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1 Simulation Studies: Continuous Response

In this subsection, we apply MWPCR to the high-dimensional prediction problem. We are inter-

ested in predicting univariate continuous responses yi by using 20× 20× 10 image data xi = {xi,g :

g ∈ G}. We generated the 3D-images xi as follows:

xi,g = β0(g)li + εi(g) for i = 1, · · · , n = 50, (1)

where li = 1 + 0.01(i− 1) and β0 is the same as the image in the left panel of Figure (1). We set

yi = li for i = 1, . . . , 50. In this case, we have n = 50 and p = 4, 000.

We consider three types of noise εi(g) in (1). First, ε
(1)
i (g) were independently generated from

a N(0, 22) generator across all voxels. Second, ε
(2)
i (g) =

∑
‖g′−g‖1≤1 ε

(1)
i (g′)/mg were generated

from ε
(1)
i (g) by introducing the short range spatial correlation, where ‖ · ‖1 is the L1 norm of a

vector and mg is the number of locations in the set {‖ g′ − g ‖1≤ 1}. Third, to introduce the

long range spatial correlation, ε
(3)
i (g) were generated according to ε

(3)
i (g) = 2 sin(πg1/10)ξi,1 +

2 cos(πg2/10)ξi,2 + 2 sin(πg3/5)ξi,3 + ε1i (g), where g = (g1, g2, g3)
T and ξi,k for k = 1, 2, 3 were

independently generated from a N(0, 1) generator. Moreover, the noise variances in all voxels of

the red cuboid region equal 4, 4/6, and 4{sin(πg1/10)2 + cos(πg2/10)2 + sin(πg3/5)2}+ 4 for Type

I, II, and III noises, respectively. Therefore, among the three types of noise, Type III noise has the

smallest signal-to-noise ratio and Type II noise has the largest one.

We ran the three stages of MWPCR for the second set of simulations as follows. In Stage 1, we

fitted the same linear model as (1) for f(xi,g|yi,β(g)), in which zi was dropped out. Then, WI is

calculated based on the p-value of Wald test associated with the correlation between xi,g and yi at

each voxel g. Similar to the first set of simulations, MWPCR1, MWPCR2, and MWPCR3, respec-

tively, correspond to the location kernel K1(.), the similarity kernel K2(.), and the combination of

kernels K1(.) and K2(.). In Stage 2, we tried different numbers of principal components of PCA

to reconstruct the low dimensional latent variables {uk,i}k≤K . The analysis results are very robust

and we just report the results corresponding to 5, 7 and 10 principal components (PCs) in Figure
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2. In Stage 3, we fitted a linear latent variable regression given by yi = α0 +
∑K

k=1 αkuk,i + εi to

do prediction.

We compared MWPCR and three other dimensional reduction methods including PCA, weighted

PCA (WPCA) (Skocaj et al., 2007), and supervised PCA (SPCA) (Bair et al., 2006). We used

the leave-one-out cross validation method to compute the prediction errors of all methods. Let ŷi

be the fitted response value based on the linear latent variable regression, the prediction error is

defined as |ŷi − yi|/|yi|. Subsequently, we calculated the prediction error difference between MW-

PCR and all other three methods across different types of noise and different numbers of principal

components. Figure 2 presents the box plots of the prediction error differences under different sce-

narios. These simulation results confirm that MWPCR outperforms all other methods for different

types of noise and different numbers of PCs. Figure 3 reports some further results based on the

variance thresholding. The green, red and blue curves in Figure 3, respectively, represent the first,

second, and third quantiles of the error differences between MWPCR and the three other methods

as the variance thresholding increases. These results further show that MWPCR outperforms all

other methods.

We compared MWPCR with four other high-dimensional regression methods, including penal-

ized regression (PR) (Tibshirani, 1996), sure independence screening (SIS) regression (Fan and Lv,

2008), support vector regression (SVR) (Basak et al., 2007), and SPLS (Chun and Keles, 2010). We

used the software packages SLEP (Liu et al., 2009), SIS (Fan et al., 2010), LIBSVM (Chang and

Lin, 2011), and spls (Chung et al., 2012) to run PR, SIS regression, SVR and SPLS, respectively.

Figure 4 shows the boxplots of the prediction error difference between MWPCR and all the other

regression methods under the three types of noise. The prediction error differences are almost

always less than 0 (under the dashed line), indicating that MWPCR outperforms PR, SIS, SVR,

and SPLS.
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2 Theoretical Properties for Binary Classification

In this section, we theoretically compare MWPCR with standard and supervised PCAs, which do

not incorporate the spatial and important score weights, in a high-dimensional binary classification

problem. Our results shed some new insights on MWPCR in such problem.

2.1 Setup

We introduce several notation that will be used in the following context. Consider two sequences

of constant values {an : n = 1, . . . ,∞} and {bn : n = 1, . . . ,∞}.

• Denote an � bn if limn→∞an/bn = 0.

• Denote an � bn if c2 ≤ limn→∞an/bn ≤ limn→∞an/bn ≤ c1 for two constants c1 ≥ c2 > 0.

Consider a binary classification problem with (xi,yi), where yi = 0, 1 is the class label. Without

loss of generality, it is assumed that yi = 0 for i = 1, . . . , n1 and yi = 1 for i = n1 + 1, . . . , n and

xi|yi ∼ N
(
µyi

,Σ
)
. Let ρn,1 = n1/n and x =

∑n
i=1 xi/n. We have

x ∼ N
(
µ, n−1Σ

)
, E(x) = µ = ρn,1µ0 + (1− ρn,1)µ1,

xi − µ|yi = 0 ∼ N ((1− ρn,1)(µ0 − µ1),Σ) , xi − µ|yi = 1 ∼ N (ρn,1(µ1 − µ0),Σ) .

2.2 Theory Under an Ideal Scenario

In this subsection, we assume that Σ, µ0, and µ1 are known and investigate the effect of applying

the spatial weight and importance score weight matrices on PCA and its variants for classification.

We consider the spectral decomposition of Σ = V DV T , where D is the diagonal matrix of the

population eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp and V = [v1, · · · ,vp] is the matrix of corresponding

population eigenvectors. Let a⊗2 = aaT for any vector or matrix a and || · ||2 be the Euclidean

norm of a vector or matrix. In addition, we assume a multiple component spike model (Paul, 2007;
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Jung and Marron, 2009) such that as n→∞, the eigenvalues satisfy

∞ > λ1 > λ2 > . . . > λm � λm+1 → · · · → λp → σ2, (2)

where m is a finite positive integer and σ is a positive constant. We define a signal set and a noise

set, which are, respectively, denoted by S and S⊥, as follows:

S = span{v1, · · · ,vm} and S⊥ = span{vm+1, · · · ,vp}. (3)

We consider three different spatial weight matrices including a precision matrix, a kernel matrix,

and a selection matrix. We state the following theorems.

The expectation of n−1
∑n

i=1(xi−µ)(xi−µ)T is equal to ΣO = Σ + ρn,1(1− ρn,1)(µ1−µ0)
⊗2.

Similarly, for any weight matrix Q(`), the expectation of Q(`)Tn−1
∑n

i=1(xi − µ)(xi − µ)TQ(`) is

given by

ΣE = Q(`)TΣQ(`) + ρn,1(1− ρn,1)Q(`)T (µ1 − µ0)
⊗2Q(`). (4)

If we set Q(`) = Σ−1/2, then (4) reduces to

ΣE(1) = Ip + ρn,1(1− ρn,1)Σ−1/2(µ1 − µ0)
⊗2Σ−1/2. (5)

We obtain the following results about the eigenvalue-eigenvector pairs of ΣO and ΣE(1) and their

impact on PCA as follows.

