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Data. The fibroblast (FIB) data (Hi-C and RNA-seq) used for
this application was originally collected and published in a
paper by Chen et al. (1). We refer the reader to this paper for
a full description of technical protocols. Embryonic Stem Cell
(ESC) and myotube (MT) data was downloaded from NCBI-
GEO (GSE23316 ENCODE Caltech RNA-seq and GSE52529)
(2). 53 different tissue RNA-seq samples were downloaded
from GTEx portal (3). 51 different immune cell type RNA-
seq samples were obtained from the BLUEPRINT Epigenome
project (4).

Hi-C and Construction of TADs. We computed TAD bound-
aries from genome-wide chromosome conformation capture
(Hi-C) data using an algorithm described in Chen et al. (5).
The algorithm was applied to averaged time series Hi-C data
from proliferating human fibroblast (FIB) at 100 kilo-base
pair (kb) resolution, which identified 2,562 TADs across all
autosomal chromosomes (i.e. excluding Chromsomes X and Y).
Of the 2,562 TADs, 317 contained no genes and were excluded
from our analysis, leaving 2,245 TADs. These TADs ranged
in size from a few hundred kb to several Mb, and contained
on average 9-10 genes (standard deviation of 18 genes); one
gene at minimum, and 249 genes maximum.

Construction of B Matrix. TF binding site position frequency
matrix (PFM) information was obtained from Neph et al.
and MotifDB, which is a collection of publicly available PFM
databases, such as JASPAR, Jolma et al. cispb__1.02, stamlab,
hPDI, and UniPROBE (6, 7). TRANSFAC PFM information
was included as well. Motif scanning of the human reference
genome (hgl9) was performed using FIMO of the MEME
suite, in line with methods established by Neph et al. (6).
DNase-seq information for human fibroblasts was derived from
ENCODE for fibroblast (GSM1014531). If a narrow peak is
found within the +5kb of a gene TSS, the region is classified
as open. TF function information was determined through an
extensive literature search.

Scaling of RNA-seq. Due to differences in data collection pro-
cedures, the RNA-seq RPKM values obtained from the GTEx
portal were of lower value, on average, compared to our fi-
broblast dataset, thus favoring repressor TFs for y scoring. In
order to account for this in our model, we scaled all GTEx
RNA-seq data by a factor that solves the equation

minimize ||griB,um — 08FIB,GTEX]| 1]
«@

where grrB,u M is the gene-level RNA-seq vector average of our
fibroblast data, grre,cTEx is the gene-level RNA-seq vector
of “Cells - Transformed fibroblasts” from the GTEx portal,
and « is a scalar that solves this equation. For this data,
a = 2.6113 and all GTEx data used as a target state was
scaled by this factor.

Removal of MicroRNA. MicroRNA were removed from this
analysis due to their high variance in RPKM values and un-
predictable function.

TF Scores - Additional GTEx Data. For fibroblast to Adipose-
Subcutaneous, the highest scoring factor is EBF1, a known
maintainer of brown adipocyte identity, and a known promoter
of adipogenesis in fibroblasts (8). The 2nd highest scoring
marker, PPARG, has been shown to be involved in adipose
differentiation, and can be used individually to achieve repro-
gramming from fibroblasts (9). Curiously, ATF3 is implicated
here as being useful for adipocyte differentiation although its
function has been shown to repress PPARG and stymie cell
proliferation (10). Upon further research, using time depen-
dent addition, ATF3 addition scores best when added towards
the end of reprogramming process.

Two Brain tissue samples, cerebellum and hippocampus,
predict TFs necessary for natural differentiation. Interest-
ingly, our algorithm selects different TFs for each conversion,
with factors linked specifically to each tissue. For cerebel-
lum, NEUROD1, has been shown to be required for granule
cell differentiation, while ZIC1 and ZIC4 are both known to
promote cellebular-specific neuronal function (11, 12). The
top scoring combination of 3 TFs are all similarly known to
be important in neurogenesis (NEUROD1, ZBTB18, UNCX)
(13, 14). Hippocampus TF scoring includes FOXG1 as the top
predicted factor, a factor specifically needed in hippocampus
development. OLIG2, FOXG1, and GPD1 are the top scoring
set for hippocampus reprogramming, all of which have been
shown to been necessary for hippocampus function.

