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SI Appendix Materials and Methods 

Standardization of Metabolite IDs with MNXM IDs Defined in the MNXref Namespace. 

Information on metabolic contents of the Recon 2Q was standardized using MNXM IDs 

defined in the MNXref namespace available at MetaNetX (1-3). This standardization was to 

facilitate the model refinement process described below. Each metabolite ID in the Recon 2Q 

was converted to MNXM ID accordingly. For metabolite IDs that were not converted to 

MNXM IDs, they were manually converted to MNXM IDs by comparing their compound 

structures and synonyms. In the final resulting SBML files, 97 metabolites were assigned with 

arbitrary IDs (i.e., “MNXMK_” followed by four digits) because they were not covered by the 

MNXref namespace (i.e., metabolite IDs not converted to MNXM IDs).  

 

Refinement or Removal of Biochemically Inconsistent Reactions. Recon 2 was built upon 

metabolic genes and reactions collected from EHMN (4, 5), the first genome-scale human liver 

metabolic model HepatoNet1 (6), an acylcarnitine and fatty-acid oxidation model Ac-FAO (7), 

and a small intestinal enterocyte model hs_eIEC611 (8). Flux variability analysis (9) of the 

Recon 2Q identified blocked reactions coming from these four sources of metabolic reaction 

data. The EHMN caused the greatest number of blocked reactions in the Recon 2Q (1,070 

reactions corresponding to 69.3% of all the identified blocked reactions). To refine the EHMN 



reactions, following reactions were initially disregarded: 1) reactions having metabolite IDs 

not convertible to MNXM IDs; and 2) reactions without genes. The remaining reactions were 

newly assigned with compartments based on experimentally validated information from the 

HPA version 13 (http://www.proteinatlas.org) (10, 11). Compartment information in the HPA 

was converted to the compartment IDs available in Recon 2 (Dataset S15). These reactions 

were proton- and mass-balanced. Finally, the refined reactions that cannot be connected with 

existing reactions in the Recon 2Q were also disregarded. 

For the reactions contributed by HepatoNet1, a total of 54 blocked reactions were 

identified, and among them, 30 blocked reactions were removed from the Recon 2Q because 

of the lack of biochemical evidences. The remaining 24 reactions were resolved by adding 

transporter and/or demand reactions for corresponding dead-end metabolites: e.g., transporter 

reactions of apolipoprotein B and E, both associated with protein degradation, which connect 

extracellular space with intracellular lysosome. The hs_eIEC611 model introduced three 

blocked reactions, NADK, NADtm, and FADtm, in the Recon 2Q, each of which functions as 

NAD kinase and mitochondrial transporter reactions of NAD and FAD, respectively. These 

reactions were resolved by adding demand reactions for mitochondrial NAD and FAD. Finally, 

the Ac-FAO model caused 18 blocked reactions in the Recon 2Q. These 18 blocked reactions 

constitute a linear pathway of fatty acid oxidation, and a blockage of this pathway was caused 

by incorrect localization of a reaction FAOXC102C101x, also involved in fatty acid oxidation; 

correcting compartmentalization of FAOXC102C101x resolved this issue. 

After resolution of all the biochemically inconsistent reactions, 157 reactions 

disqualified to be included in generic human GEM (‘Trivial reaction’ in Dataset S2) and 23 

redundant metabolic reactions present in the updated Recon 2Q were further removed. Novel 

metabolic contents of Recon 2.2 (12), the latest version of a human GEM, were also added to 

the updated Recon 2Q. All the changes made to the Recon 2Q are listed in Dataset S2. 



 

Validation of Recon 2M.1. Recon 2M.1 was validated by predicting: 1) ATP production rates 

using varied carbon sources, 2) essential genes, and 3) glucose uptake rate, and lactate and ATP 

production rates under varied oxygen uptake rates. Recon 2, 2Q and 2.2 were also subjected to 

the same simulations for a comparison. For the first validation, ATP production rates were 

calculated under aerobic or anaerobic condition in a defined minimal medium containing one 

of 35 different carbon sources (Dataset S3 and S4). A purpose of this simulation set is to 

reproduce the simulation performance of previous Recon models (12) and evaluate consistency 

of Recon 2M.1. Uptake rate of a carbon source was constrained to 1 mmol/gDCW/h. For the 