Theorem 1 We have the following results:

(a) Under Assumptions (2) and (3), if µ0 −µ1 ∈ S⊥ and ||µ0 −µ1||22 << λm, then the first m

eigenvalue-eigenvector pairs of ΣO are the same as those of Σ.
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(b) The eigenvalues and eigenvectors of ΣE(1) are, respectively, given by

λE(1),1 = 1 + ρn,1(1− ρn,1)||Σ−1/2(µ1 − µ0)||22 > λE(1),2 = · · · = λE(1),p = 1, (6)

vE(1),1 = Σ−1/2(µ1 − µ0)/||Σ−1/2(µ1 − µ0)||2, vE(1),l ∈ {vE(1),1}⊥ for l ≥ 2.

(c) Except for a constant, the extracted first principal component (xi − µ)TΣ−1/2vE(1),1 corre-

sponds to the Bayesian optimal classifier and (xi−µ)TΣ−1/2vE(1),1|yi ∼ N((λ−1+yi)||Σ−1/2(µ1−

µ0)||2, 1). The misclassification rate of the Fisher discriminant based on the extracted first principal

component is equal to 1 − Φ(||Σ−1/2(µ1 − µ0)||2/2), where Φ(·) is the distribution function of the

standard normal.

Theorem 1 has several important implications on PCA and its variants. Theorem 1 (a) indicates

that if the signal ||µ0 − µ1||22 is relatively weak and µ0 − µ1 is orthogonal to S, then the first m

principal components of ΣO do not contain useful information for better classification. Thus, PCA

may produce misleading feature selection and inferior classification under the presence of strong

correlations in X. Similar comments are also correct, when one standardizes X before applying

PCA. Theorem 1 (b) indicates that without noise, the normalized Σ−1/2(µ1 − µ0) is always the

most important direction selected by MWPCR when Q(`) = Σ−1/2. Furthermore, if the signal

||Σ−1/2(µ1 − µ0)||2 is very strong, we expect that the estimated largest eigenvector of ΣE(1) is

approximately parallel to Σ−1/2(µ1−µ0). Theorem 1 (c) indicates that the use of Q(`) = Σ−1/2 in

MWPCR can substantially improve classification accuracy.

We consider the effect of applying a kernel matrix. Specifically, as discussed in Section 2, we

may construct a spatial kernel matrix WE by using either the local spatial weights or the weighted

adjacency matrix in order to reduce noise in data (Buja et al., 1989). Therefore, for the binary

classification problem, it is assumed that WE satisfies

WEΓ(µ1 − µ0) = ρ0Γ(µ1 − µ0), (7)
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where ρ0 is a known scalar and satisfies 0 < c0 ≤ |ρ0| ≤ 1 and Γ is a pre-specified weight matrix,

such as Σ−1/2 considered above. Two trivial choices of WE are Ip and Γ(µ1−µ0)
⊗2/||Γ(µ1−µ0)||22.

For the multiple component spike model, Σ can be approximated by Ṽ D̃Ṽ T + σ2Ip, where Ṽ =

[v1, · · · ,vm] is a p×m submatrix of Σ and D̃ = diag(λ1−σ2, · · · , λm−σ2). In this case, we apply

WE to ΓΣOΓT to get

ΣE(2) = WEΓ(Ṽ D̃Ṽ T + σ2Ip)Γ
TW T

E + ρn,1(1− ρn,1)ρ20{Γ(µ1 − µ0)}⊗2. (8)

The eigenvalues of WE usually satisfy three properties. First, all eigenvalues of WE are smaller

than or equal to one. For the locally spatial weight matrix, WE can be regarded as the transition

probability matrix of a Markov chain with p states, whose eigenvalues are not bigger than one.

Moreover, all eigenvalues of WE = exp(−0.5L/γ) based on the Laplace-Beltrami operator are not

bigger than one, since L = WD −W is nonnegative definite. Second, when the kernels K1(t) and

K2(t) are differentially continuous functions of t, the ordered eigenvalues of WE usually decay in

polynomial rates (Little and Reade, 1984; Reade, 1984). Moreover, since ρ0 is usually close to one,

(µ1 −µ0) should be the eigenvector corresponding to one of the largest eigenvalues of WE . Third,

for Γ = Ip, the elements of WEW
T
E converge to zero for most smooth kernels (Buja et al., 1989),

whereas those of WEṼ D̃Ṽ
TW T

E do not change too much. This observation is also important as we

set Γ = Σ−1/2. In this case, WEΓΣΓTW T
E reduces to WEW

T
E , whose elements converge to zero.

Let {(λ2w,k,vw,k) : k = 1, . . . , p} be the eigenvalue-eigenvector pairs of WEW
T
E . It is assumed

that as min(n, p)→∞, we have

1 ≥ λ2w,1 ≥ · · · ≥ λ2w,mw
� λ2w,mw+1 → · · · → λ2w,p → 0, (9)

where mw is a positive integer. As discussed in Buja et al. (1989), most linear smoothers (e.g.,

spline) satisfy Assumption (9). For instance, λw,js are either 0 or 1 only for many linear smoothers,

such as bin smoother.

Let F be the linear space spanned by WEv1, · · · ,WEvm, vw,1, · · · ,vw,mw , and WE(µ1 − µ0).
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We obtain the following results for ΣE(2).

Theorem 2 Under Assumptions (2), (3), (7), and (9), we have the following results:

(a) For any v ⊥ Σ−1/2(µ1 −µ0) and Γ = Σ−1/2, if ρn,1(1− ρn,1)ρ20||Σ−1/2(µ1 −µ0)||22 is larger

than 1, then we have

(µ1 − µ0)
TΣ−1/2ΣE(2)Σ

−1/2(µ1 − µ0)

||Σ−1/2(µ1 − µ0)||22
≥ ρn,1(1− ρn,1)ρ20||Σ−1/2(µ1 − µ0)||22 > λ2w,1 ≥

vTΣE(2)v

||v||22
.

If WE is symmetric and λ2w,k0
= ρ2o, then the eigenvalues of ΣE(2) and their corresponding eigen-

vectors are, respectively, given by

λ2w,1, · · · , λ2w,k0−1, λ
2
w,k0 + ρn,1(1− ρn,1)ρ20||Σ−1/2(µ1 − µ0)||22, λ2w,k0+1, · · · , λ2w,p

vw,1, · · · ,vw,k0−1,Σ
−1/2(µ1 − µ0)/||Σ−1/2(µ1 − µ0)||2,vw,k0+1, · · · ,vw,p.

(b) For Γ = Ip, if ρn,1(1− ρn,1)ρ20||µ1 − µ0||22 is larger than σ2λ2w,mw+1, then

(µ1 − µ0)
TΣE(2)(µ1 − µ0)

||µ1 − µ0||22
≥ ρn,1(1− ρn,1)ρ20||µ1 − µ0||22 > σ2λ2w,mw+1 ≥

vTΣE(2)v

||v||22
.

holds for any v ⊥ F . Moreover, if µ0−µ1 ⊥WEvj holds for all j ≤ m and WE is symmetric, then

(µ0 − µ1)/||µ0 − µ1||2 is the eigenvector of ΣE(2) corresponding to the eigenvalue ρ20σ
2 + ρn,1(1−

ρn,1)ρ
2
0||µ1 − µ0||22.

