
 

Strong Attractions and Repulsions Mediated by Monovalent 
Salts  
Supporting Information Appendix 
Yaohua Li1, Martin Girard1, Meng Shen1, Jaime Andres Millan1, and Monica Olvera 
de la Cruz1,2,3 
1 Department of Materials Science and Engineering, 2 Department of Chemistry, Department of Physics 
and Astronomy, Northwestern University, Evanston Il 60208 

1. Atomistic Simulations 
1.1 Radial Distribution Functions 

The ion-ion radial distribution functions used in the Iterative Boltzmann Inversion (see main text and 
the section 2 of this SI Appendix) are calculated from atomistic simulations of NaCl-water solutions. 
Periodic boundary conditions (PBC) are applied on the x-, y- and z- dimensions of a 5 nm × 5 nm × 5 nm 
simulation box. NaCl concentrations from 0.3 M to 1 M are simulated. The number of water molecules in 
the simulation box range from 4131 to 3575 depending on NaCl concentration. Particle Mesh Ewald 
(PME) method (1) is applied to treat the electrostatic interaction beyond the cutoff of 1.2 nm. The 
simulation timestep is 1 fs. The systems are equilibrated at a constant pressure of 1 atm for 5 ns before 
collecting data. Two water models are studied: the TIP3P model and SPC/E model. The systems with 
TIP3P water model are simulated using NAMD (2) which is optimized for TIP3P water model, and the 
systems with SPC/E are simulated using GROMACS (3).  

 RDFs are calculated from simulation trajectories of over 2 million MD steps using the RDF 
extension of Visual Molecular Dynamics (VMD) (4). The models for Na+ and Cl- in the majority of the 
all-atomistic simulations are compatible with the TIP3P water model (5) and reproduce experimental 
osmotic pressures up to 5 M salt concentration (6). Na+ and Cl- models that are compatible with SPC/E 
water model (7) and reproduce experimental osmotic pressures up to 4 M salt concentration have also 
been reported (8, 9). For consistency, all coarse-grained results in the main text are simulated using 
potentials derived from the TIP3P water model. A brief discussion about the difference in dielectric 
constant and resulting NP-NP interactions introduced by the two water model is given in the next section. 
 

1.2 Calculation of the Solvent Dielectric Constant  
The dependence of the dielectric constant on NaCl concentration is calculated from the fluctuations 

of the total dipole moments of water molecules in atomistic simulations (10), and shown in Fig. S1. The 
dielectric constant decreases with the increase of salt concentration, because more water molecules are 
replaced by ions. In general, the SPC/E water model reproduces the experimental dielectric constant more 
closely (11), while the TIP3P water model consistently overestimates the dielectric constant (12), but ion-
ion correlation is parameterized in a wider concentration range for TIP3P model. The SPC/E water model 
also captures the long-range electrostatic interactions more accurately. Since our purpose is to derive the 
short-range interaction of ions, either model is acceptable. In fact, we observe similar potentials of mean 
force between nanoparticles regardless of the water model used when calculating the ion-ion correlations 



 

(Fig. S2), suggesting that both the TIP3P and SPC/E water models capture the solvent mediated 
correlation effects in our atomistic simulations. In most of the coarse-grained simulations we use the 
dielectric constants and ion pair correlation function calculated from TIP3P water model.  

 
Fig. S1 Dielectric constant value vs. NaCl concentration using the TIP3P water model (open circles) and 
SPC/E water model (filled circles). 
 

 
Fig. S2 Comparison of coarse-grained Na-Cl ion potential derived from two water models (a) and 
comparison of NP-NP interaction using the two coarse grained potential (b) for 1M NaCl and neutral NPs.  
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2. Derivation of the Coarse-grained Inter-Ion Potential 
 
We develop a coarse-grained salt solution model with an implicit solvent based on the radial distribution 
functions (RDF) for ions. The method used to calculate effective interaction potentials between ions from 
RDFs was proposed by Lyubartsev et al. in (13) using Monte Carlo simulations. Here we extended the 
method for the case of high ionic strength by introducing a salt concentration-dependent dielectric 
constant (9, 14), which decrease significantly from pure water. To capture this effect, we calculated a 
concentration-dependent dielectric constant from the fluctuation of water dipoles by all-atomistic 
simulations, and used it in the long-range Coulomb potential. The short-range part of the effective 
potential between ions are represented by a tabulated potential calculated via the Iterative Boltzmann 
Inversion (IBI) method described in ref (13, 15), and the long-range electrostatic interactions are 
calculated by Particle-Particle Particle-Mesh Ewald Sum (PPPM) implemented in HOOMD-blue (1, 16). 
In the IBI method, the effective potential 𝑈(𝑟) between ions is modified iteratively by the formula, 