aerobic condition, oxygen uptake rate was set to 1,000 mmol/gDCW/h. For the second 

validation, essentiality of genes was predicted by constraining the reaction flux value to zero if 

the reaction has the gene to be knocked out, and implementing flux balance analysis (FBA) 

with maximization of biomass generation rate as an objective function. This procedure was 

repeated for all the genes one by one. Information on gene essentiality was obtained from Wang, 

et al. (13) (Fig. 1C). A set of essential and non-essential genes were selected if the genes were 

essential or non-essential in all the four cancer cell lines. In total, 870 essential and 15,425 non-

essential genes were obtained. Genes associated with blocked reactions were not considered 

because inclusion of such genes increases accuracy and sensitivity values. Accuracy, sensitivity 

and specificity were calculated as follows. 
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GPR associations of Recon 2M.1 were manually corrected in an iterative manner based on the 

results of gene essentiality analysis (see Dataset S2 for the correction details). For the last 

validation simulation set, oxygen uptake rate was varied from 0 to 1 mmol/gCDW/h in order 

to examine its effects on glucose uptake rate, and lactate and ATP production rates (Fig. 1D). 

Parsimonious FBA (pFBA) (14) was conducted with a pre-calculated maximal biomass 

generation rate at each oxygen uptake rate as a constraint for each Recon model so as to 

automatically generate glucose uptake rate. The last two validation simulation sets were 

conducted under the assumption of RPMI-1640 medium (Fig. 1 C and D and Dataset S3). 

RPMI-1640 medium is a frequently used medium for experiments with various human cell 

lines. Constraints used in this study for the RPMI-1640 medium (Dataset S3) are same as those 

used in previous in silico studies using Recon models (15-18). It should be noted that all these 

Recon models do not generate biomass in silico under the defined minimal medium (Dataset 

S3) due to requirements of essential nutrients (e.g., essential amino acids). 

 

Conversion of GPR to TPR Associations in Recon 2M.1. As of May 2017, information on 

20,244 genes and their 35,310 transcripts with “PRINCIPAL” (greater confidence) or 

“ALTERNATIVE” (lower confidence) tags was downloaded from the APPRIS database (19). 

All the 35,310 transcripts tagged with “PRINCIPAL” or “ALTERNATIVE” were considered 

as PTs, and used in subsequent analyses (Figs. 2-5). Entrez gene IDs described in the GPR 

associations were converted to their matching transcript IDs of Ensembl (20), RefSeq (21), and 

UCSC (22) databases, generating TPR associations. 

 

Acquisition of 446 TCGA Personal RNA-Seq Data Across Ten Cancer Types and 

Statistical Comparative Expression Analyses. All the personal RNA-Seq data were 

downloaded from TCGA for the ten cancer types (Fig. 1E). We updated old UCSC transcript 



IDs used in the TCGA RNA-Seq data to the latest version. Metabolic genes defined in the 

Recon 2M.1 were considered in the RNA-Seq data. Among a total of 1,682 metabolic genes 

involved in the Recon 2M.1, 85 genes were excluded because they were not available in the 

collected RNA-Seq data and/or their PTs were not properly defined in the APPRIS database 

(19). FEs for each metabolic gene were calculated using the remaining 1,597 genes and their 

corresponding 3,375 PTs defined in the APPRIS. The same sets of genes and their PTs were 

also subjected to the comparative expression analyses using a R package edgeR with 

recommended default parameter settings (23) (Fig. S4). Changes in (both total and principal) 

transcript levels between non-tumor and tumor samples with FDR corrected P-value < 0.05 

were considered significant. 

 

Reconstruction of 1,784 Personal GEMs Across Ten Cancer Types. Personal GEMs were 

reconstructed using four different types of data available in each TCGA personal RNA-Seq 

data, including expression levels of total transcripts from non-tumor and tumor samples and 

expression levels of PTs from non-tumor and tumor samples (Fig. 3A). Resulting personal 

