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Fig	A.	Average	and	at	least	one	statistical	power	for	different	effect	sizes	and	number	of	tests.	
This	figure	illustrates	the	relation	between	statistical	power	and	the	number	of	tests	(1-50)	for	several	
standard	 effect	 sizes	 (Correlation	 coefficients;	 Pearson’s	 r,	 range	 0.1-0.7)	 and	 for	 corrected	 (αFWE	 =	
0.05,	Family	Wise	Error;	FWE,	estimated	by	applying	a	Bonferroni	correction)	and	uncorrected	(α	=	0.01)		
significance	 thresholds,	 for	 a	 sample	 size	 of	 n	 =	 30.	 a)	 The	 average	 power	 for	 αFWE	 =	 0.05	 b)	 The	
average	power	for	α	=	0.01	c)	The	power	to	detect	at	least	one	effect	for	αFWE	=	0.05	d)	The	power	to	
detect	at	least	one	effect	for	α	=	0.01.	
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B.	Simulation	results	using	a	FDR	threshold	of	q	=	0.05.		
	

Figure	B	shows	the	results	of	the	subsampling	analyses	(3.1)	when	a	false	discovery	rate	[1]	threshold	of	
q	=	0.05	 is	applied.	The	results	naturally	show	for	 instance	that	the	statistical	power	 is	 lower	with	this	
more	 stringent	 threshold	 compared	 to	 the	 uncorrected	 threshold	 of	 p	 <	 .01,	 in	 both	 scenario’s.	
However,	when	considering	the	effect	size	estimation	and	dice	coefficient,	there	is	a	clear	differentiation	
in	effects	for	the	two	scenarios	compared	to	applying	an	uncorrected	threshold.	When	applying	the	FDR	
correction	(compared	to	the	uncorrected	threshold	of	p	<	.01)	the	effect	size	estimation	becomes	much	
closer	 to	 the	 full	 sample’s	 range	 in	 the	 SL	 scenario,	 while	 in	 the	 WD	 scenario	 it	 leads	 to	 stronger	
overestimation	of	 the	 full	 sample	effect	 sizes.	 Similarly,	 the	dice	 coefficient	becomes	higher	 in	 the	 SL	
scenario	but	 lower	 in	 the	WD	scenario.	The	appropriate	choice	of	a	significance	threshold	thus	clearly	
depends	on	the	expected	effect	size	and	effect	size	distribution,	see	also	section	C.			
	

	
	
Figure	B.	Results	of	the	simulations	using	a	FDR	threshold	of	q=0.05	
Relation	between	sample	size	(n)	and	(a)	average	(solid	line)	and	at	least	one	(alo;	dashed	line)	statistical	
power;	 (b)	 detected	 effect	 size	 (Pearson’s	 r)	 in	 the	 samples,	 and	 the	 full	 population	 effect	 size	 range	
(shown	 as	 a	 transparent	 color	 bar);	 (c)	 Percentage	 of	 voxels	 below	 the	 threshold;	 (d)	 mean	 dice	
coefficient:	 overlap	 of	 significant	 (q	 =	 0.05)	 voxels	 between	 two	 subsequent	 replications.	 SL;	 Strong	
Localized	effects,	WD;	Weak	Diffuse	effects.	The	shaded	grey	area	around	the	estimates	reflects	the	95%	
confidence	intervals	based	on	the	sampling	distribution.	
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C.	Significance	threshold	and	the	Error	Ratio		
	

