

Supplementary Figure 1. Toggle switch cells. a. Map of the toggle switch plasmid. Yellow arrows are coding sequences (*lacI-mKate2* and *tetR-mEGFP*). Light green arrows are promoters (pLac and pTet). Dark green arrows represent ribosome binding sites (RBS). Red arrows represent terminators. The chloramphenicol resistance cassette and plasmid origin of replication are shown in pink and blue, respectively. **b**. The cellular chassis is based on the K-12 BW25113 background with the *fliA*, *lacY*, *acrA* and *acrB* genes knocked out. IPTG and aTc enter the cell by passive diffusion through the cellular membrane and interact with the LacI and TetR proteins. The cellular state is observed by monitoring the fluorescence levels of mEGPF (TetR) and mKate2 (LacI).

Supplementary Figure 2. Characterization of mixing device. **a**. Sketch of the electronic circuit controlling the fluidic valve and the principle of mixing in Pulse Width Modulation (PWM) mode. **b**. Actual mixing device showing the two triplets of valves required to run two experiments in parallel. **c**. Various concentrations of fluorescein and rhodamine were flowed through the main microfluidic device and the levels of fluorescence in the chambers were monitored. The fluorescence levels closely follow the mixing levels imposed by the valve system. **d**. Calibration experiment: PWM mixing was run over extended periods of time at different duty cycles, and volume consumption was measured.

Supplementary Figure 3. Model calibration. a. Several temporal profiles using different levels of aTc and IPTG inducers were used to construct an experimental data set to characterize the behavior of the system. **b**. Corresponding temporal evolution of single cells ($n \sim 10$ cells per experiments). Red and green lines correspond to single-cell LacI-RFP and TetR-GFP fluorescence levels in arbitrary units. **c.** Predictions obtained using the model fitted to the average behavior of all experiments. Thick red and green curves correspond to the behavior of the deterministic model. Thinner dotted lines correspond to predictions obtained using the stochastic implementation of the model. Naturally, as the stochastic model only captures intrinsic variability and as all simulations started from the same initial state, we expected that the variability of the simulated cells was smaller than the one of the observed cells.

Supplementary Figure 4. Capacity of the characterization data to constrain the locations of the equilibrium points of the deterministic model. Distribution of the equilibrium points in the protein space under reference conditions as predicted using the 15 best-fitting parameter sets when the optimization was iterated 30 times. LacI-dominant and TetR-dominant stable equilibria are represented by red and green diamonds, whereas unstable equilibria are represented by yellow diamonds. The set-point used in control experiments is represented by a blue square.

Supplementary Figure 5. Influence of IPTG and aTc on the bistable behavior of the toggle switch. a. State space in the presence of an excess of IPTG (1 mM) as predicted by the numerical model. Addition of IPTG turns off the repression of the *tetR* gene by LacI. As a result, TetR is fully expressed and the system only presents one stable, attractive state: all cells will turn green eventually. **b.** Similarly, an excess of aTc (100 ng.mL⁻¹) turns off the repression of the *lacI* gene by TetR. As a result, LacI is fully expressed and cells will eventually reach the unique stable state (high level of LacI-RFP). **c.** An interesting case occurs when both branches are in competition (aTc = 20 ng.mL⁻¹, IPTG = 0.25 mM), so that there are two stable equilibria and one unstable equilibrium (see Figure 1 and Main text) and reproduced here numerically using a deterministic model. The red and green curves shown in (**a-c**) are the LacI and TetR nullclines computed using the fitted model under different operating conditions. By definition, equilibria are located at nullcline intersections.

Supplementary Figure 6. Stability analysis of the toggle switch circuit in different environments. a. Representation of the stability of the circuit as a function of inducer concentrations. Blue and orange regions represent the conditions under which the system is mono- or bi-stable, respectively. The white segment going from point a (full aTc; aTc = 45 ng.mL^{-1} , IPTG = 0) to point i (full IPTG; aTc = 0, IPTG = 0.45 mM) passes through the reference concentrations for this study (white cross, aTc = 20 ng.mL^{-1} and IPTG = 0.25 mM). **b**. Logarithm of the LacI-RFP/TetR-GFP ratio of the stable and unstable equilibrium points are represented for different concentrations of aTc and IPTG along the white segment of panel (**a**). Monostable points are represented in blue. LacI-dominant and TetR-dominant stable points of the bistable region are represented in orange. Along this line, the system shows hysteresis. **c-e**. Same representation of the stability of the equilibria of system as in (**b**) represented in the aTc/IPTG plane. Different views of the cusp-catastrophe curve. The hysteresis line from panel (**a**) and (**b**) is represented in black.