GEMs were called T-GEMs or P-GEMs, depending on the use of data associated with total 

transcripts or PTs, respectively. Consequently, use of 446 personal RNA-Seq data resulted in 

the reconstruction of 1,784 personal GEMs. Recon 2M.1 was used as a template model, and 

integrated with 446 TCGA personal RNA-Seq data through the tINIT method. The tINIT 

method is an omics integration algorithm that attempts to identify a fully functional metabolic 

model that is most consistent with expression levels of genes and proteins having biochemical 

evidences (e.g., expression data) (24, 25). For the implementation of the tINIT method, we 

only considered metabolic genes in the Recon 2M.1. In this study, the tINIT was conducted 

with the same objective function as in the original study; however, for a weight score (wi) for 

each gene that is used in the objective function, a newly rank-based weight function was 



developed in order to minimize the effects of data outliers and sample variations on accuracies 

of the resulting context-specific GEMs (Fig. 3A). In this rank-based weight function, the rank 

of gene i (Ri) is determined based on its relative expression level rather than absolute expression 

value. Reactions with final negative weight scores from the rank-based weight function are 

likely to be removed from the context-specific GEM. Final weight score was assigned to each 

reaction through Boolean calculation of the relevant GPR associations (26). In case of multiple 

genes with OR relationship in the GPR association for a reaction, a final weight score for the 

reaction was obtained by summing all the weight scores assigned to each gene. For a reaction 

with genes having AND relationship, the minimum weight score among all the weight scores 

given to each gene was assigned to the reaction. In order to obtain biochemically consistent 

context-specific GEMs, parameter tests were conducted by changing ࢿ ranging from 0.15 to 

0.30 in order to find a robust threshold (Fig. S6). The parameter ࢿ was set to be 0.25 in this 

study (0.25 = ࢿ in the equation, Fig. 3A; i.e., bottom 25%). Context-specific GEMs generated 

with the rank-based weight function appeared to have greater accuracy, sensitivity and 

specificity values than those obtained with an original weight function from Agren, et al. (24) 

(Fig. S7). Further details can be found in Figs. S5-S7. 

As an additional input for the tINIT, a total of 162 essential metabolic reactions 

(Dataset S6) were obtained from the Recon 2M.1 through reaction knockout simulation. These 

essential metabolic reactions were selected if following 20 metabolic tasks were not satisfied: 

1) cell growth rate, and production rates of 2) ten key intermediates (i.e., 2-oxoglutarate, 3-

phospho-D-glycerate, D-erythrose 4-phosphate, D-fructose 6-phosphate, D-glucopyranose 6-

phosphate, glyceraldehyde 3-phosphate, oxaloacetate, phosphoenolpyruvate, pyruvate and α-

D-ribose 5-phosphate), 3) eight nucleotides (i.e., ATP, CTP, GTP, UTP, dATP, dCTP, dGTP 

and dTTP), and 4) ATP production rate (more than 10% decrease upon removal of a reaction). 

The first three simulation sets were conducted under the assumption RPMI-1640 medium, 



while the last simulation set was conducted under aerobic or anaerobic growth in defined 

minimal media containing 21 different carbon sources including glucose and 20 amino acids 

(Dataset S3). These 162 metabolic reactions were set to be active in all the resulting personal 

GEMs because of their importance in the model functionality. 

 

Simulation of Cancer Metabolism Using T-GEMs Built with Recon 2.2, 2M.1 and 2M.2. 

Non-tumor and tumor T-GEMs were first built with Recon 2.2, 2M.1 (a subset of the 1,784 

personal GEMs; Fig. 3A) and 2M.2 as template models. These generic Recon models were 

integrated with non-tumor and tumor samples of 446 TCGA personal RNA-Seq data and by 

using tINIT method. Next, fluxes of non-tumor and tumor T-GEMs built with Recon 2.2, 2M.1 

and 2M.2 were predicted by setting the expression data from non-tumor and tumor samples of 

the 446 TCGA personal RNA-Seq data as constraints and running the least absolute deviation 

method (27, 28). Here, expression values of genes or transcripts were mapped to reactions 

through GPR (for Recon 2.2) or TPR (for Recon 2M.1 and 2M.2) associations, respectively. 

For T-GEMs built with Recon 2M.1 and 2M.2, the GeTPRA dataset serves to specifically map 

transcripts to their corresponding reactions with correct compartments (Fig. 5). In case of T-

GEMs built with Recon 2.2, gene information was mapped to all the relevant reactions as 

previously (24). Finally, the least absolute deviation minimizes the Euclidean distance between 

the mapped expression values and the reaction flux value, thereby generating intracellular flux 

distributions (27, 28). 

