
 

Supplementary Figure 1. Coalescent embedding with RA pre-weighting 

(a) We show the original synthetic network generated by the PSO model in the hyperbolic space. (b) The Isomap 

algorithm (ISO) starting from the adjacency matrix pre-weighted with the repulsion-attraction (RA) rule offers an 

embedding of the network nodes that is organized according to a circular pattern that follows the angular 

coordinates of the original PSO model. The circular pattern is visible more clearly compared to the embedding 

without the pre-weighting (Fig. 1). (d) The nodes are projected over a circumference and adjusted equidistantly 

according to the step 3.2 of the algorithm described in Methods. (c) The radial coordinates are given according to 

Equation 4. (e) A different pattern is obtained for an algorithm named ncMCE. The circular pattern is linearized 

and the nodes are ordered along the second dimension of embedding according to their similarities. (f) If we 

accommodate the node points on the circumference following the same ordering as the second dimension of 

embedding, we can again recover an unbroken circular pattern that resembles the angular coordinates of the 

original PSO model. 



 
 

Supplementary Figure 2. HD-correlation on PSO synthetic networks for ISO 

(a-i) The figure is equivalent to Fig. 3, but all the variants of ISO are compared. 

  



 
 

Supplementary Figure 3. HD-correlation on PSO synthetic networks for ncISO 

(a-i) The figure is equivalent to Fig. 3, but all the variants of ncISO are compared. 

  



 
 

Supplementary Figure 4. HD-correlation on PSO synthetic networks for LE 

(a-i) The figure is equivalent to Fig. 3, but all the variants of LE are compared. 

  



 
 

Supplementary Figure 5. HD-correlation on PSO synthetic networks for MCE 

(a-i) The figure is equivalent to Fig. 3, but all the variants of MCE are compared. 

  



 
 

Supplementary Figure 6. HD-correlation on PSO synthetic networks for ncMCE 

(a-i) The figure is equivalent to Fig. 3, but all the variants of ncMCE are compared.  



 

Supplementary Figure 7. HD-correlation on PSO synthetic networks 

(a-i) The figure is equivalent to Fig. 3, but the methods without EA are shown. Comparing the two figures, it is 

evident that the ability of EA to adjust for the local positional noise makes a difference. In fact, when m = 2 and 

temperatures are low, RA-LE without equidistant adjustment suffers a strong performance reduction in 

comparison to the case in which EA is applied. 

  



 
 
Supplementary Figure 8. Angular coordinates comparison for RA-ISO-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 (a-i) and T 

= 0.3 (j-r),  we chose among the synthetic networks embedded with RA-ISO-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 

  



 
 

Supplementary Figure 9. Angular coordinates comparison for RA-ISO-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 (a-i) and T 

= 0.9 (j-r),  we chose among the synthetic networks embedded with RA-ISO-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 

  



 
 
Supplementary Figure 10. Angular coordinates comparison for RA-ncISO-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 (a-i) and T 

= 0.3 (j-r),  we chose among the synthetic networks embedded with RA-ncISO-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 

  



 
 

Supplementary Figure 11. Angular coordinates comparison for RA-ncISO-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 (a-i) and T 

= 0.9 (j-r),  we chose among the synthetic networks embedded with RA-ncISO-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 

  



 
 

Supplementary Figure 12. Angular coordinates comparison for RA-LE-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 (a-i) and T 

= 0.3 (j-r), we chose among the synthetic networks embedded with RA-LE-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 

  



 
 

Supplementary Figure 13. Angular coordinates comparison for RA-LE-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 (a-i) and T 

= 0.9 (j-r),  we chose among the synthetic networks embedded with RA-LE-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 

  



 
 

Supplementary Figure 14. Angular coordinates comparison for RA-MCE-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 (a-i) and T 

= 0.3 (j-r),  we chose among the synthetic networks embedded with RA-MCE-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 
  



 
 

Supplementary Figure 15. Angular coordinates comparison for RA-MCE-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 (a-i) and T 

= 0.9 (j-r),  we chose among the synthetic networks embedded with RA-MCE-EA the ones with the best C-score. 

For these networks we plotted the aligned inferred angular coordinates against the original angular coordinates as 

described in Fig. 4. 
  



 
 

Supplementary Figure 16. Angular coordinates comparison for RA-ncMCE-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 (a-i) and T 

= 0.3 (j-r),  we chose among the synthetic networks embedded with RA-ncMCE-EA the ones with the best C-

score. For these networks we plotted the aligned inferred angular coordinates against the original angular 

coordinates as described in Fig. 4. 

  



 
 

Supplementary Figure 17. Angular coordinates comparison for RA-ncMCE-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 (a-i) and T 

= 0.9 (j-r),  we chose among the synthetic networks embedded with RA-ncMCE-EA the ones with the best C-

score. For these networks we plotted the aligned inferred angular coordinates against the original angular 

coordinates as described in Fig. 4. 

  



 

Supplementary Figure 18. Time on PSO synthetic networks 

(a-i) For the same PSO networks in Fig. 3, the computational time shows the large efficiency of the coalescent 

embedding based approaches that generally required around one second to embed networks with 1000 nodes, 

while HyperMap spent approximately 3 hours for the same task (software and hardware details in the Methods). 

 
  



 

Supplementary Figure 19. Greedy routing on PSO synthetic networks 

The same PSO networks considered in Fig. 3 have been mapped using the hyperbolic embedding techniques and 

the greedy routing in the geometrical space has been evaluated. The barplot reports for each method the mean 

GR-score over all the PSO parameter combinations. The GR-score is a metric to evaluate the efficiency of the 

greedy routing, which assumes values between 0, when all the routings are unsuccessful, and 1, when all the 

packets reach the destination through the shortest path  (see Methods for details).  Both the EA (a) and non-EA 

(b) variants are reported, in order to check whether the equidistant adjustment might affect the navigability. The 

score for HyperMap-CN is not reported since the value for T = 0 is missing, because the original code assumes T 

> 0. The GR-score evaluated over the original coordinates of the PSO model is also shown. A black arrow points 

the coalescent embedding algorithm RA-ncMCE, as in Fig. 6.  



 

Supplementary Figure 20. Comparison of EA and non-EA for greedy routing 

(a) The same PSO networks considered in Fig. 3 have been mapped using the coalescent embedding techniques 

and the greedy routing in the geometrical space has been evaluated. The barplot reports the GR-score averaged 

not only over all the PSO parameter combinations but also respectively over all the EA and non-EA coalescent 

embedding techniques. The corresponding standard error are also shown. The p-value of the permutation test for 

the mean (10000 iterations) is reported, performed considering the two vectors of GR-scores for the EA and non-

EA methods. (b) The 8 real networks whose statistics are reported in Table 1 have been mapped using the 

coalescent embedding techniques and the greedy routing in the geometrical space has been evaluated. The barplot 

reports the GR-score averaged not only over the networks but also respectively over all the EA and non-EA 

coalescent embedding techniques. The corresponding standard error are also shown. The p-value of the 

permutation test for the mean (10000 iterations) is reported, performed considering the two vectors of GR-scores 

for the EA and non-EA methods. 

  



 

Supplementary Figure 21. Comparison of 2D and 3D embedding for increasing temperature 

The figure shows how the similarities of the original PSO network (N = 1000, m = 6,  = 2.5) are recovered either 

embedding in 2D (a, f) and arranging the angular coordinates over the circumference of a circle (d, i) or embedding 

in 3D (b, g) and adjusting the angular coordinates over a sphere (e, j). The figure reports the plots for the 

temperatures T = 0.3 (a-e) and T = 0.9 (f-j) in order to integrate the Fig. 8, where T = 0 and T = 0.6 are shown. 



 

Supplementary Figure 22. Time estimation for coalescent embedding methods on PSO networks 

For the PSO parameters  = 2.5, T = 0.3 (since Supplementary Fig. 4 showed that the time is T invariant) and m = 

[2, 4, 6], we generated 10 networks of size N = [100, 500, 1000, 5000, 10000] and 5 networks of size N = 30000. 

The plot reports the average embedding time for increasing network size and for each of the coalescent embedding 

techniques with RA pre-weighting and equidistant adjustment. The corresponding standard error are also shown. 

  



 

Supplementary Figure 23. Comparison of Repulsion-Attraction (RA) pre-weighting rules 

Since there was not a unique possible mathematical formulation of the RA formula, we tested four variants 

differing in the way in which the degrees of the connected nodes are combined. For each combination of the PSO 

parameters m = [2, 4, 6] and T = [0, 0.3, 0.6, 0.9], fixing  = 2.5, we generated 100 networks of size N = [100, 

500, 1000], 10 networks of size N = 10000 and 5 networks of size N = 30000. The networks have been embedded 

using the coalescent embedding techniques applying the different RA pre-weighting variants and the HD-

correlation has been evaluated. The figure reports for each RA variant the HD-correlation averaged over the PSO 

parameter combinations and over the different coalescent embedding techniques, for networks of size N = [100, 

500, 1000] (a) and N = [10000, 30000] (b). The corresponding standard error are also shown. 