Supplementary Figure 7. Other example of PI control experiments. a. Experimental control runs. **b.** Ratio of red (LacI-RFP) and green (TetR-GFP) fluorescence levels as a function of time using a double PI controller to drive protein expressions. The parameters of the PI dual controller are $K_P^L = 5.0 \ 10^{-2}$, $K_I^L = 2.0 \ 10^{-4} \ s^{-1}$, $K_P^T = 2.5 \ 10^{-2}$, $K_I^T = 6.94 \ 10^{-4} \ s^{-1}$ (see Methods). Thick orange and thin black lines represent controlled and non-controlled cells (n = 10), respectively. **c.** Trajectory of the controlled cells in the state space. The cell starts from a high TetR-GFP state and then moves towards the target point (black diamond) while describing large oscillations around the target. Time is color coded from t = 0 h (blue) to t = 12 h (red). **d.** *In silico* control runs. **e.** Ratio of red (LacI-RFP) and green (TetR-GFP) fluorescence levels as a function of time using a double PI controller to drive simulated cells (n = 20). The PI parameters are $K_P^L = 5.0 \ 10^{-2}$, $K_I^L = 2.0 \ 10^{-4} \ s^{-1}$, $K_P^T = 2.5 \ 10^{-2}$, $K_I^T = 6.94 \ 10^{-4} \ s^{-1}$. **f.** Trajectory of the controlled cell for *in silico* control experiments. **g.** Experimental control runs. **h.** Ratio of red (LacI-RFP) and green (TetR-GFP) fluorescence levels of single cells (n = 8) as a function of time using a double PI controller to drive protein expressions. The PI parameters are $K_P^L = 5.0 \ 10^{-2}$, $K_I^L = 2.0 \ 10^{-4} \ s^{-1}$. **f.** Trajectory of the controlled cell for *in silico* control experiments. **g.** Experimental control runs. **h.** Ratio of red (LacI-RFP) and green (TetR-GFP) fluorescence levels of single cells (n = 8) as a function of time using a double PI controller to drive protein expressions. The PI parameters are $K_P^L = 5.0 \ 10^{-2}$, $K_I^L = 2.0 \ 10^{-4} \ s^{-1}$, $K_P^T = 2.5 \ 10^{-2}$, $K_I^T = 6.94 \ 10^{-4} \ s^{-1}$. **i.** Ratio of red (LacI-RFP) and green (TetR-GFP) fluorescence levels of single cells (n = 8) as a function of time using a

Supplementary Figure 8. Too Fast periodic forcing experiments. Ratio of the red (LacI-RFP) and green (TetR-GFP) fluorescence levels of cells subjected to periodic stimulations with alternating high aTc and high IPTG concentrations. The cells were grown in 0.25 mM IPTG and 20 ng.mL⁻¹ aTc prior to the experiment and during the first 2.5 hours. They were then subjected to alternations of 0.5 mM IPTG for 75 min, 50 ng.mL⁻¹ aTc for 15 min. The cells do not remain in a state of balanced expression, and instead drift to the LacI-RFP high state.

Supplementary Figure 9. Additional periodic forcing experiments. Ratio of the red (LacI-RFP) and green (TetR-GFP) fluorescence levels of cells subjected to periodic stimulations with alternating high aTc and high IPTG concentrations. All cells present a similar behavior and remain in a state of balanced expression. Cell probability of presence for the two last input periods is shown below. Experimental conditions were: (a) 0.5 mM IPTG for 90 min, 50 ng.mL⁻¹ aTc for 30 min, n=12; (b) 0.5 mM IPTG for 120 min, 50 ng.mL⁻¹ aTc for 30 min, n=10; (c) 0.5 mM IPTG for 180 min, 50 ng.mL⁻¹ aTc for 30 min, n = 10; (d) 1.0 mM IPTG for 150 min, 50 ng.mL⁻¹ aTc for 30 min, n = 9; (e) 1.0 mM IPTG for 180 min, 50 ng.mL⁻¹ aTc for 30 min, n = 7. As expected, the average ratio shifted to RFP when the periodic forcing favored aTc over IPTG. At some point, periodic forcing was stopped to observe release of the cells. Cells were (a-b) subsequently attracted to the RFP dominant state; (c-d) split into two sub-populations attracted to either RFP or GFP dominant states; or (e) attracted to the GFP dominant state.