Colon TF scoring finds known differentiation factor in natu-
ral colon secretory linage development, ATOHI, as the highest
scoring individual factor (15). The top scoring combination of
2 TFs includes ATOH1 along with CDX2, another known fac-
tor necessary for full differentiation of colon cells, specifically
small intestine maturation (16). Liver cell reprogramming sim-
ilarly finds known factors for differentiation in the top score
of all 3 combinations: HNF4A, CUX2, PROX1 (17-19). All
TFs play a role in correct development of hepatic progenitor
cell-types and hepatic stem cells, the cell types just above in
lineage differentiation.

TF Scores - BLUEPRINT Project Data. A number of immune
cell types extracted from the BLUEPRINT Project revealed
promising predicted TF results when fibroblast is used as the
starting point (4). do values between cell types are shown in
Fig. S4.

For fibroblast to macrophage direct reprogramming, a num-
ber of factors scoring highly in our algorithm are known to play
a role in macrophage reprogramming or the differentiation.
SPI1 (along with CEBPA) has been verified experimentally to
reprogram fibroblasts into macrophage-like cells (20). IKZF1
has been shown to be crucial for macrophage polarization via
the IRF4/IRF5 pathway (21). MYB has been shown to be
crucial for the upstream cell type HSC (22).

For fibroblast to HSC direct reprogramming, the top scoring
individual factor is highly associated with the target phenotype
and has been shown to support HSC growth and regeneration
(23). ERG (in combination with GATA2, LMO2, RUNXlc,
and SCL) is a confirmed reprogramming factor for fibroblast
to HSC in mice (24).

For fibroblast to erythroblast reprogramming, ERG is a
promising factor as it is required for the maintenance of the
upstream cell type HSC (24). NFIA is shown to promote the
erythroid lineage from HSC differentiation (25).
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Alternative Computation of u. Below is an example of how

u can be computed without the constraint that wug,, > 0.

Assume wuy := u is constant for all ¢. Then

Try1 = Arzr + Bug 2]

can be written as

x4 = AzAsA1z1 + Cu, (3]

where

C = A3AQB + AgB + B.

We seek the control 4 that minimizes the distance between
z(3) and the target xr:

m_in HZ‘T — A3A2A1111 — Cﬂ” [4]
We can see that an exact solution exists if

xr — AsAs A1z € span(C), [5]

and is given by

A3AsA1x1 + Cu = xr (6]
Cu=xr — AsAsA111 (7]
=01 (zp — A3A2Ary), (8]

where CT denotes the Moore-Penrose pseudoinverse of the
matrix C', computed using the singular value decomposition
of C. Even when Eq. 5 is not satisfied, it is well established
that the control Eq. 8 solves Eq. 4.

Define

= HUN - CCN(@r — AsArArn) 9]

M= d() — d* [10]

w1 can be used to compare between potential TFs for a defined
initial state (z1), target state (xr), and TF number (p). The
larger the value of u, the higher the relative score for its
corresponding TF set.

We note that accurate TF predictions for some desired
target cell types may not depend on minimizing distance
alone, but also the amount of “energy" required for the system
to reach d.. We denote energy here with p2 and define it as:

i

e(u) = up - up = . [11]

ol
Il

0

p2 is analogous to the amount of a TF that needs to be
added to the system to achieve d.. In the case where two
different TFs achieve the same pu score, 2 can be computed
to decide the better candidate (i.e. lower us implies a better
TF).

Data Sources. A summary of the data used for this algorithm is
shown below, with citations and accession numbers or website
link, where applicable.

