Supporting Information (SI Appendix)

Framework and resource for more than 11,000 gene-transcript-

protein-reaction associations (GeTPRA) in human metabolism

SI Appendix Materials and Methods

Standardization of Metabolite IDs with MNXM IDs Defined in the MNXref Namespace.
Information on metabolic contents of the Recon 2Q was standardized using MNXM IDs
defined in the MNXref namespace available at MetaNetX (1-3). This standardization was to
facilitate the model refinement process described below. Each metabolite ID in the Recon 2Q
was converted to MNXM ID accordingly. For metabolite IDs that were not converted to
MNXM IDs, they were manually converted to MNXM IDs by comparing their compound
structures and synonyms. In the final resulting SBML files, 97 metabolites were assigned with
arbitrary IDs (i.e., “MNXMK ” followed by four digits) because they were not covered by the

MNXref namespace (i.e., metabolite IDs not converted to MNXM IDs).

Refinement or Removal of Biochemically Inconsistent Reactions. Recon 2 was built upon
metabolic genes and reactions collected from EHMN (4, 5), the first genome-scale human liver
metabolic model HepatoNetl (6), an acylcarnitine and fatty-acid oxidation model Ac-FAO (7),
and a small intestinal enterocyte model hs eIEC611 (8). Flux variability analysis (9) of the
Recon 2Q identified blocked reactions coming from these four sources of metabolic reaction
data. The EHMN caused the greatest number of blocked reactions in the Recon 2Q (1,070

reactions corresponding to 69.3% of all the identified blocked reactions). To refine the EHMN



reactions, following reactions were initially disregarded: 1) reactions having metabolite IDs
not convertible to MNXM IDs; and 2) reactions without genes. The remaining reactions were
newly assigned with compartments based on experimentally validated information from the
HPA version 13 (http://www.proteinatlas.org) (10, 11). Compartment information in the HPA
was converted to the compartment IDs available in Recon 2 (Dataset S15). These reactions
were proton- and mass-balanced. Finally, the refined reactions that cannot be connected with
existing reactions in the Recon 2Q were also disregarded.

For the reactions contributed by HepatoNetl, a total of 54 blocked reactions were
identified, and among them, 30 blocked reactions were removed from the Recon 2Q because
of the lack of biochemical evidences. The remaining 24 reactions were resolved by adding
transporter and/or demand reactions for corresponding dead-end metabolites: e.g., transporter
reactions of apolipoprotein B and E, both associated with protein degradation, which connect
extracellular space with intracellular lysosome. The hs eI[EC611 model introduced three
blocked reactions, NADK, NADtm, and FADtm, in the Recon 2Q, each of which functions as
NAD kinase and mitochondrial transporter reactions of NAD and FAD, respectively. These
reactions were resolved by adding demand reactions for mitochondrial NAD and FAD. Finally,
the Ac-FAO model caused 18 blocked reactions in the Recon 2Q. These 18 blocked reactions
constitute a linear pathway of fatty acid oxidation, and a blockage of this pathway was caused
by incorrect localization of a reaction FAOXC102C101x, also involved in fatty acid oxidation;
correcting compartmentalization of FAOXC102C101x resolved this issue.

After resolution of all the biochemically inconsistent reactions, 157 reactions
disqualified to be included in generic human GEM (‘Trivial reaction’ in Dataset S2) and 23
redundant metabolic reactions present in the updated Recon 2Q were further removed. Novel
metabolic contents of Recon 2.2 (12), the latest version of a human GEM, were also added to

the updated Recon 2Q. All the changes made to the Recon 2Q are listed in Dataset S2.