Supplementary Table 1

Transcription rates (mRNA min ⁻¹)	κ_L^{m0}	3.20e-2 (3.045e-1)	<i>plac</i> regulation by TetR	θ_{LacI}	31.94 (124.9)
	κ_T^{m0}	1.19e-1 (3.313e-1)		η_{LacI}	2.00 (2.00)
	κ_L^m	8.30 (13.01)		$ heta_{IPTG}$	9.06e-2 (2.926e-1)
	κ_T^m	2.06 (5.055)		η_{IPTG}	2.00 (2.00)
Translation rates (a.u. mRNA ⁻¹ min ⁻¹) Degradation rates (min ⁻¹)	κ^p_L	9.726e-1 (6.606e-1)	<i>ptet</i> regulation by LacI IPTG exchange	θ_{tetR}	30.00 (76.40)
	κ^p_T	1.170 (5.098e-1)		η_{TetR}	2.00 (2.152)
	g_L^m	1.386e-1		θ_{aTc}	11.65 (35.98)
	g_T^m	1.386e-1		η_{aTc}	2.00 (2.00)
	g_L^p	1.65e-2		$\kappa_{IPTG}^{ m in}$	2.75e-2 (4.00e-2)
	$g_T^{\overline{p}}$	1.65e-2	rate (min ⁻¹)	κ_{IPTG}^{out}	1.11e-1 (4.00e-2)
			aTc exchange	$\kappa_{aTc}^{\mathrm{in}}$	1.62e-1 (N/A)
			(min ⁻¹)	$\kappa_{aTc}^{\rm out}$	2.00e-2 (N/A)

Supplementary Table 1. Parameters for the toggle switch model. Threshold parameters are expressed in arbitrary fluorescence units (a.u.) for proteins (θ_{LacI} and θ_{TetR}), ng.mL⁻¹ for aTc (θ_{aTc}), and mM for IPTG (θ_{IPTG}) . The values of 4 parameters were fixed. mRNA degradation rates were fixed based on typical half-life of 5 minutes for mRNAs in E. coli (1). Protein apparent degradation rates were set based on estimates of cell cycle times in our experiments (~42 min). We therefore assumed that dilution due to growth dominates over actual protein degradation. Note that the significant difference between the mRNA and protein apparent degradation rates allowed us to employ a quasi-steady state assumption in which mRNAs are assumed to be at the steady state levels set by the concentration of the repressors. The dynamics of the 4D system could then be represented in the 2D protein space. For the sake of simplicity, in the main text the latter is called the state space. Realistic initial values for the search were obtained as explained below. Previous work has quantified that the number of mRNAs produced by a fully induced *lac* promoter is ~60 per cell (2). Then the comparison of regulatory ranges and leakage levels given in (3) led to us estimate that the transcription rate of a fully induced *tet* promoter is ~25% higher than the one of *plac*. This provided us with estimates of transcription rates. Lastly, an estimate of translation rates in arbitrary fluorescence units can be deduced from fluorescence levels at maximal induction (3700 a.u. for LacI and 1200 a.u. for TetR) and previous parameter estimates. Global optimization was then used to fit model predictions to calibration data, leading to a first model (parameter values in parenthesis). The addition of non-identical exchange rates in and out of the cell called for a recalibration of the parameters. This has been done by global optimization followed by limited manual adjustments, and has led to the reference model. Lastly, initial conditions were the steady state concentrations that correspond to the pre-incubation media (1 mM IPTG and no aTc, unless specified otherwise).