¢ Gene Expression

— Fibroblast: Chen et al. (1)

— GTEx: https://www.gtexportal.org/home/ (3)
ESC: GSE23316 (2)

Myotube: GSE52529 (2)

BluePrint Epigenome:
epigenome.eu/ (4)

http://www.blueprint-

e DNase-seq

— Fibroblast: GSM1014531 (26)
o Hi-C TAD boundaries

— Fibroblast: Chen et al. (1)
« TF PWM

— Neph et al. (6)
— MotifDB + FIMO (7, 27)

DGC Framework Benchmarking. In order to set a standard for
success, we show here how experimentally validated TFs score
well using our algorithm without imposing any TF threshold
prior to analysis. Experimental validation of novel predictions
will set a better standard for success, and while our lab and
collaborators are working towards this goal, this is not a trivial
undertaking.

As an initial test, we show here where the Yamanaka factors
(KLF4, MYC, SOX2, and POU5F1) rank for fibroblast to em-
bryonic stem cell reprogramming, in comparison to randomly
selected combinations of four TFs using our methods (n =
669). Results show KLF4, MYC, SOX2, and POU5F1 ranking
12/669 (1.8%). Histogram of scores are depicted in Figure S5.

We also show where MYOD1 ranks for fibroblast to my-
otube, in comparison to randomly selected TFs (n = 669, full
set of TFs included in our analysis, plus the case where a
TF is ranked as both an activator and a repressor). Results
show MYOD1 ranking 57/669 (8.6%). Histogram of scores are
depicted in Figure S6.

For further statistical analysis, we attempt the benchmark-
ing method performed in Michael et al. (28). This paper
attempts to solve a conceptually similar problem to the TF
prediction problem, where they attempt to predict the control
imposed given an initial state, a network, and many target
states with known “ground truths” (the TF manipulated to
achieve this state is known). Though conceptually similar, our
problems are different in the following ways

e Often, there are multiple TF combinations that can result
in successful reprogramming to a target state

e The number of TFs used in many validated direct re-
programming experiments is either computationally too
time-consuming, is not included in our set of 547, or is
used in combination with other molecules that we cannot
model currently (e.g. small molecules and inhibitors)



e The data collected from each experiment for a given target
state is performed in many different labs using different
protocols. We know that this is a limitation in our paper
as well, but point this out here for comparison to Michael
et al. data

e There is a much smaller number of “goal-state expres-
sion profiles” in our context, where the TFs for direct
reprogramming are known, and are included in our model

Despite these crucial differences, we believe this is a very
thorough and convincing benchmarking method, and we have
attempted to try this on our dataset.

We first selected 10 validated cell reprogramming experi-
ments where we believe we have a good approximation for the
target state, and a sufficient number of the TFs included in our
list of 547 TFs. These experimentally verified test cases are
derived from PMID: 25658369, 18035408, 18029452, 18849973,
2748593. Figure S7 summarizes the data used for this analysis.

We can evaluate where our algorithm ranked a known
reprogramming combination for a target (as a percentile of
all combinations scored), without imposing any thresholding.
n = 669 for all random TF combinations. Plotting this data
similar to Figure 2B and 2C in Michael et al. yields Figure
S8.
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Fig. S1. Analysis of cell cycle marker gene expression. Gene expression RNA-seq data for 39 genes that have been shown in the literature to be cell cycle regulated (29). Cell
cycle phases shown include (A) G+/S, (B) S, (C) G2, (D) G2/M. Raw data of gene expression over time (left), with smoothed/interpolated expression over time with standard
deviation (right). The expression curves for each gene have been standardized by subtracting their mean and dividing by the standard deviation over the eight time points.
x-axis denotes sample time point &, referring to 0, 8, 16, . . ., 56 h after growth medium introduction. y-axis is normalized expression.
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Fig. S2. Visualization of input matrix B. (A) Visualization of the 22,083 x547 ¢; ., matrix: identified TF-to-gene interactions based on TFBSs. The color at entry (i, m)
represents how many TF m TFBSs were observed within +5kb of gene #’'s TSS. The color axis has been truncated to [0, 10] but note that more than 10 TFBSs were observed
for many (gene,TF) pairs. Certain columns (TFs) are dramatically highlighted compared to others, some of which have been labeled by name along the horizontal axis. Some
gene names are labeled along the vertical axis, none of which particularly stand out. Both genes and TFs are sorted alphabetically. (B) A histogram for the non-zero values of
ci,m. The log-scale on the vertical axis emphasizes that most of the gene TSS regions contain much less than 25 TFBSs for a given TF. The SP1 TFBS, for example, is
observed 249 times in a 10kb TSS centered on a gene.
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Fig. $3. Quantitative measure between cell types and TF scores. (A) do values between all GTEx tissue types. (B) TF scores for an extended list of target cell types. z =