Validation of Recon 2M.1. Recon 2M.1 was validated by predicting: 1) ATP production rates
using varied carbon sources, 2) essential genes, and 3) glucose uptake rate, and lactate and ATP
production rates under varied oxygen uptake rates. Recon 2, 2Q and 2.2 were also subjected to
the same simulations for a comparison. For the first validation, ATP production rates were
calculated under aerobic or anaerobic condition in a defined minimal medium containing one
of 35 different carbon sources (Dataset S3 and S4). A purpose of this simulation set is to
reproduce the simulation performance of previous Recon models (12) and evaluate consistency
of Recon 2M.1. Uptake rate of a carbon source was constrained to 1 mmol/gDCW/h. For the
aerobic condition, oxygen uptake rate was set to 1,000 mmol/gDCW/h. For the second
validation, essentiality of genes was predicted by constraining the reaction flux value to zero if
the reaction has the gene to be knocked out, and implementing flux balance analysis (FBA)
with maximization of biomass generation rate as an objective function. This procedure was
repeated for all the genes one by one. Information on gene essentiality was obtained from Wang,
etal. (13) (Fig. 1C). A set of essential and non-essential genes were selected if the genes were
essential or non-essential in all the four cancer cell lines. In total, 870 essential and 15,425 non-
essential genes were obtained. Genes associated with blocked reactions were not considered
because inclusion of such genes increases accuracy and sensitivity values. Accuracy, sensitivity

and specificity were calculated as follows.

A ~ TP + TN
CUracy = TP Y TN+ FP+ FN
Sensitivity =
ensitivi y = TP n FN
o TN
Specificity =

" TN + FP



GPR associations of Recon 2M.1 were manually corrected in an iterative manner based on the
results of gene essentiality analysis (see Dataset S2 for the correction details). For the last
validation simulation set, oxygen uptake rate was varied from 0 to 1 mmol/gCDW/h in order
to examine its effects on glucose uptake rate, and lactate and ATP production rates (Fig. 1D).
Parsimonious FBA (pFBA) (14) was conducted with a pre-calculated maximal biomass
generation rate at each oxygen uptake rate as a constraint for each Recon model so as to
automatically generate glucose uptake rate. The last two validation simulation sets were
conducted under the assumption of RPMI-1640 medium (Fig. 1 C and D and Dataset S3).
RPMI-1640 medium is a frequently used medium for experiments with various human cell
lines. Constraints used in this study for the RPMI-1640 medium (Dataset S3) are same as those
used in previous in silico studies using Recon models (15-18). It should be noted that all these
Recon models do not generate biomass in silico under the defined minimal medium (Dataset

S3) due to requirements of essential nutrients (e.g., essential amino acids).

Conversion of GPR to TPR Associations in Recon 2M.1. As of May 2017, information on
20,244 genes and their 35,310 transcripts with “PRINCIPAL” (greater confidence) or
“ALTERNATIVE” (lower confidence) tags was downloaded from the APPRIS database (19).
All the 35,310 transcripts tagged with “PRINCIPAL” or “ALTERNATIVE” were considered
as PTs, and used in subsequent analyses (Figs. 2-5). Entrez gene IDs described in the GPR
associations were converted to their matching transcript IDs of Ensembl (20), RefSeq (21), and

UCSC (22) databases, generating TPR associations.

Acquisition of 446 TCGA Personal RNA-Seq Data Across Ten Cancer Types and
Statistical Comparative Expression Analyses. All the personal RNA-Seq data were

downloaded from TCGA for the ten cancer types (Fig. 1E). We updated old UCSC transcript



IDs used in the TCGA RNA-Seq data to the latest version. Metabolic genes defined in the
Recon 2M.1 were considered in the RNA-Seq data. Among a total of 1,682 metabolic genes
involved in the Recon 2M.1, 85 genes were excluded because they were not available in the
collected RNA-Seq data and/or their PTs were not properly defined in the APPRIS database
(19). FEs for each metabolic gene were calculated using the remaining 1,597 genes and their
corresponding 3,375 PTs defined in the APPRIS. The same sets of genes and their PTs were
also subjected to the comparative expression analyses using a R package edgeR with
recommended default parameter settings (23) (Fig. S4). Changes in (both total and principal)
transcript levels between non-tumor and tumor samples with FDR corrected P-value < 0.05

were considered significant.