  



 

 

Supplementary Figure 24. Examples of synthetic networks generated by the PSO model 

(a-i) For each combination of the parameters N (size) and m (half of average degree), examples of synthetic 

networks with temperature T = 0 and T = 0.9 are shown, in order to illustrate the increase of randomness and the 

loss of the tree like structure for high temperatures. 

  



 

Supplementary Figure 25. Rich-club statistical test on PSO synthetic networks 

For each combination of the PSO parameters N, m and T, the statistical test for rich-clubness1 has been performed 

on 10 networks and the p-values have been adjusted for multiple hypothesis testing by the Bonferroni correction. 

For each parameter combination the average of the adjusted p-values is reported, highlighting the range below the 

significance level of 0.05. 

 

  



Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ncISO-EA 1.00 0.57 0.47 1.00 0.93 0.59 0.90 0.68 0.77 +13.2 

RA-MCE-EA 0.83 0.51 0.47 1.00 0.96 0.57 0.82 0.67 0.73 +7.4 

RA-ncMCE-EA 0.73 0.55 0.47 1.00 1.00 0.57 0.83 0.67 0.73 +7.4 

EBC-MCE-EA 0.83 0.47 0.41 1.00 0.96 0.57 0.90 0.62 0.72 +5.9 

EBC-ncMCE-EA 0.88 0.46 0.41 1.00 0.96 0.57 0.85 0.62 0.72 +5.9 

EBC-ISO-EA 0.83 0.42 0.47 1.00 0.89 0.59 0.88 0.66 0.72 +5.9 

LPCS 0.83 0.49 0.41 1.00 0.96 0.55 0.87 0.67 0.72 +5.9 

ncMCE-EA 0.73 0.47 0.47 1.00 0.96 0.57 0.89 0.62 0.71 +4.4 

RA-LE-EA 0.67 0.48 0.53 1.00 0.92 0.56 0.82 0.70 0.71 +4.4 

EBC-ISO 0.83 0.47 0.47 1.00 0.76 0.54 0.89 0.68 0.71 +4.4 

RA-MCE 0.83 0.52 0.36 0.93 0.92 0.56 0.85 0.66 0.71 +4.4 

RA-ncISO-EA 0.67 0.54 0.42 1.00 0.92 0.56 0.86 0.67 0.70 +2.9 

ncISO-EA 0.73 0.50 0.41 1.00 0.88 0.54 0.87 0.66 0.70 +2.9 

EBC-LE-EA 0.85 0.42 0.41 0.96 0.92 0.56 0.85 0.62 0.70 +2.9 

RA-ncISO 0.68 0.46 0.41 1.00 0.87 0.54 0.89 0.72 0.70 +2.9 

EBC-MCE 0.83 0.42 0.51 1.00 0.92 0.59 0.86 0.40 0.69 +1.5 

EBC-ncISO 0.68 0.49 0.36 1.00 0.85 0.57 0.85 0.71 0.69 +1.5 

MCE-EA 0.64 0.47 0.47 0.96 0.92 0.55 0.86 0.62 0.69 +1.5 

RA-ISO 0.68 0.43 0.39 1.00 0.87 0.54 0.87 0.70 0.69 +1.5 

unweighted 0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68 0.0 

LE 0.68 0.53 0.37 1.00 0.79 0.53 0.85 0.73 0.68 0.0 

LE-EA 0.63 0.55 0.41 1.00 0.78 0.55 0.82 0.67 0.68 0.0 

RA-ISO-EA 0.57 0.43 0.44 1.00 0.88 0.54 0.86 0.67 0.67 -1.5 

ISO 0.59 0.49 0.45 0.96 0.85 0.56 0.80 0.68 0.67 -1.5 

RA-ncMCE 0.67 0.45 0.41 0.93 0.89 0.49 0.84 0.64 0.67 -1.5 

RA-LE 0.55 0.40 0.44 0.96 0.83 0.56 0.85 0.71 0.66 -2.9 

ncISO 0.68 0.55 0.41 0.96 0.79 0.56 0.68 0.67 0.66 -2.9 

ISO-EA 0.34 0.50 0.41 0.96 0.93 0.56 0.82 0.67 0.65 -4.4 

HyperMap 0.56 0.60 0.28 0.92 0.85 0.50 0.83 0.69 0.65 -4.4 

HyperMapCN 0.55 0.47 0.41 0.93 0.79 0.54 0.79 0.70 0.65 -4.4 

EBC-LE 0.68 0.36 0.36 1.00 0.79 0.54 0.82 0.60 0.64 -5.9 

EBC-ncMCE 0.57 0.37 0.49 1.00 0.89 0.56 0.82 0.22 0.62 -8.8 

MCE 0.73 0.28 0.32 0.50 0.21 0.54 0.77 0.42 0.47 -30.9 

ncMCE 0.61 0.24 0.25 0.49 0.18 0.49 0.79 0.08 0.39 -42.6 

 

Supplementary Table 1. Community detection on real networks with Louvain algorithm (HSP-kernel) 

The table is equivalent to Table 1, but also the non-EA methods are shown.  



Method 

Karate 
Opsahl 
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Opsahl 
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10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ncISO-EA 0.68 0.75 0.47 1.00 1.00 0.54 0.92 0.53 0.74 +4.2 

ncMCE-EA 0.68 0.74 0.47 1.00 0.93 0.50 0.92 0.52 0.72 +1.4 

unweighted 0.55 0.69 0.47 1.00 1.00 0.52 0.92 0.52 0.71 0.0 

EBC-MCE-EA 0.68 0.55 0.53 1.00 0.96 0.52 0.93 0.52 0.71 0.0 

EBC-ncMCE-EA 0.58 0.55 0.53 1.00 1.00 0.52 0.93 0.52 0.70 -1.4 

ISO-EA 0.68 0.53 0.47 1.00 0.96 0.52 0.92 0.53 0.70 -1.4 

LE-EA 0.68 0.54 0.47 1.00 0.96 0.53 0.92 0.51 0.70 -1.4 

EBC-LE-EA 0.68 0.55 0.47 0.95 0.96 0.52 0.93 0.53 0.70 -1.4 

EBC-ncISO 0.68 0.52 0.47 1.00 0.93 0.51 0.92 0.54 0.70 -1.4 

RA-ISO 0.58 0.55 0.47 1.00 1.00 0.52 0.93 0.51 0.70 -1.4 

ncISO-EA 0.68 0.53 0.47 1.00 0.96 0.47 0.92 0.53 0.69 -2.8 

EBC-ISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.53 0.69 -2.8 

MCE-EA 0.68 0.54 0.47 0.95 0.93 0.51 0.92 0.52 0.69 -2.8 

RA-ncISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.52 0.69 -2.8 

RA-ISO-EA 0.58 0.55 0.47 1.00 0.96 0.52 0.92 0.52 0.69 -2.8 

RA-ncMCE-EA 0.47 0.55 0.53 1.00 1.00 0.52 0.92 0.50 0.69 -2.8 

EBC-ISO 0.57 0.55 0.47 1.00 1.00 0.45 0.92 0.53 0.69 -2.8 

LPCS 0.55 0.55 0.53 1.00 0.96 0.52 0.93 0.51 0.69 -2.8 

LE 0.63 0.55 0.36 1.00 1.00 0.48 0.92 0.54 0.68 -4.2 

RA-LE-EA 0.55 0.55 0.47 1.00 0.93 0.52 0.92 0.52 0.68 -4.2 

EBC-LE 0.68 0.55 0.36 1.00 0.94 0.47 0.92 0.53 0.68 -4.2 

EBC-ncMCE 0.54 0.55 0.49 1.00 0.93 0.48 0.93 0.52 0.68 -4.2 

RA-ncISO 0.54 0.61 0.36 1.00 0.96 0.52 0.92 0.52 0.68 -4.2 

RA-MCE-EA 0.47 0.55 0.53 1.00 0.92 0.52 0.92 0.51 0.68 -4.2 

ncISO 0.54 0.53 0.36 1.00 1.00 0.52 0.92 0.52 0.67 -5.6 

ISO 0.58 0.53 0.36 0.96 0.96 0.52 0.93 0.54 0.67 -5.6 

RA-MCE 0.47 0.55 0.53 0.93 0.92 0.52 0.92 0.51 0.67 -5.6 

EBC-MCE 0.58 0.55 0.22 1.00 0.96 0.52 0.93 0.52 0.66 -7.0 

HyperMapCN 0.52 0.55 0.41 1.00 0.86 0.57 0.89 0.46 0.66 -7.0 

HyperMap 0.52 0.60 0.32 1.00 0.92 0.49 0.90 0.46 0.65 -8.5 

RA-LE 0.43 0.55 0.36 1.00 0.96 0.45 0.92 0.53 0.65 -8.5 

RA-ncMCE 0.47 0.61 0.36 0.93 0.96 0.42 0.92 0.44 0.64 -9.9 

MCE 0.57 0.53 0.55 0.93 0.50 0.59 0.92 0.38 0.62 -12.7 

ncMCE 0.54 0.45 0.59 0.98 0.50 0.41 0.92 0.38 0.60 -15.5 

 

Supplementary Table 2. Community detection on real networks with Infomap algorithm 

The table is equivalent to Table 2, but also the non-EA methods are shown.  



Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
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Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

ISO 0.63 0.50 0.25 0.94 0.83 0.56 0.91 0.69 0.67 +9.8 

EBC-ncISO-EA 0.72 0.53 0.42 0.96 0.43 0.52 0.91 0.68 0.65 +6.6 

ncISO-EA 0.75 0.38 0.50 0.95 0.44 0.52 0.89 0.69 0.64 +4.9 

EBC-ncISO 0.52 0.58 0.32 1.00 0.57 0.51 0.91 0.68 0.64 +4.9 

RA-ISO 0.58 0.46 0.42 1.00 0.54 0.50 0.90 0.68 0.63 +3.3 

RA-ncMCE-EA 0.68 0.51 0.53 0.97 0.29 0.54 0.90 0.64 0.63 +3.3 

EBC-ISO 0.50 0.40 0.42 0.99 0.66 0.51 0.90 0.66 0.63 +3.3 

EBC-ncMCE 0.42 0.47 0.40 0.97 0.70 0.49 0.91 0.69 0.63 +3.3 

RA-MCE 0.62 0.41 0.38 0.99 0.71 0.51 0.87 0.55 0.63 +3.3 

RA-LE 0.43 0.40 0.28 1.00 0.83 0.49 0.91 0.68 0.63 +3.3 

RA-ncISO 0.44 0.51 0.24 1.00 0.73 0.52 0.89 0.69 0.63 +3.3 

LE 0.63 0.49 0.27 1.00 0.48 0.51 0.91 0.70 0.62 +1.6 

EBC-LE-EA 0.76 0.46 0.34 0.92 0.38 0.54 0.91 0.68 0.62 +1.6 

LPCS 0.49 0.48 0.29 1.00 0.60 0.53 0.89 0.68 0.62 +1.6 

unweighted 0.73 0.44 0.27 0.99 0.34 0.56 0.88 0.70 0.61 0.0 

HyperMap 0.52 0.45 0.25 0.98 0.63 0.50 0.86 0.66 0.61 0.0 

EBC-MCE 0.54 0.47 0.33 1.00 0.42 0.54 0.90 0.62 0.60 -1.6 

RA-ncISO-EA 0.60 0.48 0.30 0.98 0.33 0.56 0.89 0.68 0.60 -1.6 

RA-ISO-EA 0.79 0.44 0.14 0.96 0.35 0.53 0.89 0.69 0.60 -1.6 

EBC-MCE-EA 0.82 0.44 0.19 0.95 0.29 0.56 0.91 0.61 0.60 -1.6 

ISO-EA 0.57 0.43 0.19 0.99 0.44 0.56 0.90 0.69 0.60 -1.6 

EBC-LE 0.50 0.45 0.29 1.00 0.58 0.51 0.89 0.54 0.60 -1.6 

ncISO 0.50 0.41 0.20 0.94 0.60 0.50 0.89 0.70 0.59 -3.3 

LE-EA 0.70 0.57 0.11 0.92 0.33 0.54 0.90 0.68 0.59 -3.3 

EBC-ncMCE-EA 0.67 0.41 0.29 0.90 0.36 0.53 0.90 0.68 0.59 -3.3 

RA-ncMCE 0.45 0.53 0.32 0.86 0.72 0.37 0.85 0.63 0.59 -3.3 

HyperMapCN 0.48 0.46 0.38 0.87 0.61 0.42 0.82 0.67 0.59 -3.3 

EBC-ISO-EA 0.66 0.38 0.33 0.95 0.29 0.53 0.90 0.68 0.59 -3.3 

RA-LE-EA 0.62 0.53 0.26 0.96 0.22 0.52 0.89 0.68 0.59 -3.3 

RA-MCE-EA 0.39 0.43 0.37 0.94 0.28 0.55 0.89 0.70 0.57 -6.6 

ncMCE-EA 0.67 0.42 0.17 0.96 0.14 0.56 0.88 0.69 0.56 -8.2 

ncMCE 0.58 0.59 0.23 0.78 0.32 0.42 0.87 0.62 0.55 -9.8 

MCE-EA 0.56 0.24 0.29 0.92 0.19 0.56 0.88 0.71 0.55 -9.8 

MCE 0.54 0.47 0.37 0.63 0.30 0.44 0.87 0.63 0.53 -13.1 

 

Supplementary Table 3. Community detection on real networks with Label propagation algorithm 

The table is equivalent to Supplementary Table 2, but the Label propagation algorithm is used rather than 

Infomap.  



Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

RA-ISO-EA 0.58 0.44 0.53 1.00 0.85 0.56 0.89 0.65 0.69 +6.2 

RA-MCE-EA 0.49 0.41 0.53 1.00 0.96 0.54 0.91 0.65 0.69 +6.2 

ncISO-EA 0.68 0.44 0.47 1.00 0.89 0.54 0.86 0.67 0.69 +6.2 

LPCS 0.57 0.55 0.41 1.00 0.96 0.54 0.89 0.63 0.69 +6.2 

EBC-ncISO-EA 0.68 0.47 0.36 1.00 0.89 0.54 0.89 0.65 0.68 +4.6 

EBC-MCE-EA 0.68 0.44 0.36 1.00 0.91 0.54 0.89 0.65 0.68 +4.6 

EBC-ncMCE-EA 0.68 0.44 0.36 1.00 0.89 0.54 0.89 0.64 0.68 +4.6 

ncMCE-EA 0.58 0.41 0.47 1.00 0.89 0.54 0.89 0.67 0.68 +4.6 

EBC-MCE 0.49 0.51 0.36 1.00 0.96 0.54 0.89 0.67 0.68 +4.6 

RA-ncMCE 0.53 0.55 0.46 0.91 1.00 0.48 0.89 0.61 0.68 +4.6 

RA-LE-EA 0.58 0.53 0.36 1.00 0.90 0.54 0.91 0.64 0.68 +4.6 

RA-ncMCE-EA 0.51 0.44 0.41 1.00 0.96 0.54 0.89 0.66 0.68 +4.6 

EBC-ISO-EA 0.47 0.45 0.47 1.00 0.89 0.54 0.89 0.66 0.67 +3.1 

EBC-LE-EA 0.68 0.44 0.36 0.90 0.89 0.54 0.86 0.66 0.67 +3.1 

HyperMapCN 0.55 0.55 0.41 1.00 0.83 0.46 0.94 0.61 0.67 +3.1 

MCE-EA 0.52 0.41 0.47 0.92 0.89 0.54 0.89 0.68 0.66 +1.5 

EBC-ncISO 0.68 0.53 0.36 1.00 0.83 0.44 0.85 0.62 0.66 +1.5 

LE 0.68 0.44 0.36 1.00 0.86 0.45 0.89 0.61 0.66 +1.5 

unweighted 0.46 0.45 0.36 1.00 0.89 0.53 0.89 0.64 0.65 0.0 

RA-ISO 0.68 0.44 0.36 1.00 0.73 0.54 0.85 0.63 0.65 0.0 

ISO-EA 0.46 0.44 0.36 1.00 0.89 0.54 0.86 0.67 0.65 0.0 

LE-EA 0.68 0.44 0.36 1.00 0.73 0.54 0.85 0.62 0.65 0.0 

RA-ncISO-EA 0.50 0.44 0.36 1.00 0.85 0.54 0.85 0.66 0.65 0.0 

ISO 0.52 0.44 0.36 0.96 0.86 0.54 0.86 0.63 0.65 0.0 

RA-MCE 0.50 0.48 0.41 0.91 0.87 0.50 0.85 0.65 0.65 0.0 

EBC-ISO 0.57 0.41 0.47 1.00 0.80 0.44 0.89 0.60 0.65 0.0 

EBC-ncMCE 0.47 0.35 0.42 1.00 0.90 0.46 0.91 0.64 0.64 -1.5 

ncISO 0.48 0.44 0.36 1.00 0.89 0.49 0.86 0.63 0.64 -1.5 

RA-ncISO 0.50 0.48 0.36 1.00 0.76 0.54 0.85 0.62 0.64 -1.5 

RA-LE 0.51 0.35 0.36 1.00 0.87 0.44 0.91 0.64 0.63 -3.1 

EBC-LE 0.57 0.35 0.36 1.00 0.80 0.45 0.89 0.65 0.63 -3.1 

HyperMap 0.45 0.56 0.36 0.96 0.78 0.43 0.87 0.62 0.63 -3.1 

ncMCE 0.46 0.52 0.47 0.92 0.55 0.51 0.89 0.33 0.58 -10.8 

MCE 0.42 0.42 0.47 0.92 0.56 0.47 0.91 0.33 0.56 -13.8 

 

Supplementary Table 4. Community detection on real networks with Walktrap algorithm 

The table is equivalent to Supplementary Table 2, but the Walktrap algorithm is used rather than Infomap.  



Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ISO-EA 0.78 0.50 0.41 1.00 0.96 0.45 0.90 0.63 0.70 +2.9 

ISO-EA 0.58 0.50 0.46 1.00 1.00 0.51 0.93 0.66 0.70 +2.9 

MCE-EA 0.51 0.55 0.53 0.96 0.96 0.54 0.90 0.66 0.70 +2.9 

RA-ISO 0.68 0.55 0.39 1.00 0.96 0.49 0.90 0.62 0.70 +2.9 

EBC-ncMCE 0.57 0.55 0.49 1.00 0.96 0.49 0.91 0.60 0.70 +2.9 

EBC-ncISO-EA 0.56 0.55 0.41 1.00 0.93 0.52 0.90 0.62 0.69 +1.5 

EBC-ncMCE-EA 0.47 0.55 0.41 1.00 0.96 0.54 0.93 0.62 0.69 +1.5 

EBC-MCE-EA 0.57 0.55 0.41 1.00 0.96 0.51 0.91 0.62 0.69 +1.5 

EBC-ISO 0.57 0.50 0.47 1.00 1.00 0.45 0.93 0.64 0.69 +1.5 

EBC-ncISO 0.68 0.50 0.37 1.00 0.96 0.45 0.90 0.67 0.69 +1.5 

EBC-LE-EA 0.68 0.51 0.42 0.96 0.92 0.52 0.87 0.63 0.69 +1.5 

LE-EA 0.59 0.55 0.42 1.00 0.93 0.51 0.90 0.63 0.69 +1.5 

LE 0.58 0.55 0.41 1.00 0.96 0.50 0.90 0.65 0.69 +1.5 

EBC-LE 0.68 0.50 0.41 1.00 0.96 0.45 0.90 0.62 0.69 +1.5 

unweighted 0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68 0.0 

RA-ncISO-EA 0.49 0.55 0.41 1.00 0.96 0.52 0.90 0.63 0.68 0.0 

ncISO-EA 0.52 0.46 0.46 1.00 0.96 0.48 0.91 0.66 0.68 0.0 

EBC-MCE 0.47 0.49 0.49 1.00 0.96 0.54 0.90 0.59 0.68 0.0 

RA-LE-EA 0.48 0.55 0.46 1.00 0.96 0.46 0.90 0.63 0.68 0.0 

RA-ISO-EA 0.50 0.50 0.41 1.00 0.96 0.52 0.90 0.64 0.68 0.0 

ISO 0.47 0.50 0.41 0.96 0.96 0.56 0.91 0.66 0.68 0.0 

ncISO 0.47 0.52 0.42 1.00 0.96 0.47 0.91 0.67 0.68 0.0 

RA-MCE-EA 0.49 0.52 0.42 1.00 0.92 0.52 0.91 0.64 0.68 0.0 

RA-ncMCE-EA 0.47 0.55 0.42 1.00 0.96 0.46 0.91 0.64 0.68 0.0 

ncMCE-EA 0.50 0.48 0.41 1.00 0.96 0.50 0.90 0.66 0.68 0.0 

RA-LE 0.55 0.48 0.41 1.00 0.92 0.45 0.89 0.65 0.67 -1.5 

RA-ncISO 0.47 0.48 0.41 1.00 0.92 0.47 0.90 0.63 0.66 -2.9 

RA-MCE 0.47 0.54 0.42 0.93 0.92 0.51 0.86 0.63 0.66 -2.9 

RA-ncMCE 0.47 0.60 0.41 0.93 1.00 0.46 0.88 0.48 0.66 -2.9 

LPCS 0.47 0.50 0.41 1.00 0.96 0.46 0.89 0.61 0.66 -2.9 

HyperMapCN 0.55 0.49 0.41 1.00 0.88 0.46 0.90 0.60 0.66 -2.9 

HyperMap 0.56 0.57 0.32 1.00 0.92 0.47 0.87 0.57 0.66 -2.9 

MCE 0.52 0.46 0.34 0.75 0.56 0.47 0.88 0.54 0.56 -17.6 

ncMCE 0.54 0.49 0.34 0.82 0.40 0.43 0.89 0.55 0.56 -17.6 

 

Supplementary Table 5. Community detection on real networks with Louvain algorithm (HD-network) 

The table is equivalent to Supplementary Table 1, but the HD-weighted network (see Equation 13) is given in 

input to the Louvain algorithm rather than the HSP-kernel (see Equation 14).  



Method 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
200912 

IPv4 

AS 
201003 

IPv4 

AS 
201006 

IPv4 

AS 
201009 

IPv4 

AS 
201012 

IPv4 

AS 
201501 

IPv4 

 
Mean 

 

N=5143 N=24091 N=25910 N=26307 N=26756 N=28353 N=29333 N=37542  

E=13446 E=59531 E=63435 E=66089 E=68150 E=73722 E=78054 E=95019 % 

m=2.61 m=2.47 m=2.45 m=2.51 m=2.55 m=2.60 m=2.66 m=2.53 Impr.  

T=0.65 T=0.64 T=0.64 T=0.63 T=0.63 T=0.63 T=0.62 T=0.64  

𝛾=2.30 𝛾=2.12 𝛾=2.11 𝛾=2.26 𝛾=2.08 𝛾=2.23 𝛾=2.22 𝛾=2.07 
 

 Nc=151 Nc=203 Nc=206 Nc=204 Nc=204 Nc=208 Nc=212 Nc=222   

EBC-ncISO-EA 0.54 0.61 0.59 0.60 0.60 0.62 0.59 0.62 0.60 +3.4 

EBC-ISO-EA 0.53 0.61 0.60 0.59 0.59 0.62 0.61 0.62 0.60 +3.4 

EBC-ISO 0.52 0.61 0.60 0.61 0.61 0.62 0.62 0.62 0.60 +3.4 

EBC-ncISO 0.53 0.61 0.60 0.60 0.59 0.62 0.62 0.60 0.60 +3.4 

EBC-MCE 0.54 0.61 0.60 0.61 0.61 0.60 0.60 0.62 0.60 +3.4 

EBC-ncMCE-EA 0.54 0.61 0.59 0.60 0.60 0.61 0.60 0.59 0.59 +1.7 

RA-ncMCE-EA 0.56 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59 +1.7 

EBC-MCE-EA 0.54 0.60 0.59 0.61 0.61 0.60 0.60 0.58 0.59 +1.7 

RA-MCE-EA 0.57 0.60 0.59 0.59 0.58 0.59 0.59 0.59 0.59 +1.7 

EBC-LE-EA 0.55 0.58 0.60 0.60 0.59 0.60 0.60 0.58 0.59 +1.7 

RA-LE-EA 0.54 0.61 0.58 0.59 0.60 0.60 0.59 0.59 0.59 +1.7 

EBC-ncMCE 0.53 0.61 0.59 0.60 0.61 0.59 0.60 0.61 0.59 +1.7 

RA-ncMCE 0.57 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59 +1.7 

RA-MCE 0.56 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 +1.7 

MCE-EA 0.55 0.60 0.59 0.59 0.60 0.59 0.59 0.59 0.59 +1.7 

unweighted 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.58 0.58 0.0 

RA-ISO-EA 0.55 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.58 0.0 

RA-ncISO 0.55 0.60 0.58 0.58 0.59 0.59 0.60 0.58 0.58 0.0 

EBC-LE 0.55 0.57 0.59 0.60 0.59 0.62 0.57 0.57 0.58 0.0 

RA-LE 0.55 0.57 0.58 0.59 0.60 0.62 0.57 0.59 0.58 0.0 

RA-ISO 0.55 0.59 0.58 0.59 0.59 0.59 0.59 0.59 0.58 0.0 

RA-ncISO-EA 0.55 0.59 0.58 0.59 0.58 0.59 0.59 0.58 0.58 0.0 

LE-EA 0.55 0.60 0.58 0.58 0.58 0.59 0.58 0.58 0.58 0.0 

ncMCE-EA 0.55 0.59 0.58 0.59 0.58 0.59 0.59 0.58 0.58 0.0 

MCE 0.55 0.59 0.58 0.58 0.58 0.59 0.59 0.58 0.58 0.0 

ncISO 0.53 0.59 0.58 0.58 0.58 0.60 0.60 0.58 0.58 0.0 

ncMCE 0.55 0.59 0.58 0.57 0.58 0.59 0.58 0.59 0.58 0.0 

ncISO-EA 0.53 0.59 0.58 0.58 0.58 0.60 0.59 0.58 0.58 0.0 

LE 0.55 0.58 0.58 0.59 0.58 0.58 0.58 0.59 0.58 0.0 

ISO 0.52 0.59 0.58 0.58 0.58 0.58 0.59 0.58 0.57 -1.7 

ISO-EA 0.53 0.58 0.57 0.58 0.58 0.58 0.59 0.57 0.57 -1.7 

LPCS 0.56 0.57 0.57 0.58 0.58 0.57 0.58 0.57 0.57 -1.7 

 

Supplementary Table 6. Community detection on Internet networks with Infomap algorithm 

The table is equivalent to Supplementary Table 2, but the community detection is performed on the Internet 

networks rather than on the small-size real networks. 