 

Prediction of Anticancer Targets Using Tumor T-GEMs Built with Recon 2.2 and 2M.2. 

Metabolic fluxes of tumor T-GEMs derived from Recon 2.2 and 2M.2 obtained above (Fig. 5) 

were first compared with fluxes of the counterpart non-tumor T-GEMs. The metabolic 

reactions with fluxes predicted to be significantly increased in tumor T-GEMs in comparison 



with non-tumor T-GEMs across the ten cancer types were considered as potential anticancer 

targets (Student’s t-test, FDR corrected P-value < 0.01). These reactions were subjected to 

single knockouts to calculate relative growth rates of T-GEMs. The relative growth rate was 

calculated by dividing perturbed growth rate under each reaction knockout condition by normal 

growth rate without the knockout. The perturbed growth rate was calculated using 

‘minimization of metabolic adjustment’ (MOMA) (29). Reactions were considered as 

anticancer targets if they generated growth rates less than 5% of the normal growth rates in 

more than 10% of T-GEMs for each cancer type. Reactions were also considered as anticancer 

targets that reduce the ratio of glycolytic to oxidative ATP flux (AFR) (30) if their single 

knockouts led to AFR values less than 50% of the normal AFR value without the knockout. 

Information on the approved drugs and their targets was obtained from DrugBank 5.0 (31). 

Cytoscape was used to generate networks that show relationships among reactions predicted as 

anticancer targets, their corresponding pathways, and approved drugs inhibiting the 

corresponding reactions (32). 

 

Metabolic Simulations in General. All the metabolic simulations were conducted in Python 

environment with Gurobi Optimizer 6.0 and GurobiPy package (Gurobi Optimization, Inc., 

Houston, TX). Reading, writing, and manipulation of the COBRA-compliant SBML files were 

implemented using COBRApy (33). Constraints describing defined minimal medium and 

RPMI-1640 medium (34) are available in Dataset S3.



SI Appendix Figures 

 

Fig. S1. Examples of standardized reaction and metabolite information in the resulting 

COBRA-compliant SBML file format. (A) Examples of a standardized reaction having gene-

protein-reaction (GPR) associations described with gene IDs (Entrez) and transcript-protein-

reaction (TPR) associations with transcript IDs (Ensembl, RefSeq and UCSC) in the SBML 

file. (B) An example of standardized metabolite information with MNXM IDs in the SBML 

file. 

 



 

 

Fig. S2. Genes having differential fractional expressions (FEs) between non-tumor (blue bars) 

and tumor samples (red bars) of the 446 TCGA personal RNA-Seq data across ten cancer types. 

(A) Genes are shown that have FEs significantly increased in tumor samples compared with 

non-tumor samples across ten cancer types (FDR corrected P-value < 0.05 from Student’s t-

test; absolute changes > 2.0-fold). (B) Genes are shown that have FEs significantly decreased 

in tumor samples compared with non-tumor samples across ten cancer types (FDR corrected 

P-value < 0.05 from Student’s t-test; absolute changes > 2.0-fold). Error bars mean ± s.d. Ten 

cancer type names are: bladder urothelial carcinoma (BLCA), breast invasive carcinoma 

(BRCA), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), 

kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), rectum adenocarcinoma 

(READ) and uterine corpus endometrial carcinoma (UCEC). BLCA (n=19), BRCA (n=114), 

COAD (n=26), HNSC (n=43), KIRC (n=72), LIHC (n=50), LUAD (n=58), LUSC (n=51), 

READ (n=6), and UCEC (n=7). 



  

Fig. S3. A heat map showing the distribution of fractional expressions (FEs) for essential 

metabolic genes from non-tumor and tumor samples of the 446 TCGA personal RNA-Seq data 

across ten cancer types. Information on essential metabolic genes was obtained from Wang, et 

al. (13). FEs were calculated by dividing principal transcript levels (PTLs) by total transcript 

levels (TTLs) for each metabolic gene (Fig. 2A). Unexpressed genes are shown in grey. 