Reconstruction of 1,784 Personal GEMs Across Ten Cancer Types. Personal GEMs were
reconstructed using four different types of data available in each TCGA personal RNA-Seq
data, including expression levels of total transcripts from non-tumor and tumor samples and
expression levels of PTs from non-tumor and tumor samples (Fig. 3A). Resulting personal
GEMs were called T-GEMs or P-GEMSs, depending on the use of data associated with total
transcripts or PTs, respectively. Consequently, use of 446 personal RNA-Seq data resulted in
the reconstruction of 1,784 personal GEMs. Recon 2M.1 was used as a template model, and
integrated with 446 TCGA personal RNA-Seq data through the tINIT method. The tINIT
method is an omics integration algorithm that attempts to identify a fully functional metabolic
model that is most consistent with expression levels of genes and proteins having biochemical
evidences (e.g., expression data) (24, 25). For the implementation of the tINIT method, we
only considered metabolic genes in the Recon 2M.1. In this study, the tINIT was conducted
with the same objective function as in the original study; however, for a weight score (wi) for

each gene that is used in the objective function, a newly rank-based weight function was



developed in order to minimize the effects of data outliers and sample variations on accuracies
of the resulting context-specific GEMs (Fig. 3A). In this rank-based weight function, the rank
of gene i (Ri) is determined based on its relative expression level rather than absolute expression
value. Reactions with final negative weight scores from the rank-based weight function are
likely to be removed from the context-specific GEM. Final weight score was assigned to each
reaction through Boolean calculation of the relevant GPR associations (26). In case of multiple
genes with OR relationship in the GPR association for a reaction, a final weight score for the
reaction was obtained by summing all the weight scores assigned to each gene. For a reaction
with genes having AND relationship, the minimum weight score among all the weight scores
given to each gene was assigned to the reaction. In order to obtain biochemically consistent
context-specific GEMs, parameter tests were conducted by changing € ranging from 0.15 to
0.30 in order to find a robust threshold (Fig. S6). The parameter £ was set to be 0.25 in this
study (&€ = 0.25 in the equation, Fig. 3A; i.e., bottom 25%). Context-specific GEMs generated
with the rank-based weight function appeared to have greater accuracy, sensitivity and
specificity values than those obtained with an original weight function from Agren, et al. (24)
(Fig. S7). Further details can be found in Figs. S5-S7.

As an additional input for the tINIT, a total of 162 essential metabolic reactions
(Dataset S6) were obtained from the Recon 2M.1 through reaction knockout simulation. These
essential metabolic reactions were selected if following 20 metabolic tasks were not satisfied:
1) cell growth rate, and production rates of 2) ten key intermediates (i.e., 2-oxoglutarate, 3-
phospho-D-glycerate, D-erythrose 4-phosphate, D-fructose 6-phosphate, D-glucopyranose 6-
phosphate, glyceraldehyde 3-phosphate, oxaloacetate, phosphoenolpyruvate, pyruvate and a-
D-ribose 5-phosphate), 3) eight nucleotides (i.e., ATP, CTP, GTP, UTP, dATP, dCTP, dGTP
and dTTP), and 4) ATP production rate (more than 10% decrease upon removal of a reaction).

The first three simulation sets were conducted under the assumption RPMI-1640 medium,



while the last simulation set was conducted under aerobic or anaerobic growth in defined
minimal media containing 21 different carbon sources including glucose and 20 amino acids
(Dataset S3). These 162 metabolic reactions were set to be active in all the resulting personal

GEMs because of their importance in the model functionality.

Simulation of Cancer Metabolism Using T-GEMs Built with Recon 2.2, 2M.1 and 2M.2.
Non-tumor and tumor T-GEMs were first built with Recon 2.2, 2M.1 (a subset of the 1,784
personal GEMs; Fig. 3A) and 2M.2 as template models. These generic Recon models were
integrated with non-tumor and tumor samples of 446 TCGA personal RNA-Seq data and by
using tINIT method. Next, fluxes of non-tumor and tumor T-GEMs built with Recon 2.2, 2M.1
and 2M.2 were predicted by setting the expression data from non-tumor and tumor samples of
the 446 TCGA personal RNA-Seq data as constraints and running the least absolute deviation
method (27, 28). Here, expression values of genes or transcripts were mapped to reactions
through GPR (for Recon 2.2) or TPR (for Recon 2M.1 and 2M.2) associations, respectively.
For T-GEMs built with Recon 2M.1 and 2M.2, the GeTPRA dataset serves to specifically map
transcripts to their corresponding reactions with correct compartments (Fig. 5). In case of T-
GEMs built with Recon 2.2, gene information was mapped to all the relevant reactions as
previously (24). Finally, the least absolute deviation minimizes the Euclidean distance between
the mapped expression values and the reaction flux value, thereby generating intracellular flux

distributions (27, 28).