  𝑈%&' = 𝑈% 𝑟 − 𝑘+𝑇	log
12 3
144(3)

      (1) 

until the equilibrium RDFs (𝑔%(𝑟)) of implicit water simulations match the RDFs obtained from atomistic 
simulations (within a small numerical error) for all ionic species (see Fig. S3). After each calculation of 
g(r), a moving average is applied to suppress statistical noise. An example of the generated NaCl coarse-
grained potential for different salt concentrations is shown in Fig. S2. In our molecular dynamics 
simulations with implicit solvent, this short-range potential is always used in conjunction with the long-
range Coulomb potential to reproduce full ion-solvent structures. 
 



 

 

Fig. S3. (a)-(c): Coarse-grained ion potentials calculated from atomistic radial distribution functions. The 
potentials demonstrate multiple energy minima due to solvation effects. (d) Demonstration of the 
evolution of pair-correlation function (g(r)) during the process of Iterative Boltzmann Inversion. Only the 
g(r) between Na ions and Cl ions are shown, the other two pairs (Na-Na and Cl-Cl) are similar. 

 

3. Details of Coarse-grained Simulations 
3. 1 Simple Smooth NPs 
To study NP-NP interactions, two nanoparticles are fixed symmetrically along the long axis of a 
tetragonal simulation box (See Fig. 2 in the main text for a snapshot, all simulation snapshots in the 
maintext and the SI Appendix are rendered using Visual Molecular Dynamics (4)). The total force on the 
two nanoparticles are recorded and averaged 1000 times in 450 ns at intervals of 450 ps. Average forces 
are recorded at 60 different NP-NP distances for each curve, and each simulation is performed 3 times 
with different randomly generated initial states. A spline fitting is employed to get smooth curves of mean 
forces, which are then used for numerical integration to get the effective potentials.  
 
 
Coarse grained simulations use a set of SI units defined by length unit 𝐷 = 1	nm , energy unit 𝜀 =
1𝑘+𝑇 ≈ 0.0257eV, and mass unit 𝑀 = 23.5	u ≈ 3.9×10HIJkg. All other units can be derived according 

Na-Cl

Na-Cl



 

to the online documentation of HOOMD-blue (17). For example, time unit 𝜏  can be derived as 𝜏 =
𝑀𝐷I/𝜀 ≈ 3×10'Is.  

To avoid undesired boundary effects, coarse grained simulations for force measurement between NPs are 
performed in simulation boxes with dimensions of at least 16×16×32	(nm3). For highly charged NPs, 
considering the longer range of NP interactions and ion distribution profiles, the box size is increased to 
20×20×40. Simulation results remain the same when we further increase the box size, suggesting that 
the simulation boxes are sufficiently large. 
 
 
Table 1 Parameters used in simple sphere NP simulations. Plots in Fig. 1 and Fig. 2 (main text) are 
simulated using values in the middle column. The softness of NP is set to be comparable to ion size by 
setting ε to a small value or	σ to be the mean hydrated ion size. 

ε	(kT) 1.0 0.001 0.001 

σ	(nm) 0.6 1.0 1.0 

 
Table 2 Size of particles used in simple sphere NP simulations. 

Type of Beads Na Cl NP 
R (nm) 0.15 0.22 4 
 
As mentioned in the main text, the shifted Weeks-Chandler-Anderson (WCA) potential is used for the 

ion-NP interactions: 𝑉UVW(𝑟) = 4𝜀[ Y
3H∆

'I
− Y

3H∆

J
]. ∆ is determined by the Lorentz combining rules 

(18): ∆%\= 𝑅% + 𝑅\ . The values of 	𝜎, 𝜀 and 𝑅 are given in Table 1 and Table 2. The radii of ions are 
estimated from the derived short-ranged potential by finding the distance at which the repulsion exceeds 5 
kT (energy unit in the simulations). They are found to have minimal influence on the overall conclusions.  

To make reasonable comparison with experimental parameter and hard-sphere depletion theories, the 
sizes of the NPs are estimated by the Barker-Henderson mean collision diameter (19): 

𝑑ab+c 𝛽 = − 𝑒Hfghi 3 − 1 𝑑𝑟
∞

j
 

The diameter of NPs with repulsive WCA potentials is 8.7 nm for the middle column in Table 1, 
calculated from this equation. In all NP-NP potential curves, the rapid growing repulsion between 8.5 and 
8.7 nm result from the WCA potential which represent the hard-core repulsion of the NPs. 
 