fibroblast.
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Fig. S4. Quantitative measure between cell types and TF scores for BLUEPRINT Project database. (A) do values between BLUEPRINT Project cell types. (B) TF scores for an
extended list of target cell types. = = fibroblast.
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Fig. S5. Histogram of TF scores for fibroblast to ESC reprogramming, for combinations of 4 TFs, without imposing any overexpression thresholding. We show here where the
known reprogramming TF combination “Yamanaka Factors” (KLF4, MYC, SOX2, and POU5F1) rank in comparison to randomly selected combinations using our methods (n =
669). Results show KLF4, MYC, SOX2, and POU5F1 ranking 12/669 (1.8%).
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Fig. S6. Histogram of TF scores for fibroblast to myotube reprogramming, for combinations of 1 TFs, without imposing any overexpression thresholding. We show here where
MYOD1 ranks in comparison to randomly selected TFs using our methods (n = 669). Results show MYOD1 ranking 52/669 (7.8%).
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Initial cell

Target cell type

Target cell type

“Ground truth”

Inputs in our dataset (%)

population expression profile | Transcription factors
used and other inputs

Fibroblast |ESC ESC S0X2, POUSF1, KLF4, S0X2, POUSF1, KLF4,
(GEO: GSE23316) |MYC MYC (100%)

Fibroblast |ESC ESC S0X2, POUSF1, NANOG  |SOX2, POUSF1, NANOG
(GEO: GSE23316) (100%)

Fibroblast |ESC ESC S0X2, POUSF1 S0X2, POU5F1 (100%)
(GEO: GSE23316)

Fibroblast |Myotube Myotube MYOD1 MYOD1 (100%)
(GEO: GSES2529)

Fibroblast | Skeletal Muscle |Skeletal Muscle MYOD1 MYOD1 (100%)
(GTEx)

Fibroblast |Hepatocyte Liver HNF1A, HNF4A, HNF6, HNF1A, HNF4A, CEBPA,
(GTEx) CEBPA ATF5, PROX1, ATFS, PROX1, MYC (75%)

p53-siRNA MYC

Fibroblast |Hepatocyte Liver HNF1A, HNF4A, FOXA3, |HNF1A, HNF4A (50%)
(GTEX) SV40large T antigen

Fibroblast |Neuron Neuron SOX10 SOX10(100%)
(PMID: 25186741)

Fibroblast |Neuron Neuron S0X2 S0X2(100%)
(PMID: 25186741)

Fibroblast  |Neuron Neuron POU3F2, ASCL1, MYT1L, |POU3F2, LHX3, MNX1,

(PMID: 25186741)

LHX3, MNX1, ISL1,
NEUROG2

ISL1, NEUROG2 (71%)

Fig. S7. Table overview of target states and target TF combinations for statistical benchmarking.
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Fig. 8. Cumulative percentage of correct predictions (TFs that have been experimentally validated; y-axis) selected above the percentage rank indicated on the x-axis. The
10 goal states used are shown in Table S7. Text boxes show where a given goal state ranked, with the number in parenthesis giving the exact rank in proportion to all TFs
ranked. Our algorithm ranks known reprogramming TFs (green) above what would be expected by random chance (blue), without relying on TF overexpression.
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