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I. ANALYSIS ON THE DEVIATION CAUSED BY PREVAILING STOCHASTIC SIMULATIONS

A. Deviation caused by the breaking of the detailed balance condition

1. An example with double-well potential

We demonstrate that the deviation between ODE and SDE can be caused by breakdown of detailed balance
(Q(x) 6= 0), and it happens even for examples with additive noise. Under the circumstances, conventional stochastic
integrations like Ito’s and Stratonovich’s show no difference, but they are distinct from A-type due to the non-detailed
balance part Q(x).
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TABLE I: Potential difference between the saddle point and the two stable fixed points for the example Eq. (1) with multi-
plicative noise. The values are obtained by least action method, where we set K = 500, and do minimization for T ∈ [0.5, 10]
with 0.5 as step length. We choose the saddle point as the zero potential reference. The other parameters are d = a = H = 1.

Fixed points (0,1) (1,1) (2,1)
d1 = 0, d2 = 0 -0.2495 0 -0.2418
d1 = 1, d2 = 10 -0.2502 0 -0.2485
d1 = 10, d2 = 10 -0.2514 0 -0.2432

The example is given by: 
ẋ1 = −dH[−(x1 − 1) + (x1 − 1)3]

− ax1(x2 − 3)H(x2 − 1) +
√
d ∗ ζx1

(t),

ẋ2 = ax1(x2 − 3)H[−(x1 − 1) + (x1 − 1)3]

− dH(x2 − 1) +
√
d ∗ ζx2

(t).

It can be rewritten in the form of Eq. (4) of main text with the potential function φ(x1, x2) = H[(x2 − 1)2/2− (x1 −
1)2/2 + (x1 − 1)4/4] having double-well in the x1 direction, and:

D = dI, Q = ax1(x2 − 3)

(
0 1
−1 0

)
. (1)

The parameters are d, a,H. The system has a saddle point s∗ = (1, 1), and two stable fixed points x∗1 = (2, 1),x∗2 =
(0, 1). Their potential values by the analytical formula are: φ|s∗ = 0, φ|x∗1 = φ|x∗2 = −H/4.

We simulate SDE with both A-type and Ito’s interpretation. Simulation under Ito’s integration leads to deviation
on the position of the potential minimum and the potential height [1], as shown in FIG. 1 of main text (a-c). To realize
A-type interpretation, we need to add the term ε∂xj

Qij(x) = εa(x1,−(x2 − 3))τ to the drift and use the equivalent
Ito’s interpretation: 

ẋ1 = −dH[−(x1 − 1) + (x1 − 1)3]

− ax1(x2 − 3)H(x2 − 1) + εax1 +
√
d · ζx1

(t),

ẋ2 = ax1(x2 − 3)H[−(x1 − 1) + (x1 − 1)3]

− dH(x2 − 1)− εa(x2 − 3) +
√
d · ζx2

(t).

Then, the potential function is obtained by simulating the steady state distribution with A-type integration φ =
ε ln ρ|A, and it is quantitatively consistent with the analytical formula, as shown in FIG. 1 of main text (d-e). Note
that the matrix Q(x) leads to different simulation results between Ito’s and A-type.

We also use the least action method to calculate the potential values of points along the line x1 = 1, as shown in
FIG. 1 of main text (f). The potential differences by the least action method and A-type simulation are quantitatively
consistent with the analytical formula, whereas Ito’s simulation causes deviation on positions of fixed points and barrier
height.

We further consider this system with multiplicative noise. For clarity, we choose:

D =

(
d+ d1x

2
1 0

0 d+ d2x
2
2

)
, (2)

where the two parameters d1 and d2 are nonzero. We obtain potential differences between the saddle point and the
two stable fixed points for different d1, d2. The potential values as listed in table I are also quantitatively consistent
with the analytical formula. Systems with more general diffusion matrix D(x) can be studied similarly.

B. Deviation caused by multiplicative noise

1. An exact example

It is widely known that in the presence of multiplicative noise different stochastic integrations of Eq. (2) of main
text lead to distinct results. Typically, Ito’s or Strantonovich’s integration was used [2]. However, recent works have
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demonstrated applications of stochastic integrations beyond Ito-Stratonovich both theoretically [1] and experimentally
[3, 4]. Here, we show analytically that Ito’s integration causes deviation compared with dynamics of deterministic
counterpart, but A-type gives consistent results.

