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S1 Steady state solutions of the representative model

In this section we present a derivation of steady state solutions of the simplified system to show

the existence of non-homogeneous solutions. For ease of notation, we redefine u ≡ u1 and v ≡ u2.

Consider the following two state PDE
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where f(−u) = −f(u). To show that the system admits a non-homogeneous solution we consider

the steady-state by setting ∂u
∂t

= 0. By introducing a second variable we write the steady-state

system as

d

dx







u1

u2






=







v1

v2







d

dx







v1

v2






= −D−1







f(u2)

f(u1)






+D−1







u1

u2







(S2)

In order to find a non-homogeneous solution we need to consider an invariant manifold that connects

the two equilibrium points of the bistable system. Naturally, only one such manifold exists and it

is the unstable manifold that crosses the saddle point. We wish to investigate solutions along this
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invariant manifold, which in this example is described by u1 = −u2. Then we have v2 = −v1 and
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Therefore, the steady-state system solutions constrained to this manifold are described by

dui
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= vi
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=
1

D
(f(ui) + ui)

(S4)

We can remove the diffusion term in equation (S4) through the change of variables x̃ = x/
√
D and

ṽ = v
√
D

dui
dx̃

= ṽi (S5)
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Note that along this manifold, the system is Hamiltonian. By definition the Hamiltonian function

H(u, v) satisfies the properties
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System (S6) is uniquely defined by the Hamiltonian
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where G(ui) =
∫ ui

0 g(ui)dui and g(ui) = (f(ui) + ui). Then
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2
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(S10)

and plugging in u1 = −u2 we get

H(v, u) = v21 − u21 − 2F (u1)

=

(

du1
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)2

− u21 − 2F (u1)

(S11)

where F (u) =
∫ u

0 f(u)du. Solutions are given by the contours of H(v, u) = E for different E. From

now on to simplify notation we replace u1 with u.

We consider the case where f(u) = −α tan−1(u), Then

F (u) = α
1

2
ln(1 + u2)− αu tan−1(u) (S12)

and the contours of Hamiltonian function are given by plotting du
dx

as a function of u through the

following relation

du

dx
= ±

√

E − 2αu tan−1(u) + α ln(1 + u2) + u2. (S13)

The contours are plotted in Fig. 3 for α = 2 and different values of E. Given the zero flux boundary

conditions v(0) = v(L) = du
dx

= 0, we look for solutions that satisfy the constraints

H(0, u(0)) = H(0, u(L)) = E. (S14)

Consider as a reference point the case where a state is at different equilibrium points on opposing

ends. That is the boundary conditions correspond to the non-trivial solution of the algebraic

equation

−α tan−1(−α tan−1(u∗)) = u∗. (S15)

This corresponds to the solution of the system with a domain of infinite length. The total energy
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is given by

Ecr = −u∗2 − 2F (u∗). (S16)

We can find the domain length corresponding to each solution provided by the Hamiltonian through

the integration
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(S17)

and plugging in terms we get

L̃ = 2
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0
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where

Esol = −u0,L
2 − 2F (u0,L). (S19)

Then our domain length for a non-homogeneous steady-state solution is L = L̃
√
D.
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S2 Stability analysis of the discretized representative model

To evaluate stability of the different solutions we consider the discrete-space model

du1
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(S20)

Here we define uk(t) = u(k∆x, t) and so we have d ≡ D/(∆x)2. We choose ∆x small enough to

approximate the partial differential equation presented earlier and choose n = ⌊L/∆x⌋. Again, we

look for solutions of the system along the unstable steady-state manifold u = −v. Solutions are

obtained by solving the following set of equations

d(u2 − u1) = f(u1) + u1

d(uk−1 − uk) + d(uk+1 − uk) = f(uk) + uk for k = 2, . . . , n− 1

d(un−1 − un) = f(un) + un.

(S21)

Note that we can express states u2, . . . , un as a function of u1. Substituting expressions for un−1

and un into the last line of equation (S21), one can solve for u1. Finally, u1 is used to calculate

steady solutions u2, . . . , un.

We determine stability by examining the eigenvalues of the Jacobian of system (S20)
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K2 = diag

(

∂f

∂u

∣

∣

∣

∣

u1=u1
eq

,
∂f

∂u

∣

∣

∣

∣

u2=u2
eq

, . . . ,
∂f

∂u

∣

∣

∣

∣

un=un
eq

)

, (S25)

and A,K1,K2 ∈ R
n×n.

