It is important to specify at least one of these
parameters when doing fits to equations s43-s45, because without a parameter to set the scale, there will
always be some degeneracy, due to the fact that pback will be unchanged by scaling the concentrations and
rate constants by a constant factor. Ultimately, for model selection, we are interested in the quality of the
fit given a certain value of d, so we use d = 0.003, obtained from averaging over each DNA position in table
s6. Fits to equations s43-s45 to the data pback vs. [ATP ] and [ADP ] for all experiments are displayed in
figure s9c. Of the three models considered here, Model 1 together with the diffusion term (black line) best
fits the data.
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Figure s9. (a) Probability of a backstep for the [ATP]-dependent (yellow) and [ATP]-
independent (blue) steps averaged over DNA position vs. [ATP] at fixed ratio [ATP]:[ADP]
= 1:4. Weighted averages to the data are plotted on top. (b) Average dwell time of f|f
[ATP]-dependent (yellow) and [ATP]-independent (blue) step averaged over DNA position
vs. [ATP] at fixed ratio [ATP]:[ADP] = 1:4. Best fit to main text equation 3 is plotted
on the [ATP]-dependent step, yielding e∗ ≈ 0, in line with Model 1. The weighted average
(blue) is plotted on the [ATP]-independent step. (c) Probability of a b|f step in several
different experiments: (top left) [ATP ] varied, [ADP ] = 0. (bottom left) [ATP ] = 50µM ,
[ADP ] varied. (top right) [ATP ] and [ADP ] varied at fixed [ATP ] : [ADP ] = 1:4. (bottom
right) [ATP ] and [ADP ] varied at fixed [ATP ] : [ADP ] = 1:2. Red, blue and black lines
are simultaneous fits to the data in each of the panels shown for Model 1 (red, eq. s43,
χ2/ν = 3.0), Model 2 (blue, eq. s44, χ2/ν = 2.9) and Model 1 with diffusion (black, eq.
s45, χ2/ν = 1.0), respectively.
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12. Estimation of Kinetic Parameters for [ATP]-dependent Steps

To gain further insight into Hel308 kinetics, we calculated the relevant kinetic parameters for the [ATP]-
dependent step using likelihood maximization. From Model 1 (Fig 6a) and the ATP and ADP titration
experiments we estimated the 5 parameters that determine the progression of [ATP]-dependent f|f steps
(k±T , k2, k±D) using maximum likelihood methods. Here we assume that k−1 � kD, an assumption that is
justified by the low probability of a backstep for [ATP]-dependent steps in the absence of ADP (pback < 0.01
for most DNA positions, so any errors made under this assumption are small compared to the errors on
Vf |f and Kf |f ). The probability distribution of dwell times for a kinetic model is determined by numerically
solving the master equation with connection matrix:

(s46) M =


−kD k−D · [ADP ] 0 0
kD −k−D · [ADP ]− kT · [ATP ] k−T 0
0 kT · [ATP ] −k2 − k−T 0
0 0 k2 0

 .
For f|f steps the master equation is subject to the initial conditions:

(s47) ~p(t = 0) =


1
0
0
0

 .
The observable dwell time distribution,dqdt , is given by:

(s48)
dq

dt
(t|kD, k−D, kT , k−T , k2) = k2 · p3(t).

As is, the model has five free parameters. These can be reduced to two parameters by using the measured
values of Kf |f , Vf |f , and KI , defined by the expression KI ≡ Kf |f/d. Using the results of section s10 we
showed:

(s49) Kf |f =
k2 + k−T

kT
· kD
kD + k2

,

(s50) Vf |f = k2 ·
kD

kD + k2
,

(s51) KI =
kD
k−D

.

From these expressions we solve for kT , kD and k−D in terms of k2, k−T and the measured parameters:

(s52) kD = Vf |f ·
k2

k2 − Vf |f
,

(s53) kT =
k−T + k2
Kf |f

·
Vf |f

k2
,

(s54) k−D =
kD
KI

.

Using these expressions, the matrix M depends only on k2 and k−T . To estimate these parameters, we
evaluate the log likelihood function on a two-dimensional grid spanned by guess values of k2 and k−T :

(s55) log(L(k2, k−T |t)) = ΣNi=1Σnij=1log(
dq

dt
(tj |k2, k−T )),

where i indexes the sum over each experimental condition and j indexes a sum over each measured data
point at those conditions. We only use the ATP titration experiments at [ADP] = 0 in the likelihood analysis
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and then use equation s54 to solve for k−D. Figure s10 shows the result of this calculation for several DNA
positions. For most DNA positions there is a clear likelihood peak around the values of k2 and k−T which
maximize the likelihood function.