We consider a set of SDE with multiplicative noise:{
ẋ1 = 2x1 − x1

(
x21 + x22

)
+
√
x21 + x22ζx1(t)

ẋ2 = 2x2 − x2
(
x21 + x22

)
+
√
x21 + x22ζx2(t)

(3)

where ε = 1, the diffusion matrix D(x1, x2) =
(
x21 + x22

)
I, and the stochastic integration has not been specified. Under

A-type integration, the steady state distribution of this system is ρss(x)|A = exp[−φ(x)/ε]/ZA with the normalization
constant ZA and

φ(x) = − ln
(
x21 + x22

)
+
x21 + x22

2
. (4)

The distribution of Ito’s simulation for Eq. (3) is identical to the A-type’s simulation for the system:{
ẋ1 = −x1

(
x21 + x22

)
+
√
x21 + x22 ∗ ζx1(t)

ẋ2 = −x2
(
x21 + x22

)
+
√
x21 + x22 ∗ ζx2(t)

(5)

whose expression can be similarly calculated as ρss(x)|I = exp[−ψ(x)/ε]/ZI with with the normalization constant ZI
and

ψ(x) =
1

2

(
x21 + x22

)
. (6)

The two distributions ρss(x)|A and ρss(x)|I have obvious differences, for instance, ρss(0, 0)|A = 0 but the origin
(0, 0) is the most probable state for ρss(x)|I .

II. “NOISE-INDUCED TRANSITIONS” INDUCED BY STOCHASTIC INTEGRATION

We demonstrate here that occurrence of the noise-induced transitions [5–8] depends on which deterministic dynamics
to compare with. The deterministic ODE counterpart obtained from the Fokker-Planck equation is dependent on
choosing the stochastic integration, and the present A-type integration leads to a consistent result between SDE and
its ODE counterpart. This raises the question on how to choose a proper mean field deterministic dynamics for a
given chemical reaction scheme: 1) directly using the rate equations or, 2) starting from master equation, expanding
as Fokker-Planck equation, getting a SDE with A-type integration, and taking the corresponding ODE.

We consider the system in [8] as an example. We start from the Fokker-Planck equation obtained there:

∂tρ(x1, x2, t) =
[
− ∂x1A1 − ∂x2A2 +

1

2N

2∑
i,j=1

∂xi∂xjBij
]
ρ(x1, x2, t), (7)

where A1 = −A2 = ε(x2 − x1) and Bij = (2rx1x2 + ε(x1 + x2))(−1)i+j . After doing the coordinate transformation:{
w = x1 + x2,
z = x1 − x2,

{
x1 = (w + z)/2,
x2 = (w − z)/2, (8)

with the Jacobian J = 1/2 and J̃ = 2, the transformed Fokker-Planck equation is one-dimensional:

∂tρ̃(w, z, t) =
{
− ∂z(−2εz) +

1

2N
∂2z [r(w2 − z2) + 2εw]

}
ρ̃(w, z, t). (9)

Thus, the diffusion coefficient is:

D(w, z) =
1

2N
[r(w2 − z2) + 2εw], (10)

with ∂zD(w, z) = −rz/N .



4

For a given FPE, one can derive a class of corresponding SDEs with using various stochastic integrations. If A-type
integration is used, we get a SDE whose ODE part is consistent with the underlying FPE dynamics. In detail, with
A-type integration rule [1], we obtain the stochastic differential equation:

ż = −2εz +
1

N
rz +

√
D(w, z) ∗ ζ(t), (11)

where the asterisk denotes the A-type integration, ζ(t) is Gaussian white noise with 〈ζ(t)〉 = 0, 〈ζ(t)ζτ (t
′
)〉 = 2εδ(t−t′).

Here the superscript τ denotes transpose, δ(t− t′) is the Dirac delta function, and 〈· · · 〉 represents noise average.
According to [8], we set r = 1 without loss of generality, because we can rescale ε to absorb r. As the total number

of ants N is conserved, we have w = 1. Thus, D(w, z) = [(1− z2) + 2ε]/2N , and Eq. (11) becomes:

ż =

(
1

N
− 2ε

)
z +

√
1

2N
[(1− z2) + 2ε] ∗ ζ(t), (12)

With using the Ito’s integration rule [2], the corresponding stochastic differential equation is:

ż = −2εz +

√
1

2N
[(1− z2) + 2ε] · ζ(t), (13)

where the dot denotes the Ito’s integration.
Note that the drift terms for the above two SDEs are different. The variable z = x1 − x2 ranges over the interval

[−1, 1]. Then, the deterministic force in Eq. (12) can both push the system away from the state z∗ = 0 when
1 > 2εN , and attract the system back to z∗ = 0 when 1 < 2εN . Therefore, ODE part in Eq. (12) is consistent with
the underlying FPE dynamics.