Supplementary Note 1

7405 bp DNA circular UNA 15-SEP-2017 LOCUS Toggle switch Concatenation of 2 sequences. DEFINITION ACCESSION urn.local...h-829ke6r urn.local...h-829ke6r VERSION KEYWORDS SOURCE ORGANISM FEATURES Location/Qualifiers misc_feature 21..70 /note="Geneious type: Homology" protein_bind 111..129 protein_bind 130..135 136..153 protein_bind 153..158 protein_bind RBS 169..185 186..878 CDS misc_feature 879..896 /note="Geneious type: linker" CDS 897..2018 2023..2111 terminator 2138..2154 protein_bind 2155..2160 protein bind 2161..2177 protein_bind protein_bind 2178..2183 2195..2211 RBS CDS 2212..2925 misc_feature 2926..2943 /note="Geneious type: linker" CDS 2944..3597 terminator 3602..3683 complement(3729..3776) misc_feature /note="natural FRT site" CDS complement(3789..4583) /note="kanamycin resistance" /codon_start=1 /transl table=11 /product="Tn5 neomycin phosphotransferase" /protein_id="AAL02037.1" /db_xref="GI:15554336" /translation="MIEQDGLHAGSPAAWVERLFGYDWAQQTIGCSDAAVFRLSAQGR PVLFVKTDLSGALNELQDEAARLSWLATTGVPCAAVLDVVTEAGRDWLLLGEVPGQDL LSSHLAPAEKVSIMADAMRRLHTLDPATCPFDHQAKHRIERARTRMEAGLVDQDDLDE EHQGLAPAELFARLKARMPDGEDLVVTHGDACLPNIMVENGRFSGFIDCGRLGVADRY QDIALATRDIAEELGGEWADRFLVLYGIAAPDSQRIAFYRLLDEFF" misc feature complement(4951..4985) /note="distal 35-nt of natural FRT site" misc_feature 5039..5088 /note="Geneious type: Homology" misc_feature 5093..5116 terminator 5140..5187

rep_origin ORIGIN

CDS

1 tgccgaattc ggatccggag atgctcaccg ttaagcagat tgaagcagca aagccgaaag 61 aaaaaccata cgctgcaaca aatgcctaca actagaattc gagctcggag tccctatcag 121 tgatagagat tgacatccct atcagtgata gagatactga gcactacttc acacaggact

complement(5407..6066)