  



Method 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
200912 

IPv4 

AS 
201003 

IPv4 

AS 
201006 

IPv4 

AS 
201009 

IPv4 

AS 
201012 

IPv4 

AS 
201501 

IPv4 

 
Mean 

 

N=5143 N=24091 N=25910 N=26307 N=26756 N=28353 N=29333 N=37542  

E=13446 E=59531 E=63435 E=66089 E=68150 E=73722 E=78054 E=95019 % 

m=2.61 m=2.47 m=2.45 m=2.51 m=2.55 m=2.60 m=2.66 m=2.53 Impr. 

T=0.65 T=0.64 T=0.64 T=0.63 T=0.63 T=0.63 T=0.62 T=0.64  

𝛾=2.30 𝛾=2.12 𝛾=2.11 𝛾=2.26 𝛾=2.08 𝛾=2.23 𝛾=2.22 𝛾=2.07  

 Nc=151 Nc=203 Nc=206 Nc=204 Nc=204 Nc=208 Nc=212 Nc=222   

LPCS 0.51 0.55 0.51 0.56 0.52 0.54 0.46 0.32 0.50 +117.4 

ncMCE 0.32 0.44 0.36 0.55 0.28 0.28 0.43 0.21 0.36 +56.5 

RA-MCE 0.21 0.26 0.50 0.36 0.29 0.47 0.24 0.32 0.33 +43.5 

EBC-LE 0.36 0.44 0.35 0.26 0.19 0.28 0.37 0.34 0.33 +43.5 

LE 0.15 0.40 0.43 0.40 0.34 0.33 0.26 0.27 0.32 +39.1 

RA-ncISO 0.30 0.37 0.37 0.42 0.27 0.32 0.27 0.18 0.31 +34.8 

MCE 0.27 0.38 0.35 0.39 0.27 0.26 0.26 0.24 0.30 +30.4 

RA-ncMCE 0.20 0.33 0.30 0.29 0.51 0.22 0.39 0.19 0.30 +30.4 

LE-EA 0.14 0.40 0.39 0.32 0.33 0.28 0.27 0.23 0.29 +26.1 

RA-LE 0.35 0.44 0.27 0.27 0.17 0.31 0.38 0.17 0.29 +26.1 

ncMCE-EA 0.32 0.35 0.31 0.36 0.23 0.23 0.30 0.21 0.29 +26.1 

MCE-EA 0.19 0.35 0.31 0.34 0.26 0.24 0.24 0.18 0.27 +17.4 

RA-ISO 0.12 0.29 0.36 0.27 0.25 0.32 0.23 0.16 0.25 +8.7 

EBC-LE-EA 0.13 0.39 0.28 0.28 0.21 0.23 0.22 0.20 0.24 +4.3 

RA-MCE-EA 0.22 0.29 0.32 0.26 0.22 0.23 0.23 0.17 0.24 +4.3 

unweighted 0.07 0.30 0.41 0.29 0.29 0.19 0.19 0.15 0.23 0.0 

RA-ncMCE-EA 0.16 0.23 0.25 0.25 0.36 0.22 0.28 0.14 0.23 0.0 

EBC-ISO-EA 0.15 0.23 0.32 0.25 0.21 0.27 0.27 0.18 0.23 0.0 

ncISO 0.08 0.24 0.31 0.29 0.26 0.27 0.19 0.17 0.23 0.0 

EBC-ncMCE-EA 0.10 0.24 0.25 0.27 0.22 0.24 0.22 0.19 0.22 -4.3 

EBC-ncISO-EA 0.12 0.23 0.26 0.25 0.23 0.25 0.24 0.19 0.22 -4.3 

EBC-ncISO 0.18 0.22 0.22 0.25 0.25 0.22 0.22 0.19 0.22 -4.3 

RA-LE-EA 0.13 0.29 0.24 0.24 0.19 0.20 0.20 0.19 0.21 -8.7 

ISO 0.09 0.30 0.29 0.25 0.18 0.21 0.19 0.16 0.21 -8.7 

EBC-ISO 0.12 0.29 0.24 0.22 0.20 0.20 0.20 0.19 0.21 -8.7 

ISO-EA 0.10 0.30 0.27 0.26 0.17 0.22 0.19 0.15 0.21 -8.7 

EBC-MCE-EA 0.10 0.21 0.23 0.24 0.19 0.26 0.20 0.16 0.20 -13.0 

RA-ncISO-EA 0.13 0.30 0.24 0.27 0.14 0.20 0.17 0.16 0.20 -13.0 

ncISO-EA 0.08 0.21 0.36 0.26 0.21 0.21 0.17 0.13 0.20 -13.0 

RA-ISO-EA 0.11 0.21 0.29 0.25 0.23 0.24 0.18 0.14 0.20 -13.0 

EBC-MCE 0.07 0.21 0.26 0.22 0.22 0.25 0.19 0.16 0.20 -13.0 

EBC-ncMCE 0.08 0.24 0.25 0.21 0.23 0.19 0.16 0.19 0.19 -17.4 

 

Supplementary Table 7. Community detection on Internet networks with Label propagation algorithm 

The table is equivalent to Supplementary Table 6, but the Label propagation algorithm is used rather than Infomap. 

  



Method 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
200912 

IPv4 

AS 
201003 

IPv4 

AS 
201006 

IPv4 

AS 
201009 

IPv4 

AS 
201012 

IPv4 

AS 
201501 

IPv4 

 
Mean 

 

N=5143 N=24091 N=25910 N=26307 N=26756 N=28353 N=29333 N=37542  

E=13446 E=59531 E=63435 E=66089 E=68150 E=73722 E=78054 E=95019 % 

m=2.61 m=2.47 m=2.45 m=2.51 m=2.55 m=2.60 m=2.66 m=2.53 Impr.  