A. Potential function and steady state distribution

The potential function satisfying Eq. (12) is:

φ(z) = (1− 2Nε) ln(1 + 2ε− z2), (14)

and steady state obeys Boltzmann-Gibbs distribution:

ρ(z)
.
=

1

Z
exp[−φ(z)] =

1

Z(1 + 2ε− z2)(1− 2Nε)
, (15)

where Z is normalization constant. When 1 > 2Nε, the distribution has a U shape, and the system is bistable. When
1 < 2Nε, the distribution has an inverted U shape, and the distribution is centered at z∗ = 0. Thus, the deterministic
force in Eq. (12) shows consistent behaviors as the steady state distribution.

III. ACTION FUNCTION’S FORMS WITH DIFFERENT STOCHASTIC INTEGRATIONS

The difference of action functions and least action paths under various stochastic integrations, e.g. A-type, Ito’s
and Stratonovich’s, can be neglected in the limit of ε → 0, which can be proved similarly as the above procedure in
Eq. (9) of main text. Take the action function Stratonovich’s integration as an example,

ST [x]|S =
1

4

∫ T2

T1

∣∣∣
S
dt(ẋ− f)τD−1(ẋ− f) +

1

2
εJS

=
1

4

∫ T2

T1

∣∣∣
I
dt[ẋ−D∇φ+Q∇φ]τD−1

× [ẋ−D∇φ+Q∇φ] +

∫ T2

T1

∣∣∣
S
dtẋτ∇φ+

1

2
εJS

≥ ∆φ+
1

2
εJS , (16)
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TABLE II: action functions for different stochastic integrations (A-type, Ito’s and Stratonovich’s) and their transformed forms
with Ito’s interpretation. The usual Freidlin-Wentzell’s action [10] is the same as the Ito’s form here. The order for the time
integral of the Jacobian term JA is O(1). The difference of action functions among these stochastic integrations can be neglected
in the limit of ε→ 0.

Stochastic integration The present action function ST [x] ST [x] transformed to Ito’s interpretation

A-type 1
4

∫ T2

T1
|Adt(ẋ− f)τD−1(ẋ− f) + εJA

1
4

∫ T2

T1
|Idt[ẋ− f− ε∆f]τD−1[ẋ− f− ε∆f]

Ito’s (Freidlin-Wentzell) 1
4

∫ T2

T1
|Idt(ẋ− f)τD−1(ẋ− f) 1

4

∫ T2

T1
|Idt(ẋ− f)τD−1(ẋ− f)

Stratonovich’s 1
4

∫ T2

T1
|Sdt(ẋ− f)τD−1(ẋ− f) + 1

2
εJS

1
4

∫ T2

T1
|Idt(ẋ− f− ε∇D/2)τD−1(ẋ− f− ε∇D/2)

where JS is the time integral of the Jacobian term. In the limit of ε→ 0, ST [x]|S ≥ ∆φ(x)|s∗x∗ . The typical forms of
action function and their transformed form with Ito’s interpretation [9] are listed in table II. The discretized scheme
when doing numerical minimization should corresponds to their stochastic integration, for example, pre-point scheme
is needed for Ito’s interpretation. Because the difference among stochastic integrations is negligible in the limit of
ε→ 0, we can choose convenient schemes as needed.

A. Euler-Lagrangian equation for the least action path

Euler-Lagrangian equation from the action Eq. (9) in main text is calculate as follows. For convenience, we rewrite
the Lagrangian to be:

L =
1

4
(ẋi − fi)D−1ij (ẋj − fj), (17)

where we have used the notion of Einstein summation in this paper. Then, the Euler-Lagrangian equation is an
ordinary differential equation:

0 =
d

dt

∂L

∂ẋl
− ∂L

∂xl

=
1

2

[∂D−1lj
∂xi

ẋi(xj − fj) +D−1lj

(
ẍj −

∂fj
∂xi

ẋi

)]
+

1

2

∂fi
∂xl

D−1ij (ẋj − fj)−
1

4
(ẋi − fi)

∂D−1ij
∂xl

(ẋj − fj), (18)

which gives the solution of the least action path.