6428..7340

181	actaaatgtc	tgagctgatt	aaggagaaca	tgcacatgaa	gctgtacatg	gagggcaccg
241	tgaacaacca	ccacttcaag	tgcacatccg	agggcgaagg	caagccctac	gagggcaccc
301	agaccatgag	aatcaaggcc	gtcgagggcg	gccctctccc	cttcgccttc	gacatcctgg
361	ctaccagctt	catgtacggc	agcaaaacct	tcatcaacca	cacccagggc	atccccgact
421	tctttaagca	gtccttccct	gagggcttca	catgggagag	agtcaccaca	tacgaagatg
481	qqqqcqtqct	gaccgctacc	caqqacacca	gcctccagga	cqqctqcctc	atctacaacq
541	tcaaqatcaq	aqqqqtqaac	ttcccatcca	acqqccctqt	qatqcaqaaq	aaaacactcq
601	actagaagac	ctccaccgag	acactatacc	ccactaacaa	caacctaaa	qqcaqaqccq
661	acatggccct	gaaget.cgt.g	aacaaaaaacc	acctgatctg	caacttaaag	accacataca
721	gatccaagaa	acccactaaq	aacctcaaga	tacccaacat	ctactatata	gacagacgac
781	tagaaagaat	caaqqaqqqq	gacaaagaaa	cctacgtcga	acaacacaaa	ataactataa
841	ccagatacto	caacetceet	agcaaactog	accacacata	tagatacgag	tetteeataa
901	atataaaaca	agtaacgtta	taccatotco	cagactatac	castatetet	tatcagacco
901	tttaaaaat	agtaacgita	caceaceacea	tttatagaaa		callagally
1021	agagataga	ggugaactag	tagettage	according	aacycyyyaa	aaayuyyaay
1021	atacttact	gyayetyaat	cacactecca	atergegegege	acaacaacty	tagaaatta
	agicgilget	gallggegel	gecaceteca	glelggeeel	geaegegeeg	togeaally
1 2 0 1	Legeggegal	Laaaldidge	geegaleaae	LgggLgccag	cglgglgglg	logalgglag
	aacgaagcgg	cgtcgaagee	tgtaaagegg	cggtgcacaa	tettetegeg	caacgcgtca
1261	gtgggctgat	cattaactat	ccgctggatg	accaggatgc	cattgctgtg	gaagetgeet
1321	gcactaatgt	tccggcgtta	tttcttgatg	tctctgacca	gacacccatc	aacagtatta
138T	ttttctccca	tgaagatggt	acgcgactgg	gcgtggagca	tctggtcgca	ttgggtcacc
1441	agcaaatcgc	gctgttagcg	ggcccattaa	gttctgtctc	ggcgcgtctg	cgtctggctg
1501	gctggcataa	atatctcact	cgcaatcaaa	ttcagccgat	agcggaacgg	gaaggcgact
1561	ggagtgccat	gtccggtttt	caacaaacca	tgcaaatgct	gaatgagggc	atcgttccca
1621	ctgcgatgct	ggttgccaac	gatcagatgg	cgctgggcgc	aatgcgcgcc	attaccgagt
1681	ccgggctgcg	cgttggtgcg	gatatctcgg	tagtgggata	cgacgatacc	gaagatagct
1741	catgttatat	cccgccgtta	accaccatca	aacaggattt	tcgcctgctg	gggcaaacca
1801	gcgtggaccg	cttgctgcaa	ctctctcagg	gccaggcggt	gaagggcaat	cagctgttgc
1861	ccgtctcact	ggtgaaaaga	aaaaccaccc	tggcgcccaa	tacgcaaacc	gcctctcccc
1921	gcgcgttggc	cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc
1981	aggctgcaaa	cgacgaaaac	tacgctttag	tagcttaagc	tttagagatc	aagccttaac
2041	gaactaagac	ccccgcaccg	aaaggtccgg	gggtttttt	tgaccttaaa	aacataaccg