Prediction of Anticancer Targets Using Tumor T-GEMs Built with Recon 2.2 and 2M.2.
Metabolic fluxes of tumor T-GEMs derived from Recon 2.2 and 2M.2 obtained above (Fig. 5)
were first compared with fluxes of the counterpart non-tumor T-GEMs. The metabolic

reactions with fluxes predicted to be significantly increased in tumor T-GEMs in comparison



with non-tumor T-GEMs across the ten cancer types were considered as potential anticancer
targets (Student’s t-test, FDR corrected P-value < 0.01). These reactions were subjected to
single knockouts to calculate relative growth rates of T-GEMs. The relative growth rate was
calculated by dividing perturbed growth rate under each reaction knockout condition by normal
growth rate without the knockout. The perturbed growth rate was calculated using
‘minimization of metabolic adjustment’ (MOMA) (29). Reactions were considered as
anticancer targets if they generated growth rates less than 5% of the normal growth rates in
more than 10% of T-GEMs for each cancer type. Reactions were also considered as anticancer
targets that reduce the ratio of glycolytic to oxidative ATP flux (AFR) (30) if their single
knockouts led to AFR values less than 50% of the normal AFR value without the knockout.
Information on the approved drugs and their targets was obtained from DrugBank 5.0 (31).
Cytoscape was used to generate networks that show relationships among reactions predicted as
anticancer targets, their corresponding pathways, and approved drugs inhibiting the

corresponding reactions (32).

Metabolic Simulations in General. All the metabolic simulations were conducted in Python
environment with Gurobi Optimizer 6.0 and GurobiPy package (Gurobi Optimization, Inc.,
Houston, TX). Reading, writing, and manipulation of the COBRA-compliant SBML files were
implemented using COBRApY (33). Constraints describing defined minimal medium and

RPMI-1640 medium (34) are available in Dataset S3.



SI Appendix Figures

Ensembl

<p>SUBSYSTEM: Kucleotide interconversion</p>

stoichicmetcy="1/>
* stoichicmetry==1</>

" stoichiometzy==1=/>

atoichiometry="1"/>

R_DUTRORE name="dUTF diphosphatase, nucleas”™ seversible="falae™>
xl “hetp:/ /e vl org/l988/ xhnl >
<p>GENE_ASSOCIATION: (1B54)</p>

et

sucieas” pevecaibles"false™>

iy
% or EESTHGOMSSMLE of 3 or ENSTOOMIOSSE30T oo INSTO0000550E52
ot ENSTODIOCSSHHIS or ENSTOOMOOMILIN oo

ar® reversibles"falae™>

1 xmlng p: ozg/l 1>
<p>GERE_RSSOCIATION: (MM 0015428 or MM _001025248 or WM_001025249)</p>
TEM: Nuclectide

aionc/p>

<5 GENE_ASSC fuc00lve

ueS9iyg.1 or &

T4
581yb.1 or ocOddiyi.l

oSTREYSTEN:

<notes>
<html xmlns="http://wew.w3.0org/1999/xhtml">
<p>FORMULA: C3H303</p>

<p>SMILES: CC(=0)C([0-])=0</p>
</html>

</notes>
</species>

<species id="M_MNXM23_e" name="pyruvate" compartment="e" charge="-1">

<p>INCHI: InChI=1S/C3H403/c1-2(4)3(5)6/h1H3,(H,5,6)/p-1</p>

<p>REFERENCE: pyr(BIGG);HMDB@@243(HMDB);C@e822(KEGG) ;PYRUVATE (METACYC) ; CHEBI:15361(CHEBI)</p>

Fig. S1. Examples of standardized reaction and metabolite information in the resulting