Theorem 2 has several important implications on PCA and its variants. Theorem 2 (a) re-

veals a key advantage of applying both WE and Σ−1/2. If ρ0 = 1, then the optimal direction

Σ−1/2(µ1 − µ0)/||Σ−1/2(µ1 − µ0)||2 corresponds to the largest eigenvalue of ΣE(2). Compared

with the eigenvalues in Theorem 1 (b), the ordered eigenvalues of ΣE(2) decay much faster to

zero. Therefore, when the signal ||Σ−1/2(µ1 − µ0)||22 is relatively weak, applying both kernel ma-

trix and covariance matrix can outperform solely applying covariance matrix in MWPCR. Theo-

rem 2 (b) also reveals the key advantage of applying WE . Specifically, the use of WE can down-
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weight all vectors that are orthogonal to F and ||WEvj ||2 ≤ 1 holds for all j; thus, µ1 − µ0

can easily appear in the space spanned by the leading eigenvectors of ΣE(2). Furthermore, if

ρn,1(1 − ρn,1)ρ20||µ1 − µ0||22 >> max(λ1, 1), then (µ0 − µ1)/||µ0 − µ1||2 is the first eigenvector of

ΣE(2).

We examine the effect of applying the selection weight matrix Q
(`)
1 to either X̃ or X̃Σ−1/2, where

X̃ = X−1nµT is the centered data matrix. We consider two different sets, including a discriminative

set S1 = {g ∈ G : {Σ−1/2(µ1−µ0)}(g) 6= 0} and a signal set S2 = {g ∈ G : {µ1−µ0}(g) 6= 0}, where

{·}(g) denotes the g−th component of a vector. If Σ is diagonal, then we have S1 = S2. However,

similar to the arguments in Mai et al. (2012), we can show that S1 and S2 can be very different for

correlated features. Without loss of generality, for k = 1, 2, it is assumed that Sk contains the first

pSk
indices. We can partition Σ1/2 and µl according to S1 and S2 as follows:

µl =

 µl,S1

µl,Sc
1

 , µl =

 µl,S2

µl,Sc
2

 , Σ1/2 =

 ΣS1S1 ΣS1Sc
1

ΣSc
1S1 ΣSc

1S
c
1

 , Σ1/2 =

 ΣS2S2 ΣS2Sc
2

ΣSc
2S2 ΣSc

2S
c
2


for l = 0, 1, where Sc

l is the complement of Sl for l = 1, 2. Let ΣE(3) be the expectation of

(IpSk
,0)ΓX̃X̃TΓT (IpSk

,0)T . We obtain the following results.

Theorem 3 We have the following results:

(a) S1 ⊂ S2 if and only if ΣSc
2S2Σ−1S2S2

(µ1,S2
− µ0,S2

) = 0.

(b) S2 ⊂ S1 if and only if µ1,Sc
1

= µ0,Sc
1

or ΣSc
1S1Σ−1S1S1

(µ1,S1
− µ0,S1

) = 0.

(c) The eigenvalues and eigenvectors of ΣE(3) corresponding to Γ = Σ−1/2 are given by

λI(k),1 = 1 + ρn,1(1− ρn,1)||(IpSk
,0)Σ−1/2(µ1 − µ0)||22 > λI,2 = · · · = λI,pSk

= 1,

vI(k),1 = (IpSk
,0)Σ−1/2(µ1 − µ0)/||(IpSk

,0)Σ−1/2(µ1 − µ0)||2, vI(k),l ∈ {vI(k),1}⊥ for l ≥ 2.

(d) For Q(`) = Σ−1/2(IpSk
,0)T , the misclassification rate of the Fisher discriminant based on

the extracted first principal component is equal to 1 − Φ
(
||(IpSk

,0)Σ−1/2(µ1 − µ0)||2/2
)

. For the

discriminative set, we can get the optimal Bayesian classifier.
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(e) For Γ = Ip, if µ0 − µ1 ∈ S⊥ and Assumptions (2) and (3) hold, then the eigenvalues of

ΣE(3) are given by λ1c1, · · · , λmcm, σ2 + ρn,1(1− ρn,1)||µ1 −µ0||22, σ2, · · · , σ2, where c1, · · · , cm are

m nonnegative scalars less than or equal to 1 and will be introduced in the supplementary document.

Moreover, (µ0 − µ1)/||µ0 − µ1||2 is the eigenvector of ΣE(3) corresponding to the eigenvalue σ2 +

ρn,1(1− ρn,1)||µ1 − µ0||22.

Theorem 3 has several important implications on PCA and its variants. Theorem 3 (a) and (b)

are direct generalizations of Proposition 1 of Mai et al. (2012) for correlated features. Theorem 3 (c)

indicates that the normalized (IpSk
,0)Σ−1/2(µ1−µ0) is always the most important direction selected

by MWPCR when Q(`) = Σ−1/2(IpSk
,0)T . Theorem 3 (d) quantifies the misclassification rate of the

Fisher discriminant based on the extracted first principal component. In most high-dimensional

problems, it is much easier to approximate the signal set compared with the discriminative set.

Theorem 3 (e) indicates that the use of (IpS2
,0) can dramatically improve the reconstruction of

(µ0,S2
−µ1,S2

) in a very challenging scenario discussed in Theorem 1 (a). Specifically, λj is reduced

to cjλj for all j = 1, . . . ,m, whereas the eigenvalue corresponding to (µ0 − µ1)/||µ0 − µ1||2 does

not change. Particularly, if pS2 << p, then all cm can be much smaller than 1. In this case,

(µ0 − µ1)/||µ0 − µ1||2 will easily show up in PCA.

2.3 Theory Under A Real Scenario

In this subsection, we focus the estimated Σ, µ0, and µ1 and investigates the effect of applying the

spatial weight and score weight matrices on PCA and its variants for classification.

From Theorem 1 of Fan et al. (2008), we can find a sample based covariance matrix estimator

Σ̂ such that

‖Σ̂− Σ‖F = Op(pn
− 1

2 ) (10)

We respectively replace Σ and µ1−µ0 in (5) by Σ̂ in (10) and the sample mean difference x1− x0

to generate

Σ̂E(1) = Ip + ρn,1(1− ρn,1)Σ̂−1/2(x1 − x0)
⊗2Σ̂−1/2, (11)
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which further yields Σ̂E(3) in Theorem 3 (c)

Σ̂E(3) = (IpSk
,0)Σ̂E(1)(IpSk

,0)T . (12)

Theorem 4 The first eigenvalue and eigenvector of Σ̂E(1) in (11) and Σ̂E(3) in (12) are, respec-

tively, given by

λ̂E(1),1 = 1 + ρn,1(1− ρn,1)||Σ̂−1/2(x1 − x0)||22, (13)

v̂E(1),1 = Σ̂−1/2(x1 − x0)/||Σ̂−1/2(x1 − x0)||2;

λ̂E(3),1 = 1 + ρn,1(1− ρn,1)||(IpSk
,0)Σ̂−1/2(x1 − x0)||22,

v̂E(3),1 = (IpSk
,0)Σ̂−1/2(x1 − x0)/||(IpSk

,0)Σ̂−1/2(x1 − x0)||2.

Under Assumptions (2) and(10), ||µ1 − µ0||2 <∞, and p2n−1/2 → 0, the first eigenvalue and the

corresponding eigenvector satisfy that as n→∞,

λ̂E(1),1
p−→ λE(1),1 and | < v̂E(1),1,vE(1),1 > |

p−→ 1, (14)

λ̂E(3),1
p−→ λE(3),1 and | < v̂E(3),1,vE(3),1 > |

p−→ 1.

Theorem 4 further confirms the better performance of MWPCR. Depending on the sample data

X, MWPCR could generate the consistent estimator v̂E(1),1 (or v̂E(3),1 ) for Σ−1/2(µ1 − µ0) (or

(IpSk
,0)Σ−1/2(µ1 − µ0) ). Theorem 1 (c) (Theorem 3 (d)) has clearly shown that the extracted

direction Σ−1/2(µ1−µ0) (or (IpSk
,0)Σ−1/2(µ1−µ0) ) corresponds to the Bayesian optimal classifier.