In order to test the effectiveness of the calculated potential of mean force in many-body circumstances, 
we introduce a 3rd NP in our simulation so that three NPs form the vertices of an equilateral triangle. The 
total force and corresponding potential along one edge is shown in Fig. S4. Qualitative behavior of the 
effective force is maintained in the presence of multibody effect. 



 

 
Fig. S4 Simulated mean force along lateral direction from 3 NPs forming the vertices of an equilateral 
triangle (as shown in the inset), compared with two NP calculations (blue and red curves). For neutral 
NPs, the lateral force in three body occasion is roughly 1.5 times the force between pairs of NP, which is 
the value one would get assuming the ion-induced force is linearly additive. For NPs with a large charge 
(in this case 100 elementary charges), the mean force in 3-body simulations is stronger at short distances 
but then decrease faster. 

 
In this paper, we neglect the polarization charge on the NP-solvent interface, which can give a non-trivial 
contribution to the short-range association-dissociation of ions to the charged NPs. Since the aim of this 
paper is a general study of the interaction of nanometer-size particles, we omit the surface details of the 
particle-solvent interface, which are also short-range. Instead, we focus on the treatment of the long-range 
Coulombic force and how bulk ion-correlation influence NP-NP interactions. 
 
 
3.2 DNA-grafted NPs 
We use force fields derived from the models described in (20, 21) with a few modifications. A charge 
of -1 e is added to every base of the DNA strand. The intrinsic bending potential of dsDNA is multiplied 
by 2/3 to account for charge-induced rigidity, which is implicit in the bending potential in the previous 
model. The reduced energies used in previous models are converted to real units by assuming that T=1.5 
(reduced temperature) in the previous model is equivalent to a temperature of 300K.  
 
Short range interactions between ions and DNA were modeled by a simple shifted WCA potential similar 
to other excluded volume interactions in this paper. The range is set to the geometric mean between the 
bare ion radius and the DNA radius. The DNA strands possesses “sticky ends” that are not 
complementary with each other and are not charged (the charge is set on the ssDNA backbone). The 
flanking beads do not interact with ions. Box dimensions are set to 60 𝑐H' l nm, where c is the molar 



 

concentration. An additional 40 nm is added in the z direction. The largest box used (at 0.3 M) is thus 90 
nm × 90 nm ×130 nm.  
 
Charged interactions are treated using a force-shifted Wolf summation with a cutoff of 4 nm, leading to 
150 – 350 average neighbors in the force calculation. The calculation was ran using HOOMD-blue (17, 
22) on 4 K80 GPUs over 7 – 15 days. Each potential of mean force is calculated using 300 points over the 
range 28-40 nm. The curves are numerically integrated using a trapezoidal integration rule and then fitted 
to Yukawa-type potentials. An extra generalized sigmoid function is added for 700 mM, low DNA 
density case. Typical fit results are shown on Fig. S5. 

 
Fig. S5. Fit of the potential of mean force for a low grafting density at a concentration of 700 mM. The 
fitting function is described by the sum of a Yukawa-type potential (𝑎	Exp(−𝑘	𝑟)	/	𝑟	), where a and k are 
parameters and a generalized sigmoid in the form 𝑓(𝑟) 	= 	𝐴	(	1	– 	1	/	(1	 + 	Exp(−	𝐾	(𝑟	–	𝑟j)))), where 
A, K and 𝑟j are fitting parameters. Since the potential is obtained by direct integration, the fitting accounts 
for setting the potential to 0 at r = 40 nm. This is then shifted so that the potential of mean force vanishes 
at r =∞. 
 
We note that the DNA model in this work is overly simplistic in nature since the charges on DNA strands 
are not located at the center of the cylinder but rather close to the exterior. As such, realistic models 
would produce different ion condensation (23). Therefore, different interactions between nanoparticles 
are expected to appear in the strong overlap regime (d < 35 nm), while the behavior for large separations 
(d > 37 nm) should be similar. 

4. Additional Results for Nanoparticle interactions 
 

MD simulations are also performed at other NaCl concentrations and NP charge densities to see the 
transition from attraction to repulsion upon increasing surface charge of nanoparticles (NPs). At 1 M, the 
NP potential of mean force is similar to the 0.5 M NaCl case discussed in the main text, though the 
transition from attractive to repulsive occurs at a different charge density (Fig. S6). At both 1 M and 0.5 



 

M, the transitions from attraction to repulsion appear to be abrupt, suggesting that the change in ion 
distribution has a non-linear effect on NP interactions. 