COBRA-compliant SBML file format. (A) Examples of a standardized reaction having gene-

protein-reaction (GPR) associations described with gene IDs (Entrez) and transcript-protein-

reaction (TPR) associations with transcript IDs (Ensembl, RefSeq and UCSC) in the SBML

file. (B) An example of standardized metabolite information with MNXM IDs in the SBML

file.
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Fig. S2. Genes having differential fractional expressions (FEs) between non-tumor (blue bars)
and tumor samples (red bars) of the 446 TCGA personal RNA-Seq data across ten cancer types.
(A) Genes are shown that have FEs significantly increased in tumor samples compared with
non-tumor samples across ten cancer types (FDR corrected P-value < 0.05 from Student’s t-
test; absolute changes > 2.0-fold). (B) Genes are shown that have FEs significantly decreased
in tumor samples compared with non-tumor samples across ten cancer types (FDR corrected
P-value < 0.05 from Student’s t-test; absolute changes > 2.0-fold). Error bars mean =+ s.d. Ten
cancer type names are: bladder urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC),
kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), rectum adenocarcinoma
(READ) and uterine corpus endometrial carcinoma (UCEC). BLCA (n=19), BRCA (n=114),
COAD (n=26), HNSC (n=43), KIRC (n=72), LIHC (n=50), LUAD (n=58), LUSC (n=51),

READ (n=6), and UCEC (n=7).
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Fig. S3. A heat map showing the distribution of fractional expressions (FEs) for essential
metabolic genes from non-tumor and tumor samples of the 446 TCGA personal RNA-Seq data
across ten cancer types. Information on essential metabolic genes was obtained from Wang, et
al. (13). FEs were calculated by dividing principal transcript levels (PTLs) by total transcript

levels (TTLs) for each metabolic gene (Fig. 2A). Unexpressed genes are shown in grey.
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Fig. S4. Evidences of changes in some principal transcript levels (PTLs) decoupled from
changes in total transcript levels (TTLs) in non-tumor and tumor samples of the 446 TCGA
personal RNA-Seq data across ten cancer types. (A) Number of genes with significant changes
in their TTLs and PTLs in non-tumor samples versus their matched tumor samples (FDR
corrected P-value < 0.05). Number of genes with significantly up-regulated TTLs and PTLs
are indicated in the white and blue circles, respectively in the first row. Numbers of genes with
significantly down-regulated TTLs and PTLs are shown in the white and blue circles,
respectively in the second row. Numbers in the overlapping regions of the white and blue
circles indicate genes showing consistent changes in their TTLs and PTLs. (B) List of genes
with increased TTLs, but decreased PTLs (in at least one of their PTs) in tumor samples,
compared with non-tumor samples (FDR corrected P-value < 0.05). In total, 34 genes had
significantly increased TTLs, but showed at least one of PTs decreased in tumor samples,
compared to non-tumor samples, across the ten cancer types. (C) List of genes with decreased
TTLs, but increased PTLs (in at least one of their PTs) in tumor samples, compared with non-
tumor samples across the ten cancer types (FDR corrected P-value < 0.05). In total, 38 genes
had significantly decreased TTLs, but having at least one of PTs increased in tumor samples,
compared to non-tumor samples, across the ten cancer types. Ten cancer type names and

number of samples for each cancer type are available in Fig. S2.
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Fig. S5. Definition and characterization of the rank-based weight function. Rank-based weight
function was coined to make sure that accuracy of a context-specific genome-scale metabolic
model (GEM) built through integration with omics data is robust to the presence of data outliers
and sample variations. All the genes are first sorted in descending order based on their FPKM
values where FPKM stands for “fragments per kilobase of exon per million fragments mapped”
(left scatterplot). Genes with “FPKM >= 1" and “FPKM < 1” are considered to be “expressed”
and “not expressed”, respectively. A gene I with the greatest FPKM value (highest rank)
receives the value N (the total number of genes) for its Ri, and following genes with lower ranks
receive reduced N values accordingly for their Ri values: e.g., N — 1 for Ri of the second ranked
gene, N — 2 for Ri of the third ranked gene, etc. Distribution of weight scores (Wi) from the rank-
based weight function is shown on the right scatterplot. Reactions with final negative weight
scores are likely to be removed from the context-specific GEMs (e.g., tissue/cell-specific
GEMs) based on Boolean calculations for their gene-protein-reaction (GPR) associations