Thus, the sample based MWPCR could exact the optimal classification direction and improve

classification accuracy even when dimension p→∞.

Now we consider the sample based estimators for ΣE(2) in Theorem 2 (a) and (b) as following:

Σ̂
(a)
E(2) = WEW

T
E + ρn,1(1− ρn,1)ρ20

{
Σ̂−1/2(x1 − x0)

}⊗2
,

Σ̂
(b)
E(2) = WEΣ̂W T

E + ρn,1(1− ρn,1)ρ20(x1 − x0)
⊗2.
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Theorem 5 Assume that pn−1/2 → 0 and ||µ1 − µ0||2 <∞.

(a) If ∞ > λ
(a)
E(2),1 > · · · > λ

(a)
E(2),k0

, where λ
(a)
E(2),k is the k-th eigenvalue of ΣE(2) in Theorem 2

(a), then the k0-th eigenvalue and eigenvector of Σ̂
(a)
E(2) satisfy

λ̂
(a)
E(2),k0

p−→ λ2w,k0 + ρn,1(1− ρn,1)ρ20||Σ−1/2(µ1 − µ0)||22,∣∣∣< v̂
(a)
E(2),k0

,Σ−1/2(µ1 − µ0)/||Σ−1/2(µ1 − µ0)||2 >
∣∣∣ p−→ 0.

(b) If ∞ > λ
(b)
E(2),1 > λ

(b)
E(2),2, where λ

(b)
E(2),k is the k-th eigenvalue of ΣE(2) in Theorem 2 (b),

and ρn,1(1 − ρn,1)ρ20||µ1 − µ0||22 >> max(λ1, 1), then the first eigenvalue and eigenvector of Σ̂
(b)
E(2)

satisfy

λ̂
(b)
E(2),1

p−→ ρ20σ
2 + ρn,1(1− ρn,1)ρ20||µ1 − µ0||22,∣∣∣< v̂

(b)
E(2),1, (µ0 − µ1)/||µ0 − µ1||2 >

∣∣∣ p−→ 0.

Theorem 5 (a) reveals that the MWPCR estimators are consistent. This together with Theorem

2 shows that MWPCR with both kernel matrix and covariance matrix is better than MWPCR

only with covariance matrix. Theorem 5 (b) shows that the sample based estimators λ̂
(b)
E(2),1 and

v̂
(b)
E(2),1 are respectively consistent with λ

(b)
E(2),1 and v

(b)
E(2),1. This together with Theorem 2 indicates

that the standard PCA could exact the useful information for classification when the signal of

ρn,1(1− ρn,1)ρ20||µ1 − µ0||22 is much stronger than max(λ1, 1).

2.4 Classification Accuracy

In this subsection, we consider a specific setting and show that the use of spatial kernel and

importance score weight matrices in MWPCR can improve classification accuracy even when signals

are weak (Fan and Fan, 2008). For notational simplicity, we assume that xi|yi follows a single spike

model as follows:

xi = µyi
+

√
λ̃1ξie1 + σεi, (15)
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where ξi and εi are independent with ξi ∼ N(0, 1) and εi ∼ N(0, Ip), e1 is a p× 1 unit vector, and

λ̃1 and σ are positive scalars. Without loss of generality, we further assume e1 = (1, 0, · · · , 0)T . In

this case, Σ is equal to λ̃1e1e
T
1 + σ2Ip.

Our MWPCR proceeds as follows. First, we calculate µ̂0 =
∑n1

i=1 xi/n1, µ̂1 =
∑n

i=n1+1 xi/n2,

and µ̂ = ρn,1µ̂0 + (1 − ρn,1)µ̂1. Second, we perform PCA on the sample covariance matrix of

{QT (xi − µ̂) : i = 1, · · · , n}, denoted as SQTx, as follows:

SQTx = QT
n∑

i=1

(xi − µ̂)⊗2Q = QTSxQ = V̂ D̂2V̂ T ,

where Sx =
∑n

i=1(xi− µ̂0)
⊗2/(n−1) and V̂ = [v̂1, · · · , v̂K ]. Without of loss of generality, we focus

on the space spanned by v̂1 and construct a projected linear discrimination function. Specifically,

a new observation x is classified into Class 0 if

δ(x) = (x− µ̂)TQv̂1v̂
T
1Q

T (µ̂0 − µ̂1) > 0 (16)

and its misclassification rate is W(δ̂) = P
{
δ̂(x) ≤ 0 | xi, i = 1, · · · , n

}
= 1 − Φ(ψ0), where ψ0 is

given by

ψ0 =
(µ0 − µ̂)TQv̂1v̂

T
1Q

T (µ̂0 − µ̂1)√
(µ̂0 − µ̂1)

TQv̂1(v̂T
1Q

TΣQv̂1)v̂T
1Q

T (µ̂0 − µ̂1)
.

We compare our MWPCR with the independence classification rule (Fan and Fan, 2008). As

shown in Fan and Fan (2008), the independence rule would be no better than the random guessing

due to noise accumulation, when the signal level is relatively weak, that is
√
n/p||µ0 − µ1||22 → 0.

Below, we will show that our MWPCR can improve classification accuracy under a key condition

that n||QT (µ0 − µ1)||22/tr(QQT ) converges to ∞ as follows.

Let ρQ,12 = eT1QQ
T (µ0−µ1)/(||QT (µ0−µ1)||2||QTe1||2). We need the following assumptions.

(A.1) Let 1 ≥ λQ,1 ≥ · · · ≥ λQ,q > λQ,q+1 = · · · = λQ,p = 0 be the sorted eigenvalues of QQT such

that (
∑q

j=1 λQ,j)/(n||QT (µ0 − µ1)||22)→p 0 as min(p, n)→∞.

(A.2) ||QT (µ0 − µ1)||22/ log(n)→∞.
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(A.3) R0 = λ̃1||QTe1||22/||QT (µ0 − µ1)||22 < ∞ holds for ρQ,12 6= 0 and R0 < 1 − δ0 for ρQ,12 = 0,

where δ0 > 0 is a sufficiently small constant.

Theorem 6 Under Assumptions (A.1)-(A.3), the misclassification rate of (16) is given by

W(δ̂)
p−→ 1− Φ

(
α0||QT (µ0 − µ1)||2

)
, (17)

where α0 is a positive constant defined in the supplementary document.

Theorem 6 shows that the use of Q can reduce the effects of noise accumulation on MWPCR.

Specifically, when the true signal levels are relatively weak, that is ||µ0 − µ1||22 = o(
√
p/n), our

MWPCR outperforms the random guessing as tr(QQT )/
√
np is relatively small. As discussed

above, applying both smoothing and selection weight matrices can reduce tr(QQT ), so these weight

matrices should be used.

3 Proofs

This sections shows the proofs of Theorems 1 to 6. The proof of Theorems 1 is straightforward and

skipped here to save space. The proofs of Theorems 2 to 6 are respectively given out in Sections

3.2 to 3.6. Section 3.1 presents several lemmas that are used in the proofs of theorems.

3.1 Lemmas

This subsection shows several lemmas that are used in the proofs of theorems. This first one is the

Wielandt’s Inequality (Rao, 2002) that is used to prove Lemma 2.

Lemma 1 (Wielandt’s Inequality). If A,B are p × p real symmetric matrices, then for all j =

13



1, . . . , p, 

λj(A) + λp(B)

λj+1(A) + λp−1(B)

...

λp(A) + λj(B)


≤ λj(A+B) ≤



λj(A) + λ1(B)

λj−1(A) + λ2(B)

...

λ1(A) + λj(B)


.

The second lemma shows the convergence of eigenvalues and eigenvectors for two sequences of

matrices.