 

 

Fig. S6 NP-NP effective 
potential at 1M NaCl 
concentration. Similar to Fig. 2 
in the main text, van der Waals 
attractions between are not 
included in order to specifically 
analyze the interaction due to 
ion correlations. A repulsive 
WCA potential is included, 
giving the repulsion at 8~8.7 
nm. 

 

 

 

Differences between the interactions of positively charged NPs and negatively charged NPs were studied 
by comparing selected sets of salt concentrations and surface charge densities (Fig. S7). We reported 
asymmetric behavior of positively and negatively charged NPs due to the size asymmetry of monovalent 
salt in an earlier paper (24). At equivalent surface charge density in ref (24), potentials for positively 
charged NPs are generally higher than the corresponding potentials for negatively charged particles, 
meaning the repulsion for positively charged NPs are stronger. This is because chloride ions are larger 
than sodium ions in the primitive model. In this work, we again note differences for NP charges with 
different signs; however, the difference is subtler because of the more complicated short-range 
interactions. Na+ ions have a smaller hard-core radius than Cl- ions, but due to the complicated shape of 
the coarse-grained ion potentials, there is no simple answer to which one of the ions is larger. However, in 
general, for intermediate surface charge density (for example, 0.3~2 e/nm2 or 80<Q<500 for 1M NaCl 
concentration), repulsion is stronger for positively charged NPs. 

 

NPs with very high surface charge densities (such as DNA grafted NPs) show different interaction trends 
compared with moderately charged NPs, as shown in Fig. S6. At 0.5 M NaCl, highly negatively charged 
NPs (over 500 e/NP or 2.1 e/nm2) can lead to a long-range attractive well ~1.5-2 nm from the surface 
(corresponding to a center-center distance of ~10-10.5 nm, given that the NP diameter is ~8.7 nm). These 
were not observed for positively charged NPs. At 1 M NaCl, shallow potential wells are observed for both 
positively and negatively charged NPs.  
 



 

 

Fig. S7. a) Mean force and b) effective potential for positively and negatively charged NPs at 0.5 M NaCl. 

 
Fig. S8. Effective potentials between highly charged NPs at (a) 0.5 M NaCl and b) 1M. At 0.5 M, long-
range attractive wells occur 1.5 nm away from the NP surface for negatively charged NPs, but not for 
positively charged NPs. At 1 M, both positively and negatively NPs show shallow but long-range 
attractive wells. 

a) b)

a)

b)

b)



 

 
Fig. S9. Comparison of simulated effective potentials between two NPs at salt concentrations of (A) 0.3 
M and (B) 1 M with DLVO theory, and DLVO theory with corrected dielectric constants that depends on 
ion concentration (denoted in the labels by DLVO-Q40C and DLVO-Q100C). The numbers following Q 
indicate the total charge on each NP, in the unit of elementary charges. All of the curves are plotted 
without van der Waals attraction. At intermediate concencentrations (such as 0.3M), DLVO theory gives 
a reasonable match to simulations, slightly underestimating the repulsion. At high concentrations, the 
DLVO theory deviates from simulation results for both low-charge and high-charge NPs. 

 
We also compare the effective potentials with the widely used screened electrostatic potential in DLVO 
theory, 

   𝛽𝑈 𝑟 = 𝑍I𝑙+
wxh

'&ya

I wzx{

3
       (2) 

to study how the interaction deviates from mean field approaches (Fig. S9). The radius a on the right-hand 
side of equation (2) is taken to be the distance at which ion-NP RDF rise from zero to finite values, i.e. 
4.6 nm. As already pointed out in earlier works (24, 25), DLVO theory underestimates the interaction 
strength, because it sees charges as a mean field of point charges that have no short-range interactions, 
and thus neglecting sophisticated ion correlations. At higher ion concentrations (1M), the deviation is 
more significant. Moreover, DLVO theory predicts no NP-NP effective attraction from ions, such as 
depletion attractions. We also show in Fig. S9 that DLVO theory, even with the correction of dielectric 
permittivity as a function of ion concentration, fails to explain the strong repulsions for charged NPs in 
concentrated electrolyte. As dielectric constant decreases, the Bjerrum length increases leading to a larger 
pre-factor in the potential, but Debye length (𝜆} = 1/𝜅) decreases. The overall effect is that the range of 
repulsion is shorter if the dielectric constant decreases. Therefore, corrections in dielectric permittivity 
cannot explain the strong and long-range repulsion. At high salt concentrations, interactions between 
charged NPs are dominated by ion correlations, which makes the potentials differ from the screened 
Coulomb potential both in strength and functional forms. 
 