T=0.65 T=0.64 T=0.64 T=0.63 T=0.63 T=0.63 T=0.62 T=0.64  

𝛾=2.30 𝛾=2.12 𝛾=2.11 𝛾=2.26 𝛾=2.08 𝛾=2.23 𝛾=2.22 𝛾=2.07 
 

 Nc=151 Nc=203 Nc=206 Nc=204 Nc=204 Nc=208 Nc=212 Nc=222   

RA-MCE 0.52 0.62 0.66 0.63 0.64 0.65 0.64 0.64 0.63 +1.6 

unweighted 0.51 0.65 0.64 0.63 0.63 0.64 0.65 0.63 0.62 0.0 

RA-MCE-EA 0.52 0.63 0.65 0.62 0.63 0.65 0.65 0.64 0.62 0.0 

RA-ncISO-EA 0.51 0.63 0.65 0.64 0.63 0.66 0.64 0.63 0.62 0.0 

EBC-ncISO-EA 0.51 0.65 0.64 0.62 0.64 0.64 0.65 0.63 0.62 0.0 

EBC-MCE-EA 0.48 0.63 0.65 0.62 0.63 0.65 0.64 0.61 0.62 0.0 

RA-ncMCE-EA 0.51 0.64 0.65 0.64 0.60 0.64 0.65 0.63 0.62 0.0 

EBC-ISO-EA 0.48 0.63 0.61 0.64 0.65 0.65 0.65 0.61 0.62 0.0 

RA-ISO-EA 0.49 0.64 0.65 0.65 0.61 0.64 0.64 0.63 0.62 0.0 

EBC-ncISO 0.48 0.64 0.65 0.65 0.64 0.65 0.65 0.61 0.62 0.0 

RA-ncMCE 0.51 0.63 0.64 0.61 0.65 0.64 0.64 0.65 0.62 0.0 

MCE 0.51 0.64 0.64 0.65 0.63 0.63 0.64 0.62 0.62 0.0 

EBC-ISO 0.46 0.64 0.65 0.64 0.64 0.66 0.65 0.62 0.62 0.0 

LE-EA 0.49 0.64 0.63 0.65 0.62 0.65 0.64 0.64 0.62 0.0 

ISO 0.48 0.65 0.64 0.64 0.63 0.64 0.64 0.62 0.62 0.0 

ncISO-EA 0.49 0.64 0.64 0.64 0.63 0.61 0.64 0.64 0.62 0.0 

LE 0.50 0.67 0.64 0.62 0.62 0.65 0.64 0.62 0.62 0.0 

MCE-EA 0.51 0.63 0.63 0.64 0.63 0.64 0.65 0.62 0.62 0.0 

ncISO 0.47 0.63 0.64 0.64 0.63 0.63 0.64 0.64 0.62 0.0 

LPCS 0.53 0.63 0.64 0.63 0.63 0.65 0.62 0.63 0.62 0.0 

EBC-ncMCE-EA 0.47 0.61 0.65 0.63 0.63 0.65 0.64 0.62 0.61 -1.6 

ncMCE-EA 0.51 0.63 0.63 0.64 0.63 0.64 0.61 0.63 0.61 -1.6 

ISO-EA 0.49 0.64 0.64 0.63 0.62 0.64 0.64 0.62 0.61 -1.6 

EBC-LE-EA 0.49 0.63 0.63 0.63 0.62 0.64 0.64 0.61 0.61 -1.6 

RA-LE-EA 0.48 0.63 0.64 0.63 0.62 0.64 0.63 0.62 0.61 -1.6 

EBC-LE 0.53 0.62 0.64 0.62 0.63 0.64 0.61 0.61 0.61 -1.6 

RA-LE 0.53 0.61 0.62 0.64 0.62 0.63 0.61 0.62 0.61 -1.6 

EBC-MCE 0.45 0.62 0.65 0.61 0.62 0.65 0.64 0.63 0.61 -1.6 

EBC-ncMCE 0.44 0.65 0.65 0.61 0.61 0.64 0.64 0.62 0.61 -1.6 

RA-ISO 0.48 0.60 0.61 0.65 0.62 0.65 0.62 0.62 0.61 -1.6 

RA-ncISO 0.52 0.60 0.63 0.62 0.63 0.63 0.63 0.60 0.61 -1.6 

ncMCE 0.51 0.62 0.62 0.61 0.62 0.64 0.61 0.63 0.61 -1.6 

 

Supplementary Table 8. Community detection on Internet networks with Walktrap algorithm 

The table is equivalent to Supplementary Table 6, but the Walktrap algorithm is used rather than Infomap. 

  



Method 
Mean 

GR-score 
2D 

Mean 
GR-score 

3D 
Improvement p-value 

ISO 0.61 0.67 +0.06 < 0.001 

ncISO 0.62 0.66 +0.04 < 0.001 

RA-ISO 0.64 0.65 +0.01 0.296 

EBC-ISO 0.61 0.61 0.00 0.494 

EBC-ncISO 0.62 0.62 0.00 0.499 

RA-ncISO 0.65 0.65 0.00 0.429 

LE 0.67 0.66 -0.01 0.296 

RA-LE 0.68 0.67 -0.01 0.259 

EBC-LE 0.68 0.66 -0.02 0.113 

 

Supplementary Table 9. Comparison of 2D and 3D greedy routing on PSO synthetic networks 

The same PSO networks considered in Fig. 3 have been mapped both in 2D and 3D using the manifold-based 

coalescent embedding techniques and the greedy routing in the hyperbolic space has been evaluated. The table 

reports for each method the mean GR-score over all the PSO parameter combinations, both in 2D and in 3D, 

highlighting the 3D-improvement. The GR-score is a metric to evaluate the efficiency of the greedy routing, which 

assumes values between 0, when all the routings are unsuccessful, and 1, when all the packets reach the destination 

through the shortest path  (see Methods for details). The rightmost column shows for each method the p-value of 

the permutation test for the mean (10000 iterations) performed considering the two vectors of GR-scores related 

to 2D and 3D. The p-values lower than the significance level of 0.05 are highlighted in bold. 

 

  



GR-score 2D  

Method Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs Mean  

RA-ncISO 0.91 0.92 0.95 0.92 0.96 0.47 0.65 0.41 0.77  

RA-LE 0.85 0.91 0.97 0.91 0.98 0.49 0.70 0.30 0.76  

RA-ISO 0.86 0.93 0.93 0.90 0.96 0.43 0.62 0.43 0.76  

ncISO 0.82 0.94 0.95 0.91 0.97 0.40 0.60 0.44 0.75  

ISO 0.79 0.93 0.91 0.88 0.98 0.40 0.56 0.51 0.75  

LE 0.80 0.93 0.97 0.93 0.94 0.42 0.59 0.38 0.74  

EBC-LE 0.78 0.92 0.95 0.93 0.91 0.40 0.72 0.26 0.73  

EBC-ncISO 0.80 0.83 0.94 0.91 0.92 0.40 0.58 0.45 0.73  

EBC-ISO 0.84 0.89 0.94 0.85 0.94 0.36 0.57 0.38 0.72  

GR-score 3D  

Method Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs Mean  

RA-ISO 0.86 0.97 0.97 0.96 0.94 0.44 0.77 0.47 0.80  

RA-ncISO 0.80 0.96 0.97 0.96 0.94 0.44 0.76 0.46 0.79  

ncISO 0.76 0.97 0.97 0.97 0.94 0.44 0.67 0.49 0.78  

LE 0.75 0.91 0.98 0.94 0.94 0.47 0.75 0.46 0.77  

RA-LE 0.75 0.89 0.98 0.96 0.94 0.51 0.75 0.38 0.77  

EBC-ISO 0.80 0.92 0.95 0.93 0.92 0.41 0.76 0.46 0.77  

EBC-ncISO 0.76 0.93 0.96 0.92 0.92 0.41 0.78 0.45 0.77  

ISO 0.72 0.94 0.97 0.96 0.94 0.44 0.65 0.51 0.77  

EBC-LE 0.79 0.88 0.92 0.95 0.93 0.43 0.74 0.11 0.72  

Improvement  

Method Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs Mean p-value 

EBC-ISO -0.04 0.03 0.01 0.08 -0.02 0.05 0.19 0.08 +0.05 0.409 

EBC-ncISO -0.04 0.10 0.02 0.01 0.00 0.01 0.20 0.00 +0.04 0.412 

RA-ISO 0.00 0.04 0.04 0.06 -0.02 0.01 0.15 0.04 +0.04 0.359 

LE -0.05 -0.02 0.01 0.01 0.00 0.05 0.16 0.08 +0.03 0.376 

ncISO -0.06 0.03 0.02 0.06 -0.03 0.04 0.07 0.05 +0.03 0.434 

ISO -0.07 0.01 0.06 0.08 -0.04 0.04 0.09 0.00 +0.02 0.424 

RA-ncISO -0.11 0.04 0.02 0.04 -0.02 -0.03 0.11 0.05 +0.02 0.451 

RA-LE -0.10 -0.02 0.01 0.05 -0.04 0.02 0.05 0.08 +0.01 0.421 

EBC-LE 0.01 -0.04 -0.03 0.02 0.02 0.03 0.02 -0.15 -0.01 0.493 

 

Supplementary Table 10. Comparison of 2D and 3D greedy routing on real networks 

The 8 real networks whose statistics are reported in Table 1 have been mapped both in 2D and 3D using the 

manifold-based coalescent embedding techniques and the greedy routing in the hyperbolic space has been 

evaluated. The table reports for each method and for each network the GR-score both in 2D and in 3D, in addition 

to the 3D-improvement. The GR-score is a metric to evaluate the efficiency of the greedy routing, which assumes 

values between 0, when all the routings are unsuccessful, and 1, when all the packets reach the destination through 

the shortest path  (see Methods for details). The rightmost column shows for each method the p-value of the 

permutation test for the mean (10000 iterations) performed considering the two vectors of GR-scores related to 

2D and 3D. 

  



 GR-score 2D GR-score 3D Improvement 

Method 
AS 

201501 
IPv6 

AS 
200909 

IPv4 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
201501 

IPv6 

AS 
200909 

IPv4 
Mean 

RA-LE 0.02 0.01 0.02 0.01 0.00 0.00 0.00 

RA-ISO 0.15 0.10 0.10 0.04 -0.05 -0.06 -0.06 

EBC-ncISO 0.15 0.12 0.10 0.05 -0.05 -0.07 -0.06 

EBC-ISO 0.17 0.11 0.11 0.04 -0.06 -0.07 -0.07 

RA-ncISO 0.16 0.14 0.10 0.04 -0.06 -0.10 -0.08 

EBC-LE 0.02 0.34 0.02 0.01 0.00 -0.33 -0.17 

LE 0.23 0.28 0.13 0.05 -0.10 -0.23 -0.17 

ncISO 0.32 0.24 0.16 0.06 -0.16 -0.18 -0.17 

ISO 0.36 0.30 0.17 0.06 -0.19 -0.24 -0.22 

 

Supplementary Table 11. Comparison of 2D and 3D greedy routing on Internet networks 

Two of the Internet networks whose statistics are reported in Supplementary Table 6 have been mapped both in 

2D and 3D using the manifold-based coalescent embedding techniques and the greedy routing in the hyperbolic 

space has been evaluated. The table reports for each method and for each network the GR-score both in 2D and 

in 3D, in addition to the 3D-improvement. The GR-score is a metric to evaluate the efficiency of the greedy 

routing, which assumes values between 0, when all the routings are unsuccessful, and 1, when all the packets 

reach the destination through the shortest path  (see Methods for details). Differently from the previous tables, the 

statistical test has not been performed due to the reduced number of networks considered. 