IV. PRE-FACTOR OF THE RATE FORMULA DUE TO NON-DETAILED BALANCE PART

The FPE corresponding to Eq. (4) of main text is [1]:

∂tρ(x, t) = ∇τx[D(x) +Q(x)][∇xφ(x) +∇x]ρ(x, t), (19)

where the steady state obeys Boltzmann-Gibbs distribution ρ(x, t→∞) = exp[−φ(x)/ε].
Inserting WKB ansatz with pre-factor:

ρss(x) = C(x) exp
(
− φ(x)

ε

)
(20)

into our FPE at steady state:

0 = ε∇τx[D(x) +Q(x)][∇xC(x)] exp
(
− φ(x)

ε

)
∝ ε{∇τx[D(x) +Q(x)]}[∇xC(x)] + ε[D(x) +Q(x)] · [∇τx∇xC(x)]− [∇τxφ(x)][D(x) +Q(x)][∇xC(x)], (21)
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we get for the order of O(1):

0 = [∇τxφ(x)][D(x) +Q(x)][∇xC(x)], (22)

which implies that C(x) is a constant. Note that we does not have the order of O(1/ε) here, for which the Hamilton-
Jacobi equation

∇τxφ(x)D(x)∇xφ(x) +∇τxφ(x)f(x) = 0 (23)

is obtained by the decomposition [11].
We also insert the WKB ansatz to the FPE corresponding to Eq. (6) of main text:

0 = −{∇τx[f(x) + ε∆f(x)]}C(x) + ε[∇τx∇xD(x)]C(x)−
[
∇τxC(x)− 1

ε
C(x)∇τxφ(x)

]
[f(x) + ε∆f(x)]

+ 2ε∇τxD(x)
[
∇xC(x)− 1

ε
C(x)∇xφ(x)

]
+ εD(x)

[
∇τx∇xC(x)− 2

ε
∇τxφ(x)∇xC(x)− 1

ε
C(x)∇τx∇xφ(x)− 1

ε2
C(x)∇τxφ(x)∇xφ(x)

]
, (24)

where ∆fi(x) = ∂xj [Dij(x) +Qij(x)]. Then, we get Eq. (23) for the order of O(1/ε), and for the order of O(1):

0 = −∇τxφ(x)[D(x) +Q(x)]∇xC(x), (25)

which again implies that C(x) is a constant. The order of O(ε) is also zero. As a result, the non-detailed balance
part does not provide correction terms that explicitly appear in the pre-factor of the rate formula.

In general, the pre-factor in the rate formula depends on other coefficients such as the friction coefficient [12, 13],
and from Kramers equation its dependence on the friction coefficient is significantly different for large friction and
small friction limit.

V. COMPARISON WITH FREIDLIN-WENTZELL DECOMPOSITION

Our decomposition on the drift force f(x) = −[D(x) + Q(x)]∇φ(x) with ∇φ(x)Q∇φ(x) = 0 is generally different
form the usual Freidlin-Wentzell form f(x) = −∇U(x)+ l(x) with ∇U(x) · l(x) = 0 [10], based on which landscape has
been calculated in various systems recently [14–16]. They are mathematically identical when the diffusion matrix D(x)
is identity. For general diffusion matrix D(x), the action function Eq. (11) in the main text does not directly equal to
the potential function U(x) in Freidlin-Wentzell decomposition. We demonstrate it more clearly by a simplified case
as follows.

We show that when diffusion matrix is a diagonal matrix with distinct constant elements, the Freidlin-Wentzell
action does not give the exact potential difference even with ε→ 0. If we have f(x) = −∇U(x)+l(x) with∇U(x)·l(x) =
0, then

ST [x]|I =
∑
i

∫ T2

T1

∣∣∣
I
dt

1

4Dii
(ẋi − fi)2

=
∑
i

∫ T2

T1

∣∣∣
I
dt

1

4Dii
(ẋi + ∂xi

U − li)2

≥
∑
i

∫ T2

T1

∣∣∣
I
dt

1

Dii
ẋi∂xiU −

∑
i

∫ T2

T1

∣∣∣
I
dt
∂xi

U

Dii
li, (26)

where the last term cannot be eliminated when ε→ 0.
On the other hand, if we apply the action without the element of diffusion matrix [15],

ST [x] =
∑
i

∫ T2

T1

dt
1

4
(ẋi − fi)2, (27)

it does not count the effect of diffusion matrix explicitly.