To analyze the correlation length in our model NaCl systems, we extract the characteristic length by 
finding and fitting the peaks of Na-Cl pair correlation functions at different concentrations. In the full 
atom simulations an increase in the ion-ion correlation associated screening length in bulk NaCl at high 
salt concentration is not observed maybe due to finite size effects but it is observed in the coarse grained 

B
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simulations. For comparison of the different models to our results, in Fig. S10 we also plotted the 
corrected classical Debye-Huckel (CDH), the corrected Debye-Huckel Bjerrum (26)  (CDHBj) screening 
length by including the decrease of the water dielectric constant with increasing salt concentration  in the 
DH and DHBj models. Allowing the formation of Bjerrum pairs in the DHBj model reduces screening; 
that is, increases the screening length.  The CDHBj theory does predict a longer screening length than the 
CDH theory. However, it is also larger than the associated screening length obtained by our 
atomistic simulations. This is probably due to 1) excluded volume effects, which becomes more important 
as the concentration increases (as shown in our model and in Fig 3 of ref (26) when the hard core is 
included, i.e. the DHBjDIHC  curve), and 2) the contribution of the larger than binary ion clusters to 
screening, which is known to give a very different contribution to the free energy than the DH model (see 
for example the contribution of polymers with ion (27) or without ion association (28). A few models, 
including one based on the Ornstein-Zernike equation (29) and restricted primitive model (30, 31), predict 
an absolute increase of the value of the bulk screening length when extrapolated to high salt 
concentrations. An increase in the screening length is observed by carefully fitting the exponential decay 
length in the g(r) calculated up to 3 nm from 48 thousand frames taken over 48 million MD steps of 
coarse-grained ion simulations (see Fig. S10 b). Error bars are obtained from the 95% confidence interval. 
Adjusted Pearson correlation coefficients for this procedure are around r2 ~ 0.85. This increase has been 
observed in confinement (on mica surfaces (32) and in capacitance studies (33, 34)) when fitting an 
exponential decay at high salt concentrations, in agreement with our results on DNA-functionalized NPs 
which have an effective radius much larger than the NPs with smooth surfaces, suggesting that 
confinement may be responsible for the observed increase. 
 

 
Fig. S10 Comparison of screening length obtained from simulations (up triangles), Debye-Huckel theory 
with concentration dependent dielectric constant (CDH, down triangles), and Debye-Huckel Bjerrum 
theory with concentration dependent dielectric constant (CDHBj, red squares). a) The correlation length 
obtained from fitting the first 4 peaks of g(r) from atomistic simulations is smaller than the Debye-Huckel 
screening length.  CDHBj theory predicts a higher screening length due to the formation of Bjerrum pairs. 
Inset: The ratio of the simulation correlation length (λ) to the corrected DH length ( 𝜆} ) versus 
concentration. b) Comparison of CDH theory (down triangles) and the screening length obtained by 
fitting the exponential tail of pair correlation function obtained from coarse-grained simulation of ions. 

a) b)



 

5. Short-chain Polymer Simulations 
 
Polymers without specific interactions with NPs have been known to lead to depletion attractions between 
NPs or proteins, and thus cause crystallization or gelation (35-37). To illustrate the similarity between 
depletion induced by ion correlation and depletion interactions in polymer solutions, MD simulations of 
NPs immersed in a polymer solution are performed with similar geometry as the NaCl simulations. 
Polymers of 8-32 segments are modeled as bead-spring chains with repulsive Lenard-Jones potentials, 

𝑈%\ 𝑟 = 4𝜀
𝜎

𝑟 − ∆

'I
−

𝜎
𝑟 − ∆

J
+ 𝛿 

where each bead represents one segment. A cutoff radius of 𝑟 = 2' J	𝜎 is set so that only the repulsive 
part of LJ potential is preserved. To relate the two systems, σ = 1	nm  and ∆= 8	nm  for bead-NP 
interactions and 0 for bead-bead interactions. Harmonic bonding is used to connect consecutive polymer 
segments: 

𝑈b 𝑟 =
1
2
𝑘 𝑟 − 𝜎 I 

with an elastic constant 𝑘 = 330𝑘+ 𝑇 nmI. A constant temperature of 298 K is maintained by Langevin 
dynamics, and periodic boundary conditions are applied in 3 directions.  
The RDF between the monomer beads are shown in Fig. S12. The RDF of the monomer beads share a lot 
of similarities to the RDF between sodium and chloride ions in Fig. S3, suggesting a similar underlying 
mechanism of depletion interaction induced by polymer and correlated ion clusters. 