Typically,	 when	 determining	 what	 statistical	 threshold	 to	 use,	 researchers	 give	 consideration	 either	
exclusively	to	the	Type	I	error	rate	(eg.	FWE),	or	to	the	ratio	between	the	Type	I	error	rate	and	the	true	
positive	rate	(like	the	mentioned	false	discovery	rate).	Although	both	approaches	have	their	strengths,	
neither	gives	any	direct	consideration	to	the	Type	II	error	rate,	effectively	implying	that	false	negatives	
are	 of	 little	 or	 no	 concern.	 One	 way	 to	 illustrate	 the	 balance	 between	 these	 two	 error	 rates	 is	 the	
receiver	operator	 characteristic	 (ROC),	 see	 fig	C(a)	which	 shows	 the	 sensitivity	 (power,	1-Type	 II	 error	
rate)	as	a	function	of	the	1-specificty	(Type	I	error	rate)	for	r	=	0.1	(rounded	average	of	the	weak	diffuse	
scenario)	and	r	=	0.7	(rounded	average	of	the	strong	localized	scenario)	with	n	=	30.	Yet	another	way	to	
illustrate	the	problems	associated	with	stringent	correction	for	multiple	comparisons	is	to	quantify	the	
Type	II	to	Type	I	error	ratio	(ER).	For	example,	given	a	threshold	of	p	<	.001,	for	instance,	the	error	ratio	
for	a	correlation	coefficient	with	n	=	30	remains	close	to	1,000:1	for	correlations	up	to	r	=	0.3.	In	other	
words,	for	every	incorrectly	rejected	null	hypothesis,	a	researcher	will	miss	out	on	approximately	1,000	
true	effects.	Compare	this	situation	to	the	“gold	standard”	4:1	(ie.	80%	power,	5%	false	positives).	One	

could	thus	perform	a	“compromise	power”	analysis	[2]	aiming	to	balance	these	two	types	of	error.	For	
fMRI	such	an	approach	can	be	extended	by	using	a	simple	mixture	model	under	which	some	proportion	
of	 voxels	 p(ACT)	 show	 “real”	 (i.e.,	 non-zero)	 effects	 and	 the	 complement	 show	 a	 null	 effect	 and	 for	
simplicity	 we	 assume	 that	 all	 voxels	 in	 set	 p	 have	 an	 identical	 effect	 size	 (the	 point	 goes	 through	

essentially	unchanged	given	a	distribution	of	effect	sizes).	Then	the	ER	is	simply	p(ACT)	β	/	(1-	p(ACT)	)α,	

where	β	 is	 the	probability	of	 a	 false	negative	at	 a	 given	 truly-activated	voxel	 (Type	2	error	 rate,	or	1-
power),	and	α	is	the	nominal	Type	I	error	rate.	Figure	C(b)	displays	the	log10	ER	as	a	function	also	of	the	
1-Specificty	(Type	I	error	rate)	for	the	two	scenarios	we	considered	(Weak	Diffuse:	p(ACT)	=	0.7,	r	=	0.1,	
Strong	 Localized:	 p(ACT)	 =	 0.04,	 r	 =	 0.7)	 for	 n	 =	 30.	 The	 vertical	 lines	 indicate	 at	 which	 significance	
threshold	for	each	scenario	the	error	ratio	approximates	4.	One	can	observe	that	for	the	WD	scenario,	
the	combination	of	distributed	and	small	effects	and	low	power	leads	to	extremely	high	error	ratio	and	

only	at	α	=	0.34	will	the	ER	drop	to	4,	while	for	the	SL	scenario	this	is	at	α	=	0.001.			
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Figure	C.	 (a)	Receiver	Operator	Characteristic	(ROC)	for	two	effect	sizes	(r	=	0.1	and	r	=	0.7)	with	n=30	
and	(b)	Log10	Error	Ratio	for	the	two	scenarios	both	with	n	=	30.	SL:	strong	localized,	WD:	weak	diffuse.		
	
D.	Selectivity	Index	
	
The	selectively	index	(SI)	is	simply	the	proportion	of	all	other	voxels	that	are	statistically	significant	when	
tested	at	the	same	level	as	any	a	priori	ROIs.	For	example,	in	a	study	that	used	a	p	<	.05	threshold	to	test	
for	ROI-level	effects,	the	SI	would	be	the	proportion	of	all	other	voxels	anywhere	in	the	brain	that	were	
activated	 at	 p	 <	 .05.	 This	 quantity	 has	 the	 benefit	 of	 being	 easy	 to	 calculate	 and	 report,	 and	 would	
provide	a	much	needed	baseline	for	evaluating	specificity	claims.	For	example,	a	finding	of	statistically	
significant	 activation	 in	 an	 a	 priori	 amygdala	 ROI	would	 be	 interpreted	 very	 differently	 depending	 on	
whether	3%	or	30%	of	other	voxels	showed	the	same	effect	when	tested	at	the	same	threshold.	
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