Lemma 2 Assume that two p×p matrices sequences {Ak, k = 1, · · · ,∞} and {Bk, k = 1, · · · ,∞}

satisfying that as k →∞, ‖Ak −Bk‖F → 0, then we have

max1≤j≤p|λj(Ak)− λj(Bk)| → 0, (18)

where λj(.) is the jth eigenvalue of matrix and p could go to infinite when k →∞. Furthermore, if

the first m (m is finite) eigenvalues of Bk satisfy that as k →∞, ∞ > λ1(Bk) > · · · > λm(Bk) > 0

, then as k →∞,

| < vl(Ak),vl(Bk) > | → 1, l = 1, · · · ,m, (19)

where vl(.) is the lth eigenvector of the matrix.

Proof of Lemma 2. First, we show the proof of (18). According to Lemma 1, we have that

λj(Bk) + λp(Ak −Bk) ≤ λj(Ak) ≤ λj(Bk) + λ1(Ak −Bk), j = 1, · · · , p,

which yields

max1≤j≤p|λj(Ak)− λj(Bk)| ≤ |λ1(Ak −Bk)|+ |λp(Ak −Bk)| ≤ 2‖Ak −Bk‖F . (20)

Since ‖Ak −Bk‖F → 0, then it follows from (20) that (18) is established.
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Second, we show the proof of (19). Note that Ak and Bk have the following eigen-decomposition

Ak =

p∑
l=1

λl(Ak)vl(Ak)vT
l (Ak) and Bk =

p∑
l=1

λl(Bk)vl(Bk)vT
l (Bk),

which yields

λ1(Ak) = vT
1 (Ak)Bkv1(Ak) + vT

1 (Ak)(Ak −Bk)v1(Ak)

≤ λ1(Bk)(vT
1 (Ak)v1(Bk))2 + λ2(Bk)[1− (vT

1 (Ak)v1(Bk))2] + ‖Ak −Bk‖F . (21)

Since ‖Ak −Bk‖F → 0 and λ1(Ak)→ λ1(Bk) > λ2(Bk), then it follows from (21) that

(vT
1 (Ak)v1(Bk))2 → 1, (22)

which yields (19) for l = 1. According to (22), we have that |vT
2 (Ak)v1(Bk)| → 0. Repeat the same

procedure, we have (19) for l = 2, · · · ,m.

The third lemma is about the convergence of the sample based matrices.

Lemma 3 Under the assumptions (2) and (10) and p2n−
1
2 → 0, we have following properties that

as N →∞,

‖Σ̂−1/2 − Σ−1/2‖F = Op(p
2n−

1
2 ) and ‖Σ̂−1 − Σ−1‖F = Op(p

2n−
1
2 ). (23)

Proof of Lemma 3. Since Σ̂−1/2 + Σ−1/2 − λ1/2p Ip is the non-negative matrix, then it follows

from Proposition 2.1 in Van Hemmen and Ando (1980) that

‖Σ̂−1/2 − Σ−1/2‖F ≤ λ−1/2p ‖Σ̂−1 − Σ−1‖F . (24)
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According to (6.12) of Fan et al. (2008), we have that whenever ||Σ−1||F ||Σ̂− Σ||F < 1,

‖Σ̂−1 − Σ−1‖F ≤
||Σ−1||2F ||Σ̂− Σ||F

1− ||Σ−1||F ||Σ̂− Σ||F
≤

pλ−2p ||Σ̂− Σ||F
1− p1/2λ−1p ||Σ̂− Σ||F

,

which together with (2), (10) and (24), yields (23).

The fourth lemma is about the convergence of the sample mean difference.

Lemma 4 The difference between x1 − x0 and µ1 − µ0 satisfy

‖(x1 − x0)− (µ1 − µ0)‖∞ = Op

(
log(p)

1
2n−

1
2

)

Lemma 4 is from (A5) in the appendix of Mai et al. (2012).

The last lemmas show the uniform convergence of sample eigenvalues.

Lemma 5 Under the assumptions (2) and (10) and pn−
1
2 → 0, the eigenvalues of Σ̂ and Σ satisfy

that as n→∞,

max1≤j≤p|λ̂j − λj |
p−→ 0.

Lemma 5 is directly from Lemma 2.

Lemma 6 Consider a rank-2 matrix Σ0 = λw0,1w
⊗2
1 + λw0,2w

⊗2
2 , where w⊗2 = wwT for any

vector w, ||w1||2 = ||w2||2 = 1, and λw0,1 ≥ λw0,2 > 0. Let ρ1,2 =< w1,w2 >. The two non-zero

eigenvalues of Σ0 are given by

λ+ = 0.5{λw0,1 + λw0,2 +
√

(λw0,1 − λw0,2)2 + 4λw0,1λw0,2ρ21,2},

λ− = 0.5{λw0,1 + λw0,2 −
√

(λw0,1 − λw0,2)2 + 4λw0,1λw0,2ρ21,2}.
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If ρ1,2 6= 0, then the eigenvectors corresponding to λ+ and λ− are given by

v0,1 =
w1 + x+(w2 − ρ1,2w1)√

1 + x2+(1− ρ21,2)
and v0,2 =

w1 + x−(w2 − ρ1,2w1)√
1 + x2−(1− ρ21,2)

,

where x+ and x− are, respectively, given by

x± =
−{λw0,2(2ρ

2
1,2 − 1) + λw0,1} ±

√
(λw0,1 − λw0,2)2 + 4λw0,1λw0,2ρ21,2

2λw0,2ρ1,2(1− ρ21,2)
.

3.2 Proof of Theorem 2

First, we prove Theorem 2 (a). For Γ = Σ−1/2, it is easy to show that for v ⊥ Σ−1/2(µ1 − µ0), we

have

ΣE(2) = WEW
T
E + ρn,1(1− ρn,1)ρ20{Σ−1/2(µ1 − µ0)}⊗2, (25)

vTΣE(2)v

||v||22
=

vTWEW
T
Ev

||v||22
≤ λw,1. (26)

If WE is symmetric, λ2w,k0
= ρ2o and Σ−1/2(µ1 −µ0) is an eigenvector of WE , then WEW

T
E has the

eigen-decomposition

WEW
T
E = λ2w,k0

{
Σ−1/2(µ1 − µ0)

||Σ−1/2(µ1 − µ0)||2

}{
Σ−1/2(µ1 − µ0)

||Σ−1/2(µ1 − µ0)||2

}T

+
∑

k 6=k0,1≤k≤p
λ2w,kvw,kv

T
w,k.

Then it follows from (25) that ΣE(2) has the eigen-decomposition

ΣE(2) =
{
λ2w,k0 + ρn,1(1− ρn,1)ρ20||Σ−1/2(µ1 − µ0)||22

}{ Σ−1/2(µ1 − µ0)

||Σ−1/2(µ1 − µ0)||2

}{
Σ−1/2(µ1 − µ0)

||Σ−1/2(µ1 − µ0)||2

}T

+
∑

k 6=k0,1≤k≤p
λ2w,kvw,kv

T
w,k. (27)

Until now, we have showed the eigenvalues and eigenvectors of ΣE(2) in Theorem 2 (a).
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According to (27) and (26), we have that

(µ1 − µ0)
TΣ−1/2ΣE(2)Σ

−1/2(µ1 − µ0)

||Σ−1/2(µ1 − µ0)||22
= λ2w,k0 + ρn,1(1− ρn,1)ρ20||Σ−1/2(µ1 − µ0)||22

≥ ρn,1(1− ρn,1)ρ20||Σ−1/2(µ1 − µ0)||22 > 1 ≥ λ2w,1 ≥
vTΣE(2)v

||v||22
.

Until now, we finished the proof of Theorem 2 (a).