We find solutions to (S21) with parameters α = 2nM/min, D = .1mm2/min,and ∆x = .01mm.

We then determine stability of the solution from the eigenvalues of matrix (S22). We find the

maximum eigenvalue corresponding to each initial condition that gives a solution.
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S3 Linear stability analysis of PDE

Stability analysis of the linearized system about the saddle point shows that system (1) is type-III

unstable. We present the derivation of stability conditions. For a two-dimensional system with

mutual repression we have
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We analyze stability of the linearized system about the homogeneous equilibrium point. First, we

derive stability criteria for a general linear PDE.

Consider the linearized general PDE system

∂~̃u
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= D
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+A ~̃u (S27)

where A ∈ R
(n×n), ~̃u ∈ R

n, and D ∈ R
(n×n) is a diagonal matrix. We apply a method of separation

of variables. We assume the solution can be written as ~̃u = φ(x)~g(t), where φ(x) ∈ R and ~g(t) ∈ R
n.

The assumption that all states share the same space-varying function φ(x) holds in this case because

the differences arise in only a linear scaling given by D. For the purpose of analysis, we rewrite

the solution as ~̃u = φ(x)G ~q, where G is a diagonal matrix with entries of ~g(t) along the diagonal,

G = diag(g1, g2, . . . , gn) and ~q = [1, . . . , 1]T ∈ R
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where the last equality holds because D and G commute. Rearranging terms we get
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We assume G is an invertible matrix. This implies ~g ≻ 0. Assuming the time-varying function is
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exponential, then we will have that ~q � 0 and ~q = 0 only in the limit as t → ∞. We can solve

for the eigenvalues by solving for φ(x). With the eigenvalues known, we can then solve for the

time-varying functions.
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We denote diag(λ1, λ2, . . . , λn) by ΛΛΛ. Therefore, for instability we look for unstable eigenvalues of

the matrix A+ΛΛΛ. Assuming Neumann boundary conditions
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Therefore, φ(x) is bounded and so we look for instability of ~g(t, k) for the different spacial modes.

For the bistable toggle we have
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The system must satisfy the following properties for stability of the various modes:
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This can be simplified to the following condition
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For the toy model f(u) = −α tan−1(v) stability of each mode is determined by satisfaction of the

following inequality

γ > α−D

(

kπ

L

)2

. (S43)

Therefore, the zeroth mode is unstable but as k increases we move closer towards the threshold for

stability.
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S4 Extended analysis of asymmetric circuits

We already showed that initial conditions biased towards one steady state cause all points to

converge towards that steady state. However, adding noise helps to push the state in random

parts of space across this separatrix, helping to balance initial conditions and resulting in non-

homogeneous profiles again.

Figure S1 shows simulations of system (11) with varying standard deviation σ on the stochastic

initial condition

u(0, x, y) = 100 + randn(σ, x, y) [nM]

v(0, x, y) = 100 + randn(σ, x, y) [nM].

(S44)

The term randn(σ, x, y) represents a pseudo-random number selected from a normal distribution

with standard deviation σ and zero mean at point (x, y) in space. In Figure S1A, the production

rate for species u is reduced by only .1% but this is sufficient to eliminate patterns. However,

adding increased levels of noise at the initial condition allows non-homogeneous profiles to emerge.

We can achieve a balanced system again by tuning other parameters in the model. In other

words, we can balance the system without setting all parameters equal. In Figure S1B, we show

how severe asymmetry in the parameters can be tolerated by a balancing of overall strength. The

production rate of u is significantly reduced but by increasing its diffusion coefficient and increasing

the degradation rate of species v, we can see non-homogeneous profiles. Stochastic initial conditions,

which provide a more realistic scenario in the evolution of the patterns, can be helpful against

inbalanced systems.
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Figure S1: Stochastic initial conditions are conducive to patterns in asymmetric sys-

tems. (A)-(B): Simulations of system (11) with initial conditions u(0, x, y) = v(0, x, y) =
100 + randn(σ, x, y) nM. The term randn(σ, x, y) represents spatial noise. Values are selected from
a normal distribution with standard deviation σ at each point in space (x, y). (A) The parameter
values are Du,v = .001mm2/min, αv = 10nM/min, αu = 9.9 nM/min, and γu,v = .5 min−1.(B)
The changed parameter values are Du = .0015mm2/min, αu = 8.1 nM/min, and γv = .53 min−1.
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