  



  

Fig. S4. Evidences of changes in some principal transcript levels (PTLs) decoupled from 

changes in total transcript levels (TTLs) in non-tumor and tumor samples of the 446 TCGA 

personal RNA-Seq data across ten cancer types. (A) Number of genes with significant changes 

in their TTLs and PTLs in non-tumor samples versus their matched tumor samples (FDR 

corrected P-value < 0.05). Number of genes with significantly up-regulated TTLs and PTLs 

are indicated in the white and blue circles, respectively in the first row. Numbers of genes with 

significantly down-regulated TTLs and PTLs are shown in the white and blue circles, 

respectively in the second row. Numbers in the overlapping regions of the white and blue 

circles indicate genes showing consistent changes in their TTLs and PTLs. (B) List of genes 

with increased TTLs, but decreased PTLs (in at least one of their PTs) in tumor samples, 

compared with non-tumor samples (FDR corrected P-value < 0.05). In total, 34 genes had 

significantly increased TTLs, but showed at least one of PTs decreased in tumor samples, 

compared to non-tumor samples, across the ten cancer types. (C) List of genes with decreased 

TTLs, but increased PTLs (in at least one of their PTs) in tumor samples, compared with non-

tumor samples across the ten cancer types (FDR corrected P-value < 0.05). In total, 38 genes 

had significantly decreased TTLs, but having at least one of PTs increased in tumor samples, 

compared to non-tumor samples, across the ten cancer types. Ten cancer type names and 

number of samples for each cancer type are available in Fig. S2. 



 

  

Fig. S5. Definition and characterization of the rank-based weight function. Rank-based weight 

function was coined to make sure that accuracy of a context-specific genome-scale metabolic 

model (GEM) built through integration with omics data is robust to the presence of data outliers 

and sample variations. All the genes are first sorted in descending order based on their FPKM 

values where FPKM stands for “fragments per kilobase of exon per million fragments mapped” 

(left scatterplot). Genes with “FPKM >= 1” and “FPKM < 1” are considered to be “expressed” 

and “not expressed”, respectively. A gene i with the greatest FPKM value (highest rank) 

receives the value N (the total number of genes) for its Ri, and following genes with lower ranks 

receive reduced N values accordingly for their Ri values: e.g., N – 1 for Ri of the second ranked 

gene, N – 2 for Ri of the third ranked gene, etc. Distribution of weight scores (wi) from the rank-

based weight function is shown on the right scatterplot. Reactions with final negative weight 

scores are likely to be removed from the context-specific GEMs (e.g., tissue/cell-specific 

GEMs) based on Boolean calculations for their gene-protein-reaction (GPR) associations 

(Materials and Methods). 

 



  

Fig. S6. Accuracy comparison of 32 tissue-specific GEMs built using the rank-based weight 

function with varied ࢿ values. Model accuracies obtained at 0.25 ,0.20 ,0.15 = ࢿ and 0.30 are 

shown herein. To obtain an optimal parameter ࢿ that gives context-specific GEMs most 

consistent with the expression data, following steps took place. First, RNA-Seq data of 32 

normal tissues from Uhlen, et al. (10) were used to reconstruct 32 tissue-specific GEMs using 

the rank-based weight function with different ࢿ values ranging from 0.15 to 0.30; 32 tissue-

specific GEMs were reconstructed for each different ࢿ value. Recon 2M.1 having GPR 

associations with Entrez gene IDs was used as a template. Next, all the metabolic genes in the 

RNA-Seq data of 32 tissues were split into two groups based on their expression levels: FPKM 

>=1 or FPKM < 1. Finally, accuracies of the 32 tissue-specific GEMs were calculated based 

on the following equation: accuracy = (TP + TN) / (TP + TN + FP + FN) where TP indicates 

the case of genes with FPKM >=1 and present in the GEMs, FN for genes with FPKM >=1, 



but absent in the GEMs, FP for genes with FPKM < 1, but present in the GEMs, and TN for 

genes with FPKM < 1, and absent in the GEMs. As a result, 0.25 = ࢿ (i.e., 25%) gave the tissue-

specific GEMs with the highest accuracies for 17 out of 32 tissues. 