To estimate the errors we note that both Kf |f and Vf |f have measurement errors associated with their
values. We repeated the calculation s55 for the log likelihood 200 separate times for each DNA position by
monte carlo sampling the joint distribution of Kf |f and Vf |f to build the distribution of possible values of
k±T , k2 and k±D. For each monte carlo sample we extracted the values of k2 and k−T . For each sample of
k2 and k−T we used equations s52-s54 to calculate the other model parameters (Table s7). The collection
of monte carlo samples are distributions of the model parameter values. We report the mean and standard
deviation of these distributions in table s6. The log likelihood at several DNA positions (6.5,13.5,23.5) did
not decay at increasing k−T . This may be because the distribution of dwell times (equation s55) is sensitive
to k−T at low [ATP ] (42), however much of the data was obtained at higher concentrations. More data at
low [ATP ] would likely lead to a better resolved peak.

We examined a variant of this model, in which ATP directly induces a transition from the [ATP]-dependent
step to the [ATP]-independent step (figure s10b). In the absence of ADP we can write the dwell time
distribution for f|f steps as:

(s56)
dq

dt
(t) =

V · [ATP ]

[ATP ]−K
(e−V ·t − e−

V ·[ATP ]·t
K ).

This model has no free parameters. Repeating the calculation of equation s55 with the dwell time distribution
s56, and evaluating the AIC for each model, we find that for Model 1 the AIC is -8868 and for the alternative
model the AIC is -8671, suggesting that Model 1 better describes the data.
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Figure s10. (a) Log likelihood function (equation s55) for several [ATP]-dependent steps
to determine the values of the parameters k2 and k−T . The x-axis shows test values of k2,
the y-axis is the log of test values of k−T , and the color axis is the log Likelihood for a single
realization of the Monte-Carlo values of Kf |f and Vf |f . The peak in yellow is evidence of
a single maximum value. The log likelihood function at DNA position 23.5 did not decay
with increasing k−T , possibly indicating a lack of data at low [ATP ]. (b) An alternative
Model 1. Rather than binding as a hidden step, ATP directly induces the conformational
change of Hel308.
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DNA position (nt) Kf |f (µM) Vf |f (s−1) KI(µM)
0.5 82± 24 11.3± 1.5 31± 14
1.5 92± 44 10.1± 2.1 68± 48
2.5 412± 125 23.5± 3.6 81± 36
3.5 329± 40 11.0± 0.7 62± 19
4.5 181± 41 28.6± 3.2 47± 17
5.5 174± 44 12.8± 1.5 30± 9
6.5 153± 35 13.9± 1.2 30± 9
7.5 237± 67 12.4± 1.6 40± 17
8.5 100± 33 16.0± 2.3 18± 8
9.5 214± 59 23.6± 3.8 57± 25
10.5 241± 51 19.0± 1.9 65± 24
11.5 143± 55 21.0± 3.8 46± 23
12.5 110± 21 16.4± 1.3 37± 16
13.5 228± 82 22.0± 3.6 37± 17
14.5 66± 24 10.2± 1.5 49± 25
15.5 117± 51 23.4± 3.8 35± 22
17.5 75± 12 9.6± 0.7 21± 6
18.5 215± 40 34.0± 3.0 57± 13
19.5 108± 27 15.0± 1.6 37± 12
22.5 97± 18 14.7± 1.1 42± 16
23.5 250± 46 25.4± 2.5 55± 24
24.5 255± 62 23.3± 3.0 73± 26
25.5 140± 70 22.9± 4.4 40± 27
26.5 152± 26 26.4± 1.8 33± 12

Table s6. [ATP]-dependent step kinetic parameters as defined in section s10.
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DNA position (nt) kT (µM−1 · s−1) k−T (s−1) k2(s−1) kD(s−1) k−D(µM−1 · s−1)
0.5 0.36± 0.04 19± 3 11.6± 1.2 179± 11 5.7± 2.4
1.5 0.56± 0.22 34± 10 9.9± 2.0 247± 54 3.8± 2.4
2.5 0.28± 0.07 99± 3 25.9± 3.4 303± 28 3.7± 1.7
3.5 0.14± 0.03 36± 3 12.2± 1.5 114± 14 1.8± 0.5
4.5 0.61± 0.08 85± 8 30.3± 2.9 410± 24 9.1± 3.4
5.5 0.28± 0.04 38.8± 2.4 13.9± 1.4 162± 12 5.3± 1.6
6.5* 4.4± 1.5 709± 94 15.5± 1.5 127± 5 4.3± 1.2
7.5 0.59± 0.18 125± 10 12.8± 1.9 226± 16 5.7± 2.4
8.5 0.26± 0.02 12± 2 19.1± 1.3 103± 5 5.8± 2.4
9.5 0.44± 0.03 76± 9 24.8± 2.9 323± 11 5.6± 2.4
10.5 0.27± 0.04 57± 3 22.8± 2.6 118± 5 1.8± 0.7
11.5 0.28± 0.03 22± 2 23.7± 2.1 167± 8 3.6± 1.8
12.5 0.40± 0.06 30± 2 18.4± 1.6 140± 7 3.8± 1.6
13.5* 0.87± 0.28 184± 33 23.9± 2.9 265± 12 7.0± 3.1
14.5 0.39± 0.06 17± 2 11.1± 1.0 119± 9 2.4± 1.2
15.5 0.30± 0.05 12± 2 26.2± 2.0 274± 30 7.8± 4.8
17.5 0.29± 0.03 13± 2 10.6± 1.2 103± 5 5.0± 1.5
18.5 0.30± 0.04 35± 2 38.7± 3.3 240± 27 4.2± 0.8
19.5 0.38± 0.07 30± 2 18.0± 1.5 118± 5 3.2± 1.0
22.5 0.69± 0.11 58± 4 16.2± 1.4 172± 8 4.1± 1.5
23.5* 1.26± 0.12 346± 45 30.6± 2.9 189± 8 3.5± 1.6
24.5 0.21± 0.02 30± 3 24.9± 2.7 228± 9 3.1± 1.1
25.5 0.56± 0.08 56± 6 24.0± 2.2 370± 20 9.3± 6.2
26.5 0.46± 0.06 51± 4 31.0± 2.3 181± 9 5.4± 1.9