(Materials and Methods).
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Fig. S6. Accuracy comparison of 32 tissue-specific GEMs built using the rank-based weight
function with varied & values. Model accuracies obtained at € = 0.15, 0.20, 0.25 and 0.30 are
shown herein. To obtain an optimal parameter € that gives context-specific GEMs most
consistent with the expression data, following steps took place. First, RNA-Seq data of 32
normal tissues from Uhlen, et al. (10) were used to reconstruct 32 tissue-specific GEMs using
the rank-based weight function with different € values ranging from 0.15 to 0.30; 32 tissue-
specific GEMs were reconstructed for each different &€ value. Recon 2M.1 having GPR
associations with Entrez gene IDs was used as a template. Next, all the metabolic genes in the
RNA-Seq data of 32 tissues were split into two groups based on their expression levels: FPKM
>=] or FPKM < 1. Finally, accuracies of the 32 tissue-specific GEMs were calculated based
on the following equation: accuracy = (TP + TN) / (TP + TN + FP + FN) where TP indicates

the case of genes with FPKM >=1 and present in the GEMs, FN for genes with FPKM >=1,



but absent in the GEMs, FP for genes with FPKM < 1, but present in the GEMs, and TN for
genes with FPKM < 1, and absent in the GEMs. As a result, £ =0.25 (i.e., 25%) gave the tissue-

specific GEMs with the highest accuracies for 17 out of 32 tissues.
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Fig. S7. Comparison of accuracy, sensitivity, and specificity values of the rank-based weight
function with € = 0.25 and a weight function reported by Agren, et al. (24). (A) The 32 tissue-
specific GEMs reconstructed using the rank-based weight function with € = 0.25 appeared to
be slightly more accurate for 29 out of 32 tissues (i.e., greater value of the accuracy defined in
Fig. S6) than those built with the original weight function. (B) The 32 tissue-specific GEMs

built with the original weight function showed slightly greater sensitivity values compared with



those built with the rank-based weight function. (C) The 32 tissue-specific GEMs built with
the rank-based weight function showed greater specificity values compared with those built

with the original weight function.
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Fig. S8. Model statistics of the 446 reconstructed personal GEMs for each type: non-tumor T-
GEMs, tumor T-GEMs, non-tumor P-GEMs, and tumor P-GEMs. (A) Number of genes, (B)
metabolites, and (C) reactions in the four different types of 446 personal GEMs for each cancer
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S2. Error bars mean + s.d.
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and tumor (B) samples from 446 TCGA personal RNA-Seq data. Error bars mean =+ s.d.
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Fig. S12. Heat maps showing the distribution of fractional expressions (FEs) for metabolic

genes enriched in non-tumor and/or tumor T-GEMs in comparison with P-GEMs for the ten

cancer types. x- and y-axes of each heat map represent the number of enriched genes (indicated

with ‘n=" followed by number in the figure) and patients (n = 446) considered, respectively.

Comparative gene enrichment analysis was conducted using Fisher’s exact test (FDR corrected

P-value < 0.05). Ten cancer type names are available in Fig. S2.
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Fig. S13. Immunohistochemistry images for subcellular localizations of protein isoforms
encoded by ACOT7, ALDH1L2, ALDH6A1, ALDH7A1, BLVRA, CCBL1, DCTPP1, GLUL,
GRHPR, HSD17B1, IP6K1, IP6K3, ISYNA1, ME2, MPST, PPOX, SPR, SULT2A1, TST, UCK1
and UCK2. All the shown immunohistochemistry images were obtained from the Human
Protein Atlas (HPA; http://v16.proteinatlas.org) (10, 11). Green stains within each image
indicate proteins of interest for the 21 genes. Antibody IDs of the shown
immunohistochemistry images are: HPA025735 for ACOT7; HPA039481 for ALDHI1LZ2;
HPA029073 for ALDH6A1; HPA023296 for ALDH7A1; HPA019709 for BLVRA; HPA021176
for CCBL1; HPA002832 for DCTPP1; HPA007571 for GLUL; HPA022971 for GRHPR;
HPA021032 for HSD17B1; HPA040825 for IP6K1; HPA053644 for IP6K3; HPA007931 for
ISYNA1; HPA008247 for ME2; HPA001240 for MPST; HPA030123 for PPOX; HPA039505
for SPR; HPA041487 for SULT2A1; HPA003044 for TST; HPA050969 for UCK1; and
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