Finally, we show the proof of Theorem 2 (b). For Γ = Ip, it follows from (8) that

ΣE(2) = WE(Ṽ D̃Ṽ T + σ2Ip)W
T
E + ρn,1(1− ρn,1)ρ20 {(µ1 − µ0)}

⊗2 . (28)

Since v ⊥ F and (28), then

vTΣE(2)v

||v||22
= σ2

vTWEW
T
Ev

||v||22
≤ σ2λ2w,mw+1. (29)

According to (28), we have

(µ1 − µ0)
TΣE(2)(µ1 − µ0)

||µ1 − µ0||22
≥ ρn,1(1− ρn,1)ρ20||µ1 − µ0||22. (30)

Since ρn,1(1− ρn,1)ρ20||µ1 − µ0||22 is larger than σ2λ2w,mw+1, then it follows from (29) and (30)

(µ1 − µ0)
TΣE(2)(µ1 − µ0)

||µ1 − µ0||22
≥ ρn,1(1− ρn,1)ρ20||µ1 − µ0||22 > σ2λ2w,mw+1 ≥

vTΣE(2)v

||v||22
.

In addition, if µ0 − µ1 ⊥ WEvj holds for all j ≤ m and WE is symmetric, according to (28), it is

easy to check that (µ0−µ1)/||µ0−µ1||2 is the eigenvector of ΣE(2) corresponding to the eigenvalue

ρ20σ
2 + ρn,1(1− ρn,1)ρ20||µ1 − µ0||22. This finishes the proof of Theorem 2 (b).
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3.3 Proof of Theorem 3

We only prove Theorem 3 (e). We have

ΣE(3) = (IpS2
,0)(Ṽ D̃Ṽ T + σ2Ip)(IpS2

,0)T + ρn,1(1− ρn,1)ρ20{(µ1,S2
− µ0,S2

)}⊗2.

Furthermore, we have

(IpS2
,0)Ṽ D̃Ṽ T (IpS2

,0)T =
m∑
j=1

λjvS2,jv
T
S2,j =

m∑
j=1

λj ||vS2,j ||22ṽS2,jṽ
T
S2,j ,

where vS2,j = (IpS2
,0)vj for j = 1, . . . ,m and ṽS2,j = vS2,j/||vS2,j ||2, in which ||vS2,j ||2 ≤ 1. It fol-

lows from the Cauchy (eigenvalue) interlacing theorem that the j-th eigenvalue of (IpS2
,0)Ṽ D̃Ṽ T (IpS2

,0)T ,

denoted as λjcj , is smaller than λj for j = 1, . . . ,m. Thus, we have cj ≤ 1.

3.4 Proof of Theorem 4

Note that Σ̂E(3) is a sub matrix of the Σ̂E(1), and the proof of the consistency of the first eigenvalue

and eigenvector of Σ̂E(1) and Σ̂E(2) are essentially same. Thus we only give out the proof of the

properties of Σ̂E(1) here. Proof of (13) is straightforward and skipped here to save space. We now

show the detailed proof of (14).

First, we show the asymptotic property λ̂E(1),1
p−→ λE(1),1. According to (6) and (13), we just

need to show

||Σ̂−1/2(x1 − x0)||2
p−→ ||Σ−1/2(µ1 − µ0)||2, (31)

which is equivalent with

||Σ̂−1/2(x1 − x0)− Σ−1/2(µ1 − µ0)||2
p−→ 0. (32)
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We rewrite Σ̂−1/2(x1 − x0)− Σ−1/2(µ1 − µ0) as following:

Σ̂−1/2(x1 − x0)− Σ−1/2(µ1 − µ0) = T1 + T2, (33)

where

T1 = (Σ̂−1/2 − Σ−1/2)(µ1 − µ0) and T2 = Σ̂−1/2 [(x1 − x0)− (µ1 − µ0)] .

In order to show (32), it follows from (33) that we just need to show

||Ti||2
p−→ 0, i = 1, 2. (34)

Note that

||T1||2 ≤ ||µ1 − µ0||2||Σ̂−1/2 − Σ−1/2||F

which together with Lemma 3 and the assumptions ||µ1 −µ0||2 <∞ and p2n−1/2 → 0, yields (34)

for i = 1. In addition, note that

||T2||22 ≤ pλ̂−1p ‖(x1 − x0)− (µ1 − µ0)‖2∞,

which together with Lemmas 4 and 5, and the assumption p2n−1/2 → 0, yields (34) for i = 2. Then

it follows that (32) is established.

Second, we shows the asymptotic property of the eigenvector v̂E(1),1 such that

| < v̂E(1),1,vE(1),1 > |
p−→ 1. (35)

Since

| < v̂E(1),1,vE(1),1 > | =
|(x1 − x0)Σ̂

−1(µ1 − µ0)|
||Σ̂−1/2(x1 − x0)||2||Σ−1/2(µ1 − µ0)||2

,
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then in order to show (35), it follows from (31) that we just need to show

(x1 − x0)Σ̂
−1(µ1 − µ0)

p−→ (µ1 − µ0)
TΣ−1(µ1 − µ0). (36)

Note that

(x1 − x0)Σ̂
−1(µ1 − µ0)− (µ1 − µ0)

TΣ−1(µ1 − µ0) = T∗1 + T∗2, (37)

where

T∗1 = (µ1 − µ0)
T (Σ̂−1 − Σ−1)(µ1 − µ0) and T∗2 = {(x1 − x0)− (µ1 − µ0)}

T Σ̂−1(µ1 − µ0).

Thus, in order to prove (35), it follows from (36) and (37) that we just need to show

|T∗i |
p−→ 0, i = 1, 2. (38)

Note that

|T∗1| ≤ ||µ1 − µ0||22||Σ̂−1 − Σ−1||F

which together with Lemma 3 and the assumptions ||µ1 −µ0||2 <∞ and p2n−1/2 → 0, yields (38)

for i = 1. In addition, it follows from Cauchy-Schwarz inequality that

T∗22 ≤ ||Σ̂−1/2 [(x1 − x0)− (µ1 − µ0)] ||22||Σ̂−1/2(µ1 − µ0)||22

≤ pλ̂−2p ‖(x1 − x0)− (µ1 − µ0)‖2∞||µ1 − µ0||22,

which together with Lemmas 4 and 5, and the assumptions ||µ1 − µ0||2 < ∞ and p2n−1/2 → 0,

yields (38) for i = 2. It follows from that (35) is established.
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3.5 Proof of Theorem 5

Let Σ
(a)
E(2) be ΣE(2) in Theorem 2 (a). In order to prove Theorem 5 (a), it follows from Lemma 2

that we just need to show

||Σ̂(a)
E(2) − Σ

(a)
E(2)||F

p−→ 0,

which can be realized by proving

||Σ̂(a)
E(2) − Σ∗E(2)||F

p−→ 0, (39)

||Σ∗E(2) − Σ
(a)
E(2)||F

p−→ 0, (40)

where Σ∗E(2) = WEW
T
E + ρn,1(1− ρn,1)ρ20

{
Σ̂−1/2(µ1 − µ0)

}⊗2
.