7

A. When diffusion matrix is identity

When diffusion matrix is identity, our decomposition is the same as the usual Freidlin-Wentzell form, and both action
functions give the potential function. Besides, various stochastic interpretations give the same result when ε is small.
The drift force in the stochastic differential equation (SDE) of the main text has a decomposition f(x) = −∇U(x)+l(x)
with ∇U(x) · l(x) = 0. For convenience, we use the equivalent action function under Ito’s interpretation:

ST [x]|I =
∑
i

∫ T2

T1

∣∣∣
I
dt

1

4
(ẋi − fi)2

=
∑
i

∫ T2

T1

∣∣∣
I
dt

1

4
(ẋi + ∂xi

U − li)2

≥ ∆U − ε
∑
i

∫ T2

T1

∣∣∣
I
dt∂2xi

U, (28)

where the subscript I means Ito’s interpretation. If we can get a special trajectory satisfying ẋ = ∇U(x) + l(x), the
equality holds. The equality relies on the crucial condition ∇U(x) · l(x) = 0. The minimized action gives ∆U when
ε→ 0

B. An example that can be decomposed in our and Freidlin-Wentzell way

We construct an example that can be decomposed as both our ways and Freidlin-Wentzell way. It is given by a
SDE under A-type integration:{

ẋ1 = −(1 + x21)x1 − [1− x1x2 − (x22 − x21)]x2 + ζx1
(t),

ẋ2 = −[1− x1x2 + (x22 − x21)]x1 − (1 + x22)x2 + ζx2
(t),

(29)

where 〈ζ(t)〉 = 0, 〈ζ(t)ζτ (t
′
)〉 = 2εδ(t− t′). We have:

D =

(
1 + x21 1− x1x2

1− x1x2 1 + x22

)
≥ 0,

Q =

(
0 −(x22 − x21)

(x22 − x21) 0

)
, φ = (x21 + x22)/2. (30)

Note that D(x) and Q(x) are singular along the line x2 = −x1. This singularity leads to nonzero finite potential
values at the fixed points along x2 = −x1 for Eq. (29) without noise.

The system can also be decomposed as:{
ẋ1 = −(x1 + x2)− (x31 + x21x2 − x1x22 − x32) + ζx1(t),

ẋ2 = −(x1 + x2)− (−x31 − x21x2 + x1x
2
2 + x32) + ζx2(t).

(31)

Thus, we get f(x) = −∇U(x) + l(x) with

U = (x21 + x22)/2 + x1x2, l =

(
−(x1 + x2)(x2 − x22)
(x1 + x2)(x2 − x22)

)
, (32)

and ∇τU(x) · l(x) = 0. Note that minimum of U(x) corresponds to the fixed points of Eq. (29) without noise.
From the above derivation, we see that for the corresponding deterministic system the potential function constructed

in our framework is not unique without given a diffusion matrix D(x).
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TABLE III: Potential barrier between the three stable fixed points calculated by the least action method for the example
Eq. (34). The mesendodermal state, the ectodermal state, and the pluripotency state, representing high concentration of the
corresponding genes, are given by the three stable fixed points x∗1 = (0.0218, 0.0218, 1, 0.0545), x∗2 = (0.0218, 0.0218, 0.0545, 1),
x∗3 = (1.3309, 1.3309, 0.4423, 0.4423). We set K = 100, T = 50. We have checked that larger K and T values lead to convergent
results with relative error smaller than 0.005. The parameters of the system are the same as those in [18].

Initial states mesendodermal ectodermal pluripotency
End states ectodermal pluripotency mesendodermal pluripotency mesendodermal ectodermal

Potential barrier 0.0736 0.0697 0.0736 0.0699 0.0318 0.0332

VI. ANOTHER BIOLOGICAL EXAMPLE

A. Toggle switch

We first consider the dynamical system describing the genetic toggle switch [17] with additive noise. The determin-
istic part of the dynamical model is: 

ẋ1 =
α1

1 + xβ2
− x1,

ẋ2 =
α2

1 + xγ2
− x2.