  



Louvain Infomap 

Method 
Mean 

NMI 2D 
Mean 

NMI 3D 
Impr. p-value Method 

Mean 
NMI 2D 

Mean 
NMI 3D 

Impr. p-value 

RA-LE 0.66 0.69 +0.03 0.380 ISO 0.67 0.72 +0.05 0.343 

LE 0.68 0.70 +0.02 0.452 RA-LE 0.65 0.67 +0.02 0.429 

ISO 0.67 0.69 +0.02 0.413 EBC-ISO 0.69 0.71 +0.02 0.387 

ncISO 0.66 0.67 +0.01 0.482 ncISO 0.67 0.69 +0.02 0.404 

EBC-LE 0.64 0.65 +0.01 0.481 EBC-ncISO 0.70 0.71 +0.01 0.424 

EBC-ncISO 0.69 0.70 +0.01 0.450 LE 0.68 0.69 +0.01 0.494 

RA-ISO 0.69 0.69 0.00 0.487 RA-ncISO 0.68 0.68 0.00 0.489 

EBC-ISO 0.71 0.70 -0.01 0.473 RA-ISO 0.70 0.69 -0.01 0.441 

RA-ncISO 0.70 0.68 -0.02 0.453 EBC-LE 0.68 0.66 -0.02 0.425 

Label Propagation Walktrap 

Method 
Mean 

NMI 2D 
Mean 

NMI 3D 
Impr. p-value Method 

Mean 
NMI 2D 

Mean 
NMI 3D 

Impr. p-value 

ncISO 0.59 0.62 +0.03 0.410 EBC-LE 0.63 0.66 +0.03 0.436 

EBC-LE 0.60 0.63 +0.03 0.391 RA-LE 0.63 0.64 +0.01 0.492 

RA-ISO 0.63 0.65 +0.02 0.430 EBC-ncISO 0.66 0.67 +0.01 0.469 

LE 0.62 0.62 0.00 0.491 ISO 0.65 0.65 0.00 0.493 

RA-LE 0.63 0.63 0.00 0.488 ncISO 0.64 0.64 0.00 0.505 

RA-ncISO 0.63 0.62 -0.01 0.471 RA-ncISO 0.64 0.64 0.00 0.503 

EBC-ISO 0.63 0.61 -0.02 0.438 EBC-ISO 0.65 0.65 0.00 0.483 

EBC-ncISO 0.64 0.61 -0.03 0.419 LE 0.66 0.65 -0.01 0.474 

ISO 0.67 0.63 -0.04 0.360 RA-ISO 0.65 0.64 -0.01 0.456 

 

Supplementary Table 12. Comparison of 2D and 3D community detection on real networks 

The 8 real networks whose statistics are reported in Table 1 have been mapped both in 2D and 3D using the 

manifold-based coalescent embedding techniques and the community detection has been evaluated exploiting the 

2D and 3D hyperbolic distances to weight the input matrix for the four community detection algorithms. The table 

reports for each method the mean NMI over all the networks both in 2D and in 3D, highlighting the 3D-

improvement. NMI is the normalized mutual information and represents the shared information between two 

distributions, normalized between 0 and 1, where 1 indicates that the communities detected by the algorithm 

perfectly correspond to the ground truth communities (see Methods for details). The rightmost column of each 

community detection algorithm shows for each embedding method the p-value of the permutation test for the 

mean (10000 iterations) performed considering the two vectors of GR-scores related to 2D and 3D. 

  



Supplementary Note 1: Repulsion-Attraction pre-weighting rules 

𝑥𝑖𝑗
𝑅𝐴1 =

𝑑𝑖 + 𝑑𝑗 + 𝑑𝑖𝑑𝑗
1 + 𝐶𝑁𝑖𝑗

 (1) 

𝑥𝑖𝑗
𝑅𝐴2 =

1 + 𝑒𝑖 + 𝑒𝑗 + 𝑒𝑖𝑒𝑗

1 + 𝐶𝑁𝑖𝑗
 (2) 

𝑥𝑖𝑗
𝑅𝐴3 =

𝑑𝑖 + 𝑑𝑗
1 + 𝐶𝑁𝑖𝑗

 (3) 

𝑥𝑖𝑗
𝑅𝐴4 =

𝑑𝑖𝑑𝑗
1 + 𝐶𝑁𝑖𝑗

 (4) 

In the mathematical expressions: 𝑥𝑖𝑗 is the value of an edge (𝑖, 𝑗) in the adjacency matrix; 𝑑𝑖 is 

the degree of the node i; 𝑒𝑖 is the external degree of the node i with respect to node j (links to 

nodes that are neither common neighbours nor the node j); 𝐶𝑁𝑖𝑗 are the common neighbours 

of nodes i and j. 

 

Supplementary Discussion 

 

Greedy routing performance in synthetic and real networks 

In this section, we would like to explain the reason why RA-ncMCE resulted the best 

performing among the coalescent embedding methods on the greedy routing tests. 

Firstly, we would like to underline the relevant increase of performance obtained by ncMCE 

when the RA pre-weighting is applied, which confirms the efficacy of the RA rule. The RA 

pre-weighting is very effective to suggest the hidden geometry to extract the MST on the basis 

of which the distances that are collected in the MC-kernel are approximated (see Methods for 

details). In fact, ncMCE alone offers a very poor performance in GR, while RA-ncMCE 

provides top performance between the coalescent embedding techniques. 

Secondly, the fact that ncMCE is performing better than MCE in problems of network 

embedding was also proved and discussed in a previous publication2, and it is related with the 

effect of the kernel centring procedure, therefore we will not discuss further here. 

At last, a theoretical digression is necessary in order to explain why RA-ncMCE performed 

better than the manifold-based coalescent embedding techniques. The embedding methods 

based on matrix factorization are all global methods because they exploit an NxN matrix 

decomposition3. However, they mainly work in different ways. LE is a neighbourhood-



preserving global method, in fact, the Laplacian matrix to which eigen-decomposition is 

applied only contains information about connected nodes, therefore it infers angular 

coordinates that give preference to put connected nodes closer. ISO and ncISO, on the contrary, 

belong to the class of global methods that aim to preserve the global topology of the 

neighbourhood graph that approximates the hidden manifold geometry, therefore they do not 

concentrate exclusively on the accurate preservation of connected points at close angular 

coordinates. Indeed, they apply singular value decomposition to a distance kernel, which 

contains information about both connected and disconnected nodes. It means that they attempt 

to preserve geometry at all scales, therefore introducing and distributing the error at all the 

scales. ISO procedure does not give preference to an accurate preservation of connected points 

that is a necessary procedure for effective GR but, on the other hand, tries to fulfil the second 

important condition to put disconnected points far in the angular coordinates. ncMCE is a 

global method that preserves a locally-reconstructed (by means of MST) global geometry by 

overestimating distances between disconnected nodes. Since the MC-kernel is obtained by 

computing all pairwise transversal distances over the MST, in practice distances for both 

connected and disconnected nodes are approximated. However, the distances of connected 

nodes will be ‘fairly’ estimated, while the ones of disconnected nodes will be overrated. In 

conclusion, minimum curvilinearity, which is the mechanism of generation of the MC-kernel, 

favours inference of kernel distances that preserve connected nodes close in the angular 

coordinates, and push disconnected nodes far apart in the angular coordinates. 

 

Community detection on real networks 

This section is intended to provide further discussions about the results on the community 

detection application. As first, we would like to comment the fact that, differently from the 

embedding evaluation on the synthetic networks, in community detection on real networks 

ncISO-based and MCE-based coalescent embedding techniques are significantly better than 

LE-based methods (Table 1-2 and Supplementary Table 1-4). Not to be overlooked, EBC-

ncISO-EA is the only method that improves with respect to all the four unweighted algorithms. 

As expected, this finding suggests that the results obtained on synthetic networks are indicative 

but should be taken with caution. Real networks might have a geometry that is even more tree-

like and hyperbolic than the one hypothesized by the PSO model (for this reason MCE-based 

techniques can perform better on real networks), and although the topology of real networks is 

certainly conditioned by the hyperbolic geometry this is however one of the factors that shape 

their structure. On the other side, good results are achieved also for networks with out of range 



γ values such as Opsahl_11. Since it has been demonstrated that a scale-free degree distribution 

is a necessary condition for hyperbolic geometry4, this result demonstrates that the methods 

can reach good performances also for networks whose latent geometry might be weakly 

hyperbolic. 