  



 

 

Fig. S7. Comparison of accuracy, sensitivity, and specificity values of the rank-based weight 

function with 0.25 = ࢿ and a weight function reported by Agren, et al. (24). (A) The 32 tissue-

specific GEMs reconstructed using the rank-based weight function with 0.25 = ࢿ appeared to 

be slightly more accurate for 29 out of 32 tissues (i.e., greater value of the accuracy defined in 

Fig. S6) than those built with the original weight function. (B) The 32 tissue-specific GEMs 

built with the original weight function showed slightly greater sensitivity values compared with 



those built with the rank-based weight function. (C) The 32 tissue-specific GEMs built with 

the rank-based weight function showed greater specificity values compared with those built 

with the original weight function. 

 

  



 

 

Fig. S8. Model statistics of the 446 reconstructed personal GEMs for each type: non-tumor T-

GEMs, tumor T-GEMs, non-tumor P-GEMs, and tumor P-GEMs. (A) Number of genes, (B) 

metabolites, and (C) reactions in the four different types of 446 personal GEMs for each cancer 

type. Ten cancer type names and number of samples for each cancer type are available in Fig. 

S2. Error bars mean ± s.d. 

 

 



 

 

 

 

 

 



(Continued) 

 

 

 

 

 



(Continued) 

 

Fig. S9. Distribution of metabolic reactions (represented by the color of each cell in the heat 

map) uniquely present in GEMs built with (A) non-tumor and (B) tumor samples of total 

transcript-level data (‘T-GEMs’). These metabolic reactions are absent in GEMs built with 

principal transcript levels (‘P-GEMs’). x- and y-axes of each heat map represent the cancer type 

and metabolic pathway name, respectively. (C) Number of genes uniquely found in non-tumor 

and/or tumor T-GEMs from (A) and (B), respectively. Twenty six metabolic genes were 

exclusively present in tumor T-GEMs. Ten cancer type names and number of samples for each 

cancer type are available in Fig. S2. 

  



 
 

Fig. S10. Number of metabolic reactions in each pathway in Recon 2M.1. 



 



(Continued) 

  

Fig. S11. Number of reactions having genes with FEs < 0.2 in each pathway of non-tumor (A) 

and tumor (B) samples from 446 TCGA personal RNA-Seq data. Error bars mean ± s.d. 

  



 

Fig. S12. Heat maps showing the distribution of fractional expressions (FEs) for metabolic 

genes enriched in non-tumor and/or tumor T-GEMs in comparison with P-GEMs for the ten 

cancer types. x- and y-axes of each heat map represent the number of enriched genes (indicated 

with ‘n=’ followed by number in the figure) and patients (n = 446) considered, respectively. 

Comparative gene enrichment analysis was conducted using Fisher’s exact test (FDR corrected 

P-value < 0.05). Ten cancer type names are available in Fig. S2. 

  



 

 

 

 

 



(Continued) 

 

Fig. S13. Immunohistochemistry images for subcellular localizations of protein isoforms 

encoded by ACOT7, ALDH1L2, ALDH6A1, ALDH7A1, BLVRA, CCBL1, DCTPP1, GLUL, 

GRHPR, HSD17B1, IP6K1, IP6K3, ISYNA1, ME2, MPST, PPOX, SPR, SULT2A1, TST, UCK1 

and UCK2. All the shown immunohistochemistry images were obtained from the Human 

Protein Atlas (HPA; http://v16.proteinatlas.org) (10, 11). Green stains within each image 

indicate proteins of interest for the 21 genes. Antibody IDs of the shown 

immunohistochemistry images are: HPA025735 for ACOT7; HPA039481 for ALDH1L2; 

HPA029073 for ALDH6A1; HPA023296 for ALDH7A1; HPA019709 for BLVRA; HPA021176 

for CCBL1; HPA002832 for DCTPP1; HPA007571 for GLUL; HPA022971 for GRHPR; 

HPA021032 for HSD17B1; HPA040825 for IP6K1; HPA053644 for IP6K3; HPA007931 for 

ISYNA1; HPA008247 for ME2; HPA001240 for MPST; HPA030123 for PPOX; HPA039505 

for SPR; HPA041487 for SULT2A1; HPA003044 for TST; HPA050969 for UCK1; and 

HPA057128 for UCK2. 

  



 

Fig. S14. Metabolic fluxes in central carbon metabolism predicted using non-tumor and tumor 

T-GEMs built with the three Recon models, Recon 2.2, Recon 2M.1 and Recon 2M.2. Error 

bars mean ± s.d. 
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