(33)

where x1 and x2 are the concentration of the Repressor 1 and 2 separately, and α1, α2, β, γ are parameters with
specific biological meaning. The noise is Gaussian and white. Here, we consider the parameters α1 = α2 = β = 2,
γ = 6, and the diffusion matrix is set as D(x1, x2) = I with identity matrix I. By analyzing the structure of nullclines
(dx/dt = 0 and dy/dt = 0), bistability happens when β, γ > 1 [17]. The two states Repressor 1 and Repressor 2,
denoting high concentration of the corresponding repressor, are given by stable fixed points calculated from ODE
x∗1 = (1.9981, 0.0309), x∗2 = (0.4027, 1.9915).

We use Ito’s simulation to get the steady state distribution. In FIG. 1, Ito’s simulation leads to deviation on
the position of the potential minimum. When noise strength is large, Ito’s simulation show that one stable state is
destroyed in the bistable parameter region of ODE. Note that Stratonovich’s and Ito’s integrations generate identical
results for Eq. (33) with additive noise.

The potential landscape is obtained by the Protocol II with the least action method, as shown in FIG. 2. The
potential difference from Repressor 1 to Repressor 2 is 0.2819, which is greater than that from the other way around
0.1353. It demonstrates that the genetic switch prefers the state with higher concentration of Repressor 1 under the
given parameters. Therefore, the result on potential barrier height tells the relative stability. Besides, the steady
state given by the Boltzmann-Gibbs distribution ρss(x) ∝ exp[−φ(x)/ε] under various noise strengths show that
the bistable dynamical structure is preserved by using A-type integration. The cases with other parameters can be
calculated similarly

B. A model for cell fate decision

We apply our method to a 4 dimensional model which was used to study cell fate determination in pluripotent stem
or progenitor cells [18]. This model consists of two coupled modules: the pluripotency module and the differentiation
module. The pluripotency module is represented by the mutual activation of Oct4 and Sox2, whereas the differentiation
module is modeled by mutually inhibiting mesendodermal and ectodermal genes. Inhibitions or activations among
these nodes were given in [18]. A quantitative description of the model consists of a set of coupled stochastic differential
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(ε=0.1)
(a) Steady State Distribution for

Ito Simulation (ε=1)
(b) Steady State Distribution for

Ito Simulation

(ε=5)
(c) Steady State Distribution for

Ito Simulation (ε=10)
(d) Steady State Distribution for

Ito Simulation

FIG. 1: (Color online) Stability structure of steady state distribution is altered when noise increases. The example is given
by Eq. (33) with additive noise, where Ito’s simulation leads to deviation on the positions of the locally most probable states.
When noise strength is large, one of the stable states is destroyed in the bistable parameter region of ODE. The noise strengths
are ε = 0.1, 1, 5, 10.

equations with additive noise. The deterministic part is given by ODEs:

ẋ1 = d0

[
C0 + I0

K
np inh

p inh

K
np inh

p inh + x
np inh

3

K
np inh

p inh

K
np inh

p inh + x
np inh

4

·
(
KM +

(Oct4 · Sox2)np act

K
np act

p act + (Oct4 · Sox2)np act

)
− x1

]
,

ẋ2 = ds

[
Cs + Is

K
np inh

p inh

K
np inh

p inh + x
np inh

3

K
np inh

p inh

K
np inh

p inh + x
np inh

4

·
(
KM +

(Oct4 · Sox2)np act

K
np act

p act + (Oct4 · Sox2)np act

)
− x2

]
,

ẋ3 = dM

[
CM + IMw

xna
1

Kna
a + xna

1

+ IM
Kni
i

Kni
i + xni

2

Knd inh

d inh

Knd inh

d inh + xnd inh
4

− x3
]
,

ẋ4 = dE

[
CE + IEw

xna
2

Kna
a + xna

2

+ IM
Kni
i

Kni
i + xni

1

Knd inh

d inh

Knd inh

d inh + xnd inh
3

− x4
]
,

(34)

with the Gaussian white noise as that in Eq. (2) of the main text. The diffusion matrix is set as D(x1, x2, x3, x4) = I.
The variables x1, x2, x3, x4 denote concentration of Oct4, Sox2, mesendodermal, ectodermals separately.