 
Fig. S11. Inter-NP interactions for 
neutral NPs with depletion induced 
by neutral short-chain polymers. 
NPs are 9 nm in diameter. N denotes 
the number of segments in each 
polymer chain. The polymer volume 
fraction is fixed at 0.1. For the 
length regime in our studies, the 
depletion potential depth and range 
increases monotonically with chain 
length. The interaction range is 
similar to the correlation length 
(plotted in Fig. S12) rather than 
given by twice the radius of gyration. 
 



 

 
Fig. S12 Radial distribution function (RDF) of polymer beads. The oscillation in the RDF is a result of 
competition of packing effects and chain correlations. For longer chains, the 2nd correlation peak is more 
pronounced, giving rise to stronger depletion interactions. 

 

6. Ion Distributions and Cluster Analysis 
 In order to analyze the relationship between NP interactions, ion distribution and ion clustering 

analysis are performed. The distribution of ions around a single NP is performed with the radial 
distribution function extension of VMD (4), using an isolated NP immersed in NaCl ions. The MD 
simulation parameters and ion interaction potentials were identical with those used in simulations of 
effective interactions. Fig. S13 shows that, as expected, a peak of counterions (chloride ions) and a 
depleted layer of coions show up near the NP surface. The thickness of this layer is about 1 nm, 
corresponding to the NP interaction range in the low and intermediate surface charge density regime. 
There is also a difference between the distributions of the two types of ions around a neutral NP, because 
of the asymmetry in ion steric effects (38). The depleted layer of coions and an amplified layer of 
counterions coexist near the NPs, which leads to a complicated competition between depletion attraction 
and repulsion due to the aggregation of ions around NPs.  

Cluster analysis was described briefly in the Methods in the main text. The analysis benefited 
from the established code in ref (39). 𝑟���  is chosen to include the second most significant peak in the Na-
Cl RDF, which is 0.59 nm. To facilitate the analysis, the simulation box is divided into small cubic cells 
of 0.5 nm. The spatial distribution of ion clusters in each cell is analyzed by long-time averaging. For 
example, the distributions of Bjerrum pairs, ion trimers and tetramers averaged in a 4.5 nm slab cutting 
through the box and the two NPs are shown in Fig. S15. The distance between the two NPs is 9.1 nm, 
which should leave a large enough gap for single ions. A region of low cluster concentration can be 



 

identified that has a radius larger than 𝑅 + 𝑟%��, which is the common excluded volume radius for hard 
spheres. Moreover, the gap between two NPs is also depleted in cluster concentration. For larger clusters, 
the size of the depleted gap between the two NPs are larger (i.e. trimer>dimer>monomer), which means 
that larger clusters have a stronger contribution to depletion attraction. The spatial distribution of ion 
clusters confirm that there is indeed a depletion in cluster concentration near NP surfaces that could 
facilitate longer-ranged depletion attraction. 

 

Fig. S13. a) Distribution of ions around isolated NPs. The numbers such as Q=40 indicates the total 
surface charge on the NP, in the unit of elementary charge. The distribution of counterions for a very 
highly charged NP in 0.5 M NaCl is shown separately in (b). b) The exceptionally high peak corresponds 
to the counterion condensation as is visually obvious in the simulation snapshot in Fig. S14. 

a) b)



 

 
 

 
Fig. S14. Simulation snapshot of highly positively charged NP (500 e per np) interaction in 0.5 M NaCl. 
Green beads indicate chloride ions, purple bead indicate sodium ions. The snapshot shows strong 
counterion condensation on the NP surface at sufficiently high surface charge densities. 

 

Fig. S15 Spatial distribution of ions and ion clusters of NP with intermediate charge (60 e per particle): a) 
free ions, b) Bjerrum pairs and c) trimers. The numbers on the axes represent length with a unit of nm, the 
colorbar indicates averaged probability of finding free ions, pairs, etc., in arbitrary unit. Depleted regions 
(light blue) are observed around the NPs and the gap between them. For larger clusters (b and c), both the 
depleted sphere radius and the depleted gap between NPs are larger. The red circle indicate the hard-core 
diameter of the NPs. 
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