2101	aggagcagac	acgctttacg	aattcccatg	gggagaattg	tgagcggata	acaattgaca
2161	ttgtgagcgg	ataacaagat	actgagcaca	tacttcacac	aggactacta	aatgagcaag
2221	ggcgaggagc	tgttcaccgg	ggtggtgccc	atcctggtcg	agctggacgg	cgacgtaaac
2281	ggccacaagt	tcagcgtgtc	cggcgagggc	gagggcgatg	ccacctacgg	caagctgacc
2341	ctgaagttca	tctgcaccac	cggcaagctg	cccgtgccct	ggcccaccct	cgtgaccacc
2401	ctgacctacg	gcgtgcagtg	cttcagccgc	taccccgacc	acatgaagca	gcacgacttc
2461	ttcaagtccg	ccatgcccga	aggctacgtc	caggagcgca	ccatcttctt	caaggacgac
2521	ggcaactaca	agacccgcgc	cgaggtgaag	ttcgagggcg	acaccctggt	gaaccgcatc
2581	qaqctqaaqq	qcatcqactt	caaqqaqqac	qqcaacatcc	tqqqqcacaa	qctqqaqtac
2641	aactacaaca	qccacaacqt	ctatatcatq	qccqacaaqc	aqaaqaacqq	catcaaqqtq
2701	aacttcaaqa	tccqccacaa	catcqaqqac	qqcaqcqtqc	aqctcqccqa	ccactaccaq
2761	caqaacaccc	ccatcqqcqa	caaccccata	ctactaccca	acaaccacta	cctgagcacc
2821	caqtccaaqc	tgagcaaaga	ccccaacqaq	aagcgcgatc	acatggtcct	gctggagttc
2881	qtqaccqccq	ccqqqatcac	tctcqqcatq	gacgagetgt	acaaqtctqq	atccggatct
2941	tcctccagat	tagataaaag	taaaqtqatt	aacaqcqcat	tagagetget	taatgaggtc
3001	ggaat.cgaag	gtttaacaac	ccqtaaactc	acccagaaga	taggtgtaga	gcagcotaca
3061	ttatattaac	atgtaaaaaa	taagcgggct	ttactcaaca	ccttagccat	tgagatgtta
3121	gataggcacc	atactcactt	ttaccetta	aaaaaaaaaa	actaacaaaa	ttttttacat
3181	aataacocta	aaadtttaa	atatactta	ctaactcatc	acastaasa	aaaadtacat
3241	ttaggtage	adagtettag	aaaacactat	gaaacteteg	aaaatcaatt	addagtacat
3301	taggtacac	ggeetacaga	adadadgtat	ttatatagag	taggggtat	agecetteta
2261	atttagett	gututtaet	agagaalgea	atapata	ataaagaaga	gggggallll
2401	acticaggit	geglattgga	agattatta	calcaayley	tagaattatt	tastasaasa
2101	agtagagag	alaylalycc	yuuallalla attorratt	cyacaayCLa	totococtt	ryarcaccaa
J40⊥ 2⊑11	yyuyuagagC	caycoutott	alleyyeett	yaallyatca	Largeggatt	ayaaaaacaa
354⊥ 2601	cllaaatgtg	aaaytyggtC	cyccgcaaac	yacyaaaact	acycttagt	ayertaaget
1000 2601	LLCYGTCagt	LLCACCTGAT	LLACGLAAAA	accegetteg	ycyygtttt	yclittggag
3001	yggcagaaag	atgaatgact	ytccgctcag	agaattccca	Lggggagtgt	ytaggetgga
3721	gctgcttcga	agttcctata	ctttctagag	aataggaact	tcggaatagg	aacttcaaga
3/8L	teccettatt	agaagaactc	gtcaagaagg	cgatagaagg	cgatgcgctg	cgaatcggga
384⊥ 2001	gcggcgatac	cgtaaagcac	gaggaagcgg	tcagcccatt	cgccgccaag	ctcttcagca
3901	atatcacggg	tagccaacgc	tatgtcctga	tagcggtccg	ccacacccag	ccggccacag
3961	tcgatgaatc	cagaaaagcg	gccattttcc	accatgatat	tcggcaagca	ggcatcgcca