We calculate from ODE the three stable fixed points x∗1 = (0.0218, 0.0218, 1, 0.0545), x∗2 = (0.0218, 0.0218, 0.0545, 1),
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(a) Lyapunov Function
(ε=0.1)

(b) Steady State Distribution for
A-type Simulation

(ε=1)
(c) Steady State Distribution for

A-type Simulation (ε=5)
(d) Steady State Distribution for

A-type Simulation

FIG. 2: (Color online) A-type integration preserves stability structure when noise increases. (a) Potential function by the
Protocol II: we calculate the potential values of points in the x1, x2 mesh grid with steplength 0.2. When the calculated
potential value is larger a chosen cutoff 0.3, it is set to be this cutoff value. Then, we add a constant to potential landscape
such that the saddle point is the zero potential reference. The numerical parameters are K = 500, T = 50. (b,c,d) Steady
state distribution by using ρss(x) ∝ exp[−φ(x)/ε] (without normalization here) as A-type simulation under the noise strengths
ε = 0.1, 1, 5. The bistable dynamical structure is preserved when noise increases.

x∗3 = (1.3309, 1.3309, 0.4423, 0.4423) with the parameters given in [18], which represent three cell types correspond-
ingly: the mesendodermal state, the ectodermal state, and the pluripotency state. We list in table III the height
of potential barriers from between stable fixed points. The result shows that the differentiated mesendodermal and
ectodermal states are more stable than the meta-stable state of pluripotent stem cell. This provides a understanding
on why stem cells have a higher probability to transit toward more differentiated cells than the other way around.
The result also allows us to predict the rate and timescale of transitions between cell types, which may lead to clinical
methodologies to shepherd cells from one state into another.

VII. ODES FOR THE 38 DIMENSIONAL PROSTATE CANCER MODEL

We list below all ODEs for the 38 dimensional prostate cancer model [19]. We have conducted random parameter
test, where Hill coefficients nij for each interaction between the i-th and j-th species (i, j = 1, · · · , 38) are real numbers
uniformly distributed in [1, 30], and Kij = 2nij . The 50,000 tests showed that all stable states have more than 98-
percent recurrence rate. Therefore, the computed stable states are insensitive to the detailed parameter setting, and
are mainly determined by the structure of the regulation network. For clarity, we choose the same Hill coefficient nij
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and Kij for each equation below and let n = 3, K = 10.

dxpRb
dt

=
K · (xnCyclin D/Cdk4,6 + xnCyclin E/Cdk2)

1 +K · (xnCyclin D/Cdk4,6 + xnCyclin E/Cdk2)
− xpRb,

dxCyclin D/Cdk4,6

dt
=

K · (xnMyc + xnE2F )

1 +K · (xnMyc + xnE2F )
− xCyclin D/Cdk4,6,

dxCyclin E/Cdk2

dt
=

K · (xnMyc + xnE2F )

1 +K · (xnMyc + xnE2F )
× 1

1 +K · (xnp21 + xnp27 + xnPTEN )
− xCyclin E/Cdk2,

dxMyc

dt
=

K · (xnpRb + xnE2F + xnMAPK)

1 +K · (xnpRb + xnE2F + xnMAPK)
× 1

1 +K · (xnp53 + xnTGF−β)
− xMyc,

dxE2F

dt
=

K · (xnMyc + xnE2F )

1 +K · (xnMyc + xnE2F )
× 1

1 +K · xnp21
− xE2F ,

dxp21
dt

=
K · (xnp53 + xnAR + xnTNF−α)

1 +K · (xnp53 + xnAR + xnTNF−α)
× 1

1 +K · (xnMyc + xnAkt)
− xp21,

dxp27
dt

=
K · (xnPTEN + xnE−Cadherin)

1 +K · (xnPTEN + xnE−Cadherin)
× 1

1 +K · (xnMyc + xnAkt)
− xp27,

dxp53
dt

=
K · (xnMyc + xnPTEN )

1 +K · (xnMyc + xnPTEN )
× 1

1 +K · xnAkt
− xp53,

dxCaspase 3

dt
=

K · (xnCytochrome c + xnCaspase 8)

1 +K · (xnCytochrome c + xnCaspase 8)
× 1

1 +K · xnXIAP
− xCaspase 3,

dxCytochrome c
dt

=
K · (xnCaspase 3 + xnBad + xnBax)

1 +K · (xnCaspase 3 + xnBad + xnBax)
× 1

1 +K · (xnBcl−2 + xnBcl−xL)
− xCytochrome c,

dxCaspase 8

dt
=

K · (xnTNF−α + xnFas)

1 +K · (xnTNF−α + xnFas)
− xCaspase 8,

dxXIAP
dt

=
K · (xnAkt + xnNF−κB)