First, we give out the proof of (39). The Σ̂
(a)
E(2) − Σ∗E(2) can be rewritten as:

Σ̂
(a)
E(2) − Σ∗E(2)

ρn,1(1− ρn,1)ρ20
=

{
Σ̂−1/2 [(x1 − x0)− (µ1 − µ0)]

}{
Σ̂−1/2(µ1 − µ0)

}T

+
{

Σ̂−1/2(µ1 − µ0)
}{

Σ̂−1/2 [(x1 − x0)− (µ1 − µ0)]
}T

+
{

Σ̂−1/2 [(x1 − x0)− (µ1 − µ0)]
}⊗2

, (41)

where the right three terms are defined as I∗i for i = 1, 2, 3. In order to prove (39), it follows

from (41) that we just need to show

||I∗i ||F
p−→ 0, i = 1, 2, 3. (42)

Since for i = 1, 2,

||I∗i ||F = ||Σ̂−1/2 [(x1 − x0)− (µ1 − µ0)] ||2||Σ̂−1/2(µ1 − µ0)||2

≤ λ̂−1p ||(x1 − x0)− (µ1 − µ0)||2||µ1 − µ0||2

≤ p1/2λ̂−1p ||µ1 − µ0||2||(x1 − x0)− (µ1 − µ0)||∞,
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then it follows from ||µ1 − µ0||2 < ∞, p2n−1/2 → 0, and Lemmas 4 and 5 that (42) is established

for i = 1, 2. Similarly, we have

||I∗3||F ≤ pλ̂−1p ||(x1 − x0)− (µ1 − µ0)||2∞,

which together with Lemmas 4 and 5 and p2n−1/2 → 0, yields (42) for i = 3. Then it follows

from (41) and (42) that (39) is established.

Second, we give out the proof of (40). The Σ∗E(2) − Σ
(a)
E(2) is rewritten as following

Σ∗E(2) − Σ
(a)
E(2)

ρn,1(1− ρn,1)ρ20
=

{
(Σ̂−1/2 − Σ−1/2)(µ1 − µ0)}{Σ−1/2(µ1 − µ0)

}T

+
{

Σ−1/2(µ1 − µ0)
}{

(Σ̂−1/2 − Σ−1/2)(µ1 − µ0)
}T

+
{

(Σ̂−1/2 − Σ−1/2)(µ1 − µ0)
}{

(Σ̂−1/2 − Σ−1/2)(µ1 − µ0)
}T

, (43)

where the right three terms are defined as I∗∗i , i = 1, 2, 3. In order to prove (40), it follows (43)

that we just need to show

||I∗∗i ||F
p−→ 0, i = 1, 2, 3. (44)

Since for i = 1, 2,

||I∗∗i ||F = ||(Σ̂−1/2 − Σ−1/2)(µ1 − µ0)||2||Σ−1/2(µ1 − µ0)||2

≤ λ−1/2p ||µ1 − µ0||22||Σ̂−1/2 − Σ−1/2||F ,

then it follows from Lemma 3 and the assumptions ||µ1 − µ0||2 <∞ and p2n−1/2 → 0 that (44) is

established for i = 1, 2. Similarly, we have

||I∗∗3 ||F ≤ ||µ1 − µ0||22||Σ̂−1/2 − Σ−1/2||2F ,

together with Lemma 3 and ||µ1 − µ0||2 < ∞ and p2n−1/2 → 0, yields (44) for i = 3. It follows
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that (40) is established.

Let Σ
(b)
E(2) be ΣE(2) in Theorem 2 (b). In order to prove Theorem 5 (b), it follows from Lemma 2

that we just need to show

||Σ̂(b)
E(2) − Σ

(b)
E(2)||F

p−→ 0. (45)

The Σ̂
(b)
E(2) − Σ

(b)
E(2) can be rewritten as following:

Σ̂
(b)
E(2) − Σ

(b)
E(2) = WE(Σ̂− Σ)W T

E

+ ρn,1(1− ρn,1)ρ20 [(x1 − x0)− (µ1 − µ0)] (µ1 − µ0)
T

+ ρn,1(1− ρn,1)ρ20(µ1 − µ0) [(x1 − x0)− (µ1 − µ0)]
T

+ ρn,1(1− ρn,1)ρ20 [(x1 − x0)− (µ1 − µ0)]
⊗2 ,

where the four right terms are defined as Ii for i = 1, 2, 3, 4. In order to prove (45), we just need to

show

||Ii||F
p−→ 0, i = 1, 2, 3, 4. (46)

Note that

||I1||F ≤ λ2w,1||Σ̂− Σ||F ≤ ||Σ̂− Σ||F .

In addition, since λw,1 ≤ 1, pn−1/2 → 0 and (10), then (46) is established for i = 1. Since

||Ii||F ≤ ρn,1(1− ρn,1)ρ20p1/2||µ1 − µ0||2||(x1 − x0)− (µ1 − µ0)||∞, i = 2, 3,

then it follows from Lemma 4, ||µ1−µ0||2 <∞ and pn−1/2 → 0 that (46) is established for i = 2, 3.

Finally, since

||I4||F ≤ ρn,1(1− ρn,1)ρ20p||(x1 − x0)− (µ1 − µ0)||2∞,

then according to Lemma 4 and pn−1/2 → 0, we have (46) for i = 4.
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3.6 Proof of Theorem 6

Recall that ψ0 is given by

ψ0 =
(µ0 − µ̂)TQv̂1v̂

T
1Q

T (µ̂0 − µ̂1)√
(µ̂0 − µ̂1)

TQv̂1v̂T
1Q

TΣQv̂1v̂T
1Q

T (µ̂0 − µ̂1)

p−→ α0||QT (µ0 − µ1)||2. (47)

The proof of (47) consists of four key steps:

• Step (I) is to derive an approximation to v̂1Q
T (µ0 − µ̂).

• Step (II) is to derive a bound for ||QTn−1{
∑n

i=1 ε
⊗2
i }Q||op, where εi ∼ N(0, Ip).

• Step (III) is to derive an approximation to ||QT (µ̂0 − µ̂1)||2.

• Step (IV) is to derive an approximation to v̂1.

• Step (V) is to derive an approximation to ψ0.

For Step (I), we proceed as follows. Since µ̂ = ρn,1µ̂0 + (1− ρn,1)µ̂1 and ||v̂1||2 = 1, we have

v̂T
1Q

T (µ0 − µ̂) = (1− ρn,1)v̂T
1Q

T (µ̂0 − µ̂1) + v̂T
1Q

T (µ0 − µ̂0).

It can be shown that

v̂T
1Q

T (µ0− µ̂0) = v̂T
1Q

Te1

√
λ̃

n1∑
i=1

ξi/n1 +σv̂T
1Q

T
n1∑
i=1

εi/n1 = Op(n
−1/2
1 )(

√
λ̃||QTe1||2 +σ||Qv̂1||2).

For Step (II), we proceed as follows. Let Q = UT
QΛQVQ be the singular decomposition of Q,

where ΛQ = diag(λ
1/2
Q,1, · · · , λ

1/2
Q,q) and UQU

T
Q = VQV

T
Q = Iq. We have

QTn−1{
n∑

i=1

ε⊗2i }Q = V T
Q ΛQn

−1{
n∑

i=1

(UQεi)
⊗2}ΛQVQ.

Note that the eigenvalues of AB are the same as those of BA, where the column of B is the

same as the row of A. Therefore, the eigenvalues of QTn−1{
∑n

i=1 ε
⊗2
i }Q are the same as those
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of n−1
∑q

j=1 λQ,j ε̃
⊗2
i , where ε̃i is an n × 1 Gaussian random vector N(0, In). It follows from the

matrix Bernstein theorem (Tropp, 2012) that with a high probability, we have

||n−1
q∑

j=1

λQ,j ε̃
⊗2
i ||op ≤ n

−1
q∑

j=1

λQ,j + C1 log(n){1 + [n−1
q∑

j=1

λ2Q,j/ log(n)]1/2}. (48)

For Step (III), we process as follows. It is easy to show that ||QT (µ̂0 − µ̂1)||22 is equal to

||QT (µ0 − µ1)||2 + ||∆µ̂0,1||22 + 2(µ0 − µ1)
TQ∆µ̂0,1, (49)

where ∆µ̂0,1 = QT (µ̂0 − µ0 − µ̂1 + µ1), which follows N(0, (n−10 + n−11 )(λ̃QTe1e
T
1Q + σ2QTQ)).