Table s7. [ATP]-dependent step kinetic parameters as in figure s8, calculated from equa-
tion s55. The likelihood function for those steps with an asterisk next to them did not decay
as k−T →∞, suggesting that the values of k−T and kT cannot be trusted.
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Figure s11. (top) The average dwell time of f |f [ATP]-independent steps vs DNA position
for two DNA sequences. The DNA sequence in the MspA pore is indicated above. An
illustration of the experimental scheme indicating that the DNA nucleotides in Hel308 are
the same while the nucleotides in MspA are different. Gaps indicate positions where the
measurement could not be made due to degeneracy of the ion-current signal. Measurements
were taken at elevated temperature of 37 ◦C to increase the rate of DNA entry into the
nanopore. (bottom) Probability of a b|f [ATP]-independent step vs DNA position for two
DNA sequences.

13. Materials and Methods

• Pore establishment: A single M2-NNN MspA nanopore was established in a 1,2-diphytanoyl-
sn-glycerol-3-phosphocholine (dphpc) or a (dopc) lipid bilayer using methods that have been well
established (26). Lipids were ordered from Avanti Polar Lipids.

• DNA preparation: A complementary DNA strand was annealed to the template DNA strand so
that the template has a free 5′ end, and an 8-base 3′ overhang. Hel308 binds to this overhang, and
can begin to unwind dsDNA in solution, meaning that an event can start at any location along the
DNA molecule. To prevent accumulation of ADP in bulk we perfused new reagents every 45 minutes.
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The 5′ end of the template is drawn into the pore, dissociating the complement. If a Hel308 is bound
to the DNA it will translocate from 3′ to 5′, drawing the ssDNA out of the pore. While in principle
it is possible for DNA to go through the pore in the 3′ orientation, no such events were observed.

The DNA sequence for the template strand is:
5′ PTACTACTACTACTACTACXXTTTTTCAGGAGTATCATGATTCCCGCCTCAAAATCA-

GATCTCACTATCGCATTCTCATGCAGGTCGTAGCC 3′

The DNA sequence for the complementary strand is:
5′ CCTGCATGAGAATGCGATAGTGAGATTTTTTTTTTTTTTTTTTTTZ 3′.
P is a phosphate group to facilitate insertion of the 5′ end of the DNA into the nanopore, X is an

abasic, and Z is a cholesterol tag to localize the DNA to the bilayer and increase the rate of DNA
capture by the pore. DNA was ordered from PAN Protein and Nucleic Acid facility at Stanford.
DNA was annealed by mixing template and complement strands at a 1.2:1 molar ratio, denaturing
at 95 ◦C for 3 minutes, and then cooling to 4 ◦C over 10 minutes.

• Proteins: Hel308 from Thermococcus gammatolerans EJ3 (accession number WP 015858487.1) and
M2-NNN MspA (accession number CAB56052.1) were prepared as described previously(27).

• Operating conditions: All experiments were run at 400 mM KCl, with 10 mM HEPES at pH
8.0 and 10 mM MgCl2. Once a single M2-NNN MspA nanopore was established, a buffer with
the above conditions along with ATP and ADP at concentrations described in the supplement was
perfused to the cis well. ATP and ADP were ordered from Sigma Aldrich. The perfusion is done
to maintain constant concentrations in the reaction volume. DNA, DTT, and Hel308 were added to
final concentrations of 5 nM, 1 mM, and 50 nM, respectively.

For measurements at elevated temperature, a Thorlabs temperature controller (2A/12W TEC
2000 B2) powered a Peltier element placed in thermal contact with a large copper plate and an alu-
minum holder for the Teflon cell. Temperature measurements were made with a calibrated OMEGA
precision thermistor 44008. The thermistor was inserted into a third well cell identical to the cis
well, filled with buffer, centered on the Teflon cell.

• Data acquisition: Data was acquired on an Axopatch 200B amplifier at 50 kHz, and downsampled
by averaging to 5 kHz.

• Data sharing: Data and code is available through figshare.
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