1 +K · (xnAkt + xnNF−κB)
× 1

1 +K · xnCaspase 3

− xXIAP ,

dxBcl−2
dt

=
K · (xnV EGF + xnIntegrin)

1 +K · (xnV EGF + xnIntegrin)
× 1

1 +K · (xnp53 + xnCaspase 3 + xnTGF−β)
− xBcl−2,

dxBcl−xL
dt

=
K · (xnEGF + xnIGF−1R)

1 +K · (xnEGF + xnIGF−1R)
× 1

1 +K · xnCaspase 3

− xBcl−xL,

dxBim
dt

=
1

1 +K · (xnAkt + xnMAPK)
− xBim,

dxBad
dt

=
1

1 +K · (xnp21 + xnAkt + xnMAPK)
− xBad,

dxBax
dt

=
K · (xnp53 + xnBim)

1 +K · (xnp53 + xnBim)
− xBax,

dxRas
dt

=
K · (xnV EGF + xnAR + xnIntegrin + xnIL−6)

1 +K · (xnV EGF + xnAR + xnIntegrin + xnIL−6)
× 1

1 +K · xnp53
− xRas,

dxAkt
dt

=
K · (xnAR + xnNF−κB)

1 +K · (xnAR + xnNF−κB)
× 1

1 +K · xnPTEN
− xAkt,

dxPTEN
dt

=
K · xnp53

1 +K · xnp53
× 1

1 +K · xnNF−κB
− xPTEN ,

dxMAPK

dt
=

K · (xnRas + xnIGF−1R + xnIntegrin + xnNF−κB)

1 +K · (xnRas + xnIGF−1R + xnIntegrin + xnNF−κB)
× 1

1 +K · (xnPTEN + xnMKP )
− xMAPK ,
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dxMKP

dt
=

K · (xnMAPK + xnEGF )

1 +K · (xnMAPK + xnEGF )
− xMKP ,

dxV EGF
dt

=
K · (xnIL−6 + xnCOX−2)

1 +K · (xnIL−6 + xnCOX−2)
− xV EGF ,

dxEGF
dt

=
K · (xnAR + xnHIF )

1 +K · (xnAR + xnHIF )
− xEGF ,

dxIGF−1R
dt

=
K · xnAR

1 +K · xnAR
× 1

1 +K · xnp53
− xIGF−1R,

dxAR
dt

=
K · (xnEGF + xnIL−6)

1 +K · (xnEGF + xnIL−6)
× 1

1 +K · xnPTEN
− xAR,

dxIntegrin
dt

=
K · (xnV EGF + xnEGF + xnTNF−α)

1 +K · (xnV EGF + xnEGF + xnTNF−α)
− xIntegrin,

dxE−Cadherin
dt

=
K · xnAkt

1 +K · xnAkt
× 1

1 +K · (xnTNF−α + xnTGF−β)
− xE−Cadherin,

dxHIF
dt

=
K · xnAkt

1 +K · xnAkt
× 1

1 +K · xnp53
− xHIF ,

dxNF−κB
dt

=
K · (xnTNF−α + xnIL−1)

1 +K · (xnTNF−α + xnIL−1)
× 1

1 +K · xniκB
− xNF−κB ,

dxiκB
dt

=
K · xnNF−κB

1 +K · xnNF−κB
× 1

1 +K · (xnAkt + xnEGF + xnTNF−α + xnFas)
− xiκB ,

dxTNF−α
dt

=
K · (xnNF−κB + xnIL−1)

1 +K · (xnNF−κB + xnIL−1)
× 1

1 +K · xnIL−10
− xTNF−α,

dxIL−6
dt

=
K · xnNF−κB

1 +K · xnNF−κB
× 1

1 +K · (xnp21 + xnIL−10)
− xIL−6,

dxIL−10
dt

=
K · (xnTNF−α + xnFas)

1 +K · (xnTNF−α + xnFas)
× 1

1 +K · xnIL−10
− xIL−10,

dxFas
dt

=
K · xnTNF−α

1 +K · xnTNF−α
× 1

1 +K · xnRas
− xFas,

dxCOX−2
dt

=
K · (xnMAPK + xnNF−κB)

1 +K · (xnMAPK + xnNF−κB)
− xCOX−2,

dxTGF−β
dt

=
K · xnTNF−α

1 +K · xnTNF−α
− xTGF−β ,

dxIL−1
dt

=
K · xnNF−κB

1 +K · xnNF−κB
− xIL−1.
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