As second point, we want to highlight that also in community detection simulations on real 

world networks the contribution offered by EA is evident. Except for Label propagation where 

the EA and non-EA methods show a mixed ranking (Supplementary Table 3), in Louvain, 

Infomap and Walktrap the EA-based coalescent embedding techniques offer the best 

performance (Supplementary Table 1, 2 and 4), confirming that the adjustment of local 

embedding uncertainty can be crucial for effective coalescent embedding also in real 

applications. We note that Louvain was the only method for which the improvement in 

community detection was higher using not only the geometrical information between the 

connected nodes but also between disconnected nodes. Supplementary Table 1 and 5 show the 

different results using either a kernel or a weighted network in input. For the other community 

detection algorithms the results are not reported since the usage of a kernel led to totally wrong 

predictions. 

In order to test the coalescent embedding methods on real networks of larger size, the 

community detection has been performed also on Internet networks ranging from 5000 up to 

37000 nodes, where each node represents an Autonomous System and the connections indicate 

the IPv4 or IPv6 topology (see dataset description for details). For Louvain, the processing of 

the kernel matrix for large networks resulted to be too computationally expensive from the 

point of view of the memory requirements, therefore the results are not reported. For Infomap 

and Walktrap, most of the embedding methods obtained the same performance as the 

unweighted variant, and also the other techniques did not show a big deviation from that 

reference (Supplementary Table 6 and 8). However, for Infomap, many MCE-based 

approaches offered a small increase of performance and the only improving method for 

Walktrap is also MCE-based. Differently, for Label propagation the unweighted variant 

obtained a very low result, therefore there was a higher margin of improvement and the usage 

of the geometrical information led to a significant boosting (Supplementary Table 7). 

 

Beyond the two-dimensional space 

Before starting with the analysis of the results, there is the need to discuss a preliminary point. 

Coalescent embedding at the moment includes two different types, the manifold-based (LE, 

ISO, ncISO) and the Minimum Curvilinearity (MCE, ncMCE) approaches. The latter ones are 



fundamentally different, since they learn the nonlinear similarities by means of MST and 

linearize the hidden pattern providing a hierarchical-based mapping. Therefore, on one side we 

are seeking to exploit an additional dimension of embedding, on the other side the power of 

the Minimum Curvilinearity methods is the compression of information in a single dimension: 

it is evident by definition that it would be a contradiction to adopt them for this investigation. 

Furthermore, while the rearrangement of the linearized similarities over a circumference 

remains intuitive, it is not trivial to find a meaningful way for reorganizing the linearized 

pattern over a sphere. Note that, for analogous reasons, also the equidistant adjustment is not 

adopted. On the contrary, the manifold-based approaches offer less compression capabilities 

and therefore do not exclude the presence of potentially useful information in the third 

dimension. Moreover, since the hidden similarity pattern can remain nonlinear also in the 

embedded space, the similarities can be directly accommodated to the sphere without the need 

of any particular reorganization, as it happens using two dimensions.  

Supplementary Table 9 reports the mean difference between the GR scores of the 3D versus 

2D greedy routing performed on the PSO networks embedded in the hyperbolic space, where 

the mean is taken over all the parameter combinations. The table highlights a small even though 

significant (p-value < 0.001) improvement obtained with the addition of the third dimension in 

ISO and ncISO. However, there is no significant improvement for the other methods, and for 

the LE-based approaches there is even a small decline. Supplementary Table 10 reports the 

mean difference between the GR scores of the 3D versus 2D greedy routing performed on the 

real small-size networks embedded in the hyperbolic space, where the mean is taken over all 

the networks. The table shows that, except for EBC-LE, the methods slightly improve the 

performance with a gain in NMI up to 0.05, but not significantly. Supplementary Table 11 

reports the difference between the GR scores of the 3D versus 2D greedy routing performed 

on two AS networks embedded in the hyperbolic space, one middle size and one large size. 

The table underlines the presence of a general performance decrease with the addition of the 

third dimension. 

Supplementary Table 12 reports the mean difference between the NMI scores of the 3D versus 

2D community detection performed on the real small-size networks embedded in the 

hyperbolic space, where the mean is taken over all the networks. The table highlights that for 

each community detection method the coalescent embedding approaches oscillate between a 

small increase and a little decrease of performance using the third dimension, but the difference 

is not significant in any case. 

 



Notes on pre-weighting, rich-clubness and angular adjustment 

The proposed class of coalescent embedding algorithms includes several variants and, except 

for the different machine learning techniques, the variations are given by the pre-weighting and 

the angular adjustment, whose contribution will be now discussed. 

Out of question is the positive effect of the pre-weighting on the embedding accuracy. All the 

simulations highlighted that suggesting topological similarities between the connected nodes 

makes the inference of the coordinates more precise and leads to remarkable improvements in 

performance (Supplementary Fig. 2-6). Furthermore, both the local-based RA rule and the 

global-based EBC rule resulted to be effective. Since there was not a unique possible 

mathematical formulation of the RA formula, we tested four variants differing in the way in 

which the degrees of the connected nodes are combined, the mathematical expressions are 

shown in Supplementary Note 1 and the results in Supplementary Fig. 23. The variant RA1 

gave the best results for the embedding of small-size PSO networks, whereas the variant RA2 

for the large-size PSO networks, although the performance is very similar for all of them. 

Therefore, we here propose to adopt both the versions RA1 and RA2, as reported in Fig. 2. Since 

in most of the simulations the networks are small and the results of the two variants are very 

close, for sake of brevity we showed all the other results only for RA1. We let notice that from 

a theoretical point of view the formula RA2 is more correct, in fact it conceptually splits the 

neighbours of the adjacent nodes in two non-overlapping subsets: the neighbours not in 

common (external degree), responsible for the repulsive part, and the common neighbours, 

determining the attractive part. In the other formulas, instead, the numerator considers not the 

external degree but the degree of the adjacent nodes, which includes also the common 

neighbours. However, on the tested networks it emerges that this conceptual difference does 

not lead to a substantial performance improvement, but it might play an important role for 

networks of larger size. 

It might be argued that the repulsion between high (external) degree nodes implied by the RA 

rule is in contrast with the existence of rich-clubs. In rich-club networks, high degree nodes 

(hubs) tend to connect each other5. However, we would like to clarify that the repulsive part of 

the rule is not suggesting that nodes with high (external) degree tend to be disconnected. It 

suggests that they tend to dominate geometrically distant regions, which does not exclude their 

connectivity and therefore it should not be theoretically in contrast to the existence of rich-

clubs. In order to prove this point by experiments, we started performing a statistical test for 

rich-clubness1 on the PSO networks used for the previous simulations, the p-values are reported 

in Supplementary Fig. 25. The statistical test highlights that for most of the parameter 



combinations, in particular for m = [4, 6] and N = [500, 1000] the networks present a significant 

rich-club, whereas for more sparse (m = 2) and small networks (N = 100) in general there is 

not a significant rich-club. This is in agreement with the network growing procedure explained 

by the PSO model. In fact, the high degree nodes are the first ones to be born in the network 

and they are expected to connect to around m of the older nodes6. Therefore for higher m the 

rich nodes have higher probability to create a club. Looking at Supplementary Fig. 2-6, it is 

evident that for networks with m = [4, 6], which are significantly rich-club, the methods using 

the RA pre-weighting rule do not have any particular decrease in performance, they still 

provide a very high improvement with respect to the unweighted variant, as for networks with 

m = 2 that do not contain a significant rich-club. We therefore conclude that the RA pre-

weighting rule can be adopted regardless of the rich-clubness of a network. 

If on one side there are no doubts about the essentialness of the pre-weighting, a discussion is 

required on the contribution of the equidistant adjustment. In fact, the significant improvement 

obtained using EA on PSO networks up to 1000 nodes (Fig. 3 and Supplementary Fig. 7) might 

be due to overfitting to the PSO model, since the angular coordinates are randomly generated 

by a uniform sampling. Interestingly, Fig. 5 suggests that for PSO networks of size 30000 the 

EA contribution vanishes. The reason is that with bigger networks the high number of nodes 

tends to densely and more uniformly cover the angular range hence the non-EA embedding 

already arranges the nodes in an almost exactly equidistant way. Looking at the community 

detection application, we noticed that for three out four algorithms (Louvain, Infomap and 

Walktrap) the EA-based methods obtained in general higher performances than the respective 

non-EA versions, suggesting that the adjustment of local embedding uncertainty can be 

effective in real applications. As last, we checked the contribution of the equidistant adjustment 

on greedy routing. As reported in Supplementary Fig. 20, the equidistant adjustment offered 

an overall improvement for the greedy routing on PSO networks and a decrease in performance 

on real networks, although small. To conclude, due to the variable contribution given by the 

equidistant adjustment, we propose it as a valid alternative to take into consideration, even if it 

does not represent always the best option. New methods of angular adjustment should be 

investigated in future studies. 
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