Therefore, it is easy to show that with a high probability, |(µ0 − µ1)
TQ∆µ̂0,1| is bounded by

log(n)√
n
||QT (µ0 − µ1)||2

√
λ̃||QTe1||22 + σ2

Moreover, ||∆µ̂0,1||22 can be represented as

(n−10 + n−11 )λ̃1(η
TQTe1)

2 + (n−10 + n−11 )σ2ηTQTQη,

where η ∼ N(0, Ip). Similar to (48), it is easy to show that with a large probability, ηTQTQη

is smaller than
∑q

j=1 λQ,j +
√∑

j=1 λ
2
Q,jC log(n), where C is a generic constant. Moreover, since

ηTQTe1 ∼ N(0, ||QTe1||22), with a large probability, we have

||∆µ̂0,1||22 ≤ Cn−1 log(n)λ̃1||QTe1||22 + Cn−1{
q∑

j=1

λQ,j +

√√√√ 2∑
j=1

λ2Q,j log(n)}.

By combining above results, we can derive an approximation to ||QT (µ̂0 − µ̂1)||22 as follows:

C||QT (µ0 − µ1)||22{1 +
log(n)√

n
+ n−1||QT (µ0 − µ1)||22

q∑
j=1

λQ,j},

where C is a generic constant.
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For Step (IV), we proceed as follows. Recall that v̂1 is the eigenvector of SQTx corresponding

to its largest eigenvalue. We construct an approximation of SQTx, denoted as S̃QTx, given by

S̃QTx = Kn,1{
QT (µ̂0 − µ̂1)

||QT (µ̂0 − µ̂1)||2
}⊗2 +Kn,2(

QTe1
||QTe1||2

)⊗2, (50)

where Kn,1 = ρn,1(1−ρn,1)n||QT (µ̂0− µ̂1)||22/(n−1) and Kn,2 = λ̃||QTe1||22
∑n−2

i=1 ξ
2
i /(n−1). With

some calculations, we have

n− 1

n− 2
(SQTx − S̃QTx) = σ2QT ε⊗2Q+ σ

√
λ̃QT {e1(ξε)T + (ξε)eT1 }Q, (51)

where ε⊗2 =
∑n−2

i=1 ε⊗2i /(n − 2) and ξε =
∑n−2

i=1 ξiεi/(n − 2). It follows from the random matrix

theory that with a high probability, we have

σ2||QT ε⊗2Q||op ≤ σ2(n−1
q∑

j=1

λQ,j + C1 log(n){1 + [n−1
q∑

j=1

λ2Q,j/ log(n)]1/2}), (52)

σ||
√
λ̃QT {e1(ξε)T + (ξε)eT1 }Q||op = C3σn

−1/2
√
λ̃||QTe1||2,

where || · ||op is the spectral norm of a matrix and C3 is a generic constant.

We consider an approximation of v̂1 by using the eigenvector of S̃QTx, denoted as ṽ1, corre-

sponding to its largest eigenvalue. It follows from Lemma 6 that ṽ1 is given by

(1− ρ̂Q,12xQ,+)√
1 + x2Q,+(1− ρ̂2Q,12)

QT (µ̂0 − µ̂1)

||QT (µ̂0 − µ̂1)||2
+

xQ,+√
1 + x2Q,+(1− ρ̂2Q,12)

QTe1
||QTe1||2

, (53)

where ρ̂Q,12 = eT1QQ
T (µ̂0 − µ̂1)||QT (µ̂0 − µ̂1)||−12 ||QTe1||−12 and xQ,+ is given by

xQ,+ =
−{Kn,2(2ρ̂

2
Q,12 − 1) +Kn,1} ±

√
(Kn,1 −Kn,2)2 + 4Kn,1Kn,2ρ̂2Q,12

2Kn,2ρ̂Q,12(1− ρ̂2Q,12)
.

It follows from Theorem 2 of Yu et al. (2015) that if ṽT
1 v̂1 ≥ 0, then with a large probability, we
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have

||ṽ1 − v̂1||2 ≤
C||S̃QTx − SQTx||op√

(Kn,1 −Kn,2)2 + 4Kn,1Kn,2ρ̂2Q,12

= C(

∑q
j=1 λQ,j

nKn,1
+

log(n)

Kn,1
+ (nKn,1)

−1/2). (54)

For Step (V), we proceed as follows. We first derive an approximation to v̂T
1Q

T (µ0 − µ1) and

then approximate v̂T
1Q

TΣQv̂1. It follows from (53) that we have

v̂T
1Q

T (µ̂0 − µ̂1) = ṽT
1Q

T (µ̂0 − µ̂1) + (v̂1 − ṽ1)
TQT (µ̂0 − µ̂1)

= [
1√

1 + x2Q,+(1− ρ̂2Q,12)
+ C||v̂1 − ṽ1||2]||QT (µ̂0 − µ̂1)||2.

Similarly, since v̂T
1Q

TΣQv̂1 = λ̃(v̂T
1Q

Te1)
2 + σ2||Qv̂1||22, we have

v̂T
1Q

Te1 = ṽT
1Q

Te1 + (v̂1 − ṽ1)
TQTe1 = ||QTe1||2{

(1− ρ̂Q,12xQ,+)ρ̂Q,12 + xQ,+√
1 + x2Q,+(1− ρ̂2Q,12)

+ C||v̂1 − ṽ1||2}.

Therefore, with a high probability, we have

v̂T
1Q

TΣQv̂1 =

λ̃1||QTe1||22{
(1− ρ̂Q,12xQ,+)ρ̂Q,12 + xQ,+√

1 + x2Q,+(1− ρ̂2Q,12)
}2 + σ2||Qṽ1||22

 [1 + o(1)].

Moreover, if ρQ,12 6= 0, then it can be shown ρ̂Q,12 = ρQ,12 +O( log(n)√
n

) and

xQ,+ →p
−{R0(2ρ

2
Q,12 − 1) + 1} ±

√
(1−R0)2 + 4R0ρ2Q,12

2R0ρQ,12(1− ρ2Q,12)
.

By combining the results in Steps (I)-(V), we can finish the proof.
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Class 0 Class 1

Figure 1: True mean images for the first set of simulations: Class 0 in the left panel and Class 1 in
the right panel. The white, green, and red colors, respectively, correspond to 0, 1, and 2.
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Figure 2: Simulation results for the second set of simulations: comparison of MWPCR and the
three dimension reduction methods including principal component analysis (PCA), weighted PCA
(WPCA), and supervised PCA (SPCA) for the three types of noise. All panels show the box plots
of the prediction error differences between MWPCR and PCA (or WPCA, or SPCA) for three
different numbers of principal components. The error differences are almost less than 0 (below the
dished line) and confirm that MWPCR outperforms PCA, WPCA, and SPCA.
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Figure 3: Simulation results for the second set of simulations: comparison of MWPCR and PCA,
WPCA, and SPCA based on the variance thresholding for the three types of noise. In all panels,
the green, red and blue curves are respectively the first, the second, and the third quantiles of error
differences between MWPCR and PCA (or WPCA, or SPCA) for different variance thresholding.
These results further confirm that MWPCR outperforms PCA, WPCA, and SPCA.
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Figure 4: Simulation results for the second set of simulations: the box plots of the prediction error
differences between MWPCR and other high-dimensional regression models including Lasso, SIS,
SVR, and SPLS. The error differences are almost less than 0 (below the dished line) and confirm
that MWPCR outperforms Lasso, SIS, SVR, and SPLS.
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