4021	tgggtcacga	cgagatcctc	gccgtcgggc	atgcgcgcct	tgagcctggc	gaacagttcg
4081	gctggcgcga	gcccctgatg	ctcttcgtcc	agatcatcct	gatcgacaag	accggcttcc
4141	atccgagtac	gtgctcgctc	gatgcgatgt	ttcgcttggt	ggtcgaatgg	gcaggtagcc
4201	ggatcaagcg	tatgcagccg	ccgcattgca	tcagccatga	tggatacttt	ctcggcagga
4261	gcaaggtgag	atgacaggag	atcctgcccc	ggcacttcgc	ccaatagcag	ccagtccctt
4321	cccqcttcaq	tgacaacgtc	qaqcacaqct	qcqcaaqqaa	cqcccqtcqt	qqccaqccac
4381	qataqccqcq	ctgcctcgtc	ctgcagttca	ttcaqqqcac	cqqacaqqtc	qqtcttqaca
4441	aaaaqaaccq	qqcqcccctq	cqctqacaqc	cqqaacacqq	cqqcatcaqa	qcaqccqatt
4501	atctattata	cccaqtcata	gccgaatagc	ctctccaccc	aagcggccgg	agaacctgcg
4561	tqcaatccat	cttqttcaat	catqcqaaac	gatecteate	ctatctctta	atcagatett
4621	gatcccctgc	qccatcaqat	ccttaacaac	aaqaaaqcca	tccaqtttac	tttqcaqqqc
4681	ttcccaacct	taccagaggg	caccccaact	qqcaattccq	attcacttac	tatccataaa
4741	accqcccaqt	ctaqctatcq	ccatqtaaqc	ccactqcaaq	ctacctqctt	tctctttqcq
4801	cttacatttt	cccttqtcca	gatageccag	tagctgacat	tcatccqqqq	tcaqcaccqt
4861	ttctgcggac	tggctttcta	catattccac	ttcctttagc	agcccttgcg	ccctgagtgc
4921	ttacaacaac	qtqaqcttca	aaaqcqctct	qaaqttccta	tactttctag	aqaataqqaa
4981	cttcqaactq	caqqtcqacq	qatccccqqa	attaattcqc	ttqtqqaatt	cctcqaqqqa
5041	gaaatgatgc	aatggtgggc	ggactggctt	gatgagaagg	tagagtgacg	ctgagcgagg
5101	atgcacatgt	qaccqaqqqa	tgccaccgct	gagcaataac	tagcataacc	ccttgggggcc
5161	tctaaacqqq	tcttqaqqqq	tttttacta	aaacctcaqq	catttqaqaa	qcacacqqtc
5221	acactocttc	caataatcaa	taaaccoota	aaccagcaat	agacataagc	ggctatttaa
5281	cqaccctqcc	ctgaaccgac	qaccqqqtcq	aatttqcttt	cqaatttctq	ccattcatcc
5341	gcttattatc	acttattcag	qcqtaqcacc	aggcgtttaa	qqqcaccaat	aactgcctta
5401	aaaaaattac	qccccqccct	qccactcatc	qcaqtactqt	tqtaattcat	taaqcattct
5461	qccqacatqq	aaqccatcac	aqacqqcatq	atqaacctqa	atcqccaqcq	qcatcaqcac
5521	cttqtcqcct	tqcqtataat	atttqcccat	aqtqaaaacq	qqqqcqaaqa	aqttqtccat
5581	attqqccacq	tttaaatcaa	aactqqtqaa	actcacccaq	qqattqqctq	aqacqaaaaaa
5641	catattctca	ataaaccctt	taqqqaaata	qqccaqqttt	tcaccqtaac	acqccacatc
5701	ttqcqaatat	atqtqtaqaa	actgccggaa	atcqtcqtqq	tattcactcc	aqaqcqatqa
5761	aaacqtttca	gtttgctcat	qqaaaacqqt	qtaacaaqqq	tgaacactat	cccatatcac
5821	cagetcaceg	tctttcattg	ccatacggaa	ctccggatga	gcattcatca	ggcgggcaag
5881	aatgtgaata	aaggccggat	aaaacttgtg	cttatttttc	tttacggtct	ttaaaaaggc
5941	cgtaatatcc	agctgaacgg	tctggttata	ggtacattga	gcaactgact	gaaatgcctc
6001	aaaatgttct	ttacgatgcc	attgggatat	atcaacggtg	gtatatccag	tgatttttt
6061	ctccatttta	gcttccttag	ctcctgaaaa	tctcgataac	tcaaaaaata	cgcccggtag
6121	tgatcttatt	tcattatggt	gaaagttgga	acctcttacg	tgccgatcaa	cgtctcattt
6181	tcgccaaaag	ttggcccagg	gcttcccggt	atcaacaggg	acaccaggat	ttatttattc
6241	tgcgaagtga	tcttccgtca	caggtattta	ttcggcgcaa	agtgcgtcgg	gtgatgctgc
6301	caacttactg	atttagtgta	tgatggtgtt	tttgaggtgc	tccagtggct	tctgtttcta
6361	tcagctgtcc	ctcctgttca	gctactgacg	gggtggtgcg	taacggcaaa	agcaccgccg
6421	gacatcagcg	ctagcggagt	gtatactggc	ttactatgtt	ggcactgatg	agggtgtcag
6481	tgaagtgctt	catgtggcag	gagaaaaaag	gctgcaccgg	tgcgtcagca	gaatatgtga
6541	tacaggatat	attccgcttc	ctcgctcact	gactcgctac	gctcggtcgt	tcgactgcgg
6601	cgagcggaaa	tggcttacga	acggggcgga	gatttcctgg	aagatgccag	gaagatactt
6661	aacagggaag	tgagagggcc	gcggcaaagc	cgtttttcca	taggctccgc	ccccctgaca
6721	agcatcacga	aatctgacgc	tcaaatcagt	ggtggcgaaa	cccgacagga	ctataaagat
6781	accaggcgtt	tcccctggcg	gctccctcgt	gcgctctcct	gttcctgcct	ttcggtttac
6841	cggtgtcatt	ccgctgttat	ggccgcgttt	gtctcattcc	acgcctgaca	ctcagttccg
6901	ggtaggcagt	tcgctccaag	ctggactgta	tgcacgaacc	ccccgttcag	tccgaccgct
6961	gcgccttatc	cggtaactat	cgtcttgagt	ccaacccgga	aagacatgca	aaagcaccac
7021	tggcagcagc	cactggtaat	tgatttagag	gagttagtct	tgaagtcatg	cgccggttaa
7081	ggctaaactg	aaaggacaag	ttttggtgac	tgcgctcctc	caagccagtt	acctcggttc
7141	aaagagttgg	tagctcagag	aaccttcgaa	aaaccgccct	gcaaggcggt	tttttcgttt
7201	tcagagcaag	agattacgcg	cagaccaaaa	cgatctcaag	aagatcatct	tattaatcag
7261	ataaaatatt	tctagatttc	agtgcaattt	atctcttcaa	atgtagcacc	tgaagtcagc
7321	cccatacgat	ataagttgta	attctcatgt	tagtcatgcc	ccgcgcccac	cggaaggagc
7381	tgactgggtt	qaaqqctctc	aaqqq			

Supplementary References

- 1. M. A. Moran *et al*, Sizing up metatranscriptomics. *The ISME Journal*. **7**, 237-243 (2013).
- 2. L. H. So *et al*, General properties of transcriptional time series in *Escherichia coli*. *Nature Genetics*. **43**, 554-560 (2011).
- 3. R. Lutz, H. Bujard, Independent and tight regulation of transcriptional units in *Escherichia coli* via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. *Nucleic Acids Research*. **25**, 1203-1210 (1997).