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APPENDICES

A. Proof of Lemma 1

The Normal/Laplace pdf in [2-3] can be rearranged as:
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Using the Gaussian scale mixture model for the Laplace pdf
(Park and Casella, 2008):
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The term to the right can be rearranged by multiplying and

dividing by /1 + 2a, x; , as:
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With the change of variables y;¢ = - (1 + 2a,x;,) and
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Then, using the definition for the Truncated Gamma (Gamma
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pdf truncated in the interval (E oo)):
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We demonstrate that the Normal/Laplace pdf can be
represented as the following scale mixture of Gaussians:
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B. Proof of Lemma 2

a) Setting x;; =J;; and xj.c =J;c, into Definition 1, the
conditional probability of one variable (node) regarding
their complement in the pMRF can be expressed as:
p(]i,tUiC,u @) = p(]-.t|“)/p(]i€,t|“) [B-1]
Using [2-14] and [2-15], the conditional pdf in [2-13] can
be decomposed as:
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Which can be marginalized over J; , to obtain:
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Substituting [B-2] and [B-3] in [B-1] we can find the
potentials of Definition 2 for the duet (J;,,/;c ,):
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Where Z;, is a normalization constant. Then, using the
auxiliary magnitude &;, = ¥;;|/; |, we finally obtain:

1 _qj?2 _ 7.
p(]i,t']ic,t' @) =z¢ Wit =2aillil n

b) The auxiliary matrix (§) can be seen as new
hyperparameters with a marginal pdf as:
p(é‘.,t|a) = fp(a-,tﬂ]-,t|a)d]-,t = fP(5-,t|]-,t:a)p(]-,t|“)d]-,t
The conditional pdf p(8..|/..,a) can be represented by
means of the Dirac distribution A, using the expected value
Yizillic] = W] (where Wy, is defined as W;; = 0 and
W, = 1fori=#j).
P(S-,r|]-,p a)=A(6, - W|]'.t|)IfR§_ (5-,t)
We can use this and [2-13] to obtain:
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Taking into consideration the symmetry of the argument

with respect to the origin, and rearranging the Dirac delta
function we obtain:
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where Z = |W|Z/25 and |W| is the determinant of W. =



c) The joint pdf of parameters and new hyperparameters § is:

P(]-,t,5-,t|“) = Hip(]i,t|6i.t'a)p(5-.t|a)
Using final results from previous items a) and b), it
becomes:
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And marginalizing over §., using the change of variable
8. =W|J’,|, we obtain:
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Where we recall that Z =
decomposition:
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And rearranging terms, we arrive at:
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and changing back J’ i, 10/;e ., We can easily obtain:
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C. Parameters and hyperparameters
posterior analysis

The following identity holds (Magnus and Neudecker, 2007):
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= N(V.e|Kp, e, BTN (0|0, diag (A, ) ) 1275 oN (] |, ;) [C1]
where the posterior mean of parameters (maximum a posteriori
estimate) is u., =ﬁiftKTV.,t and the posterior covariance
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matrix is £, = (BtK K+ (dlag(/l.’t)) )
The posterior of hyperparameters can be obtained by
substituting [F1] in [2-24] and integrating over J:
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D. Update equations for ENET and
ELASSO models
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ELASSO
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Derivation of each update equation

a) Parameters. In both ENET and ELASSO we obtain:
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Using Z, = (ﬁiKTK + (diag(/l.‘t)) ) and equating to
t
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b) Hyperparameters For ENET we will have:
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Deriving and reorganizing terms:
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Where X;; , is the i-th dlagonal element of %,. Equating to

zero and using the change of variable A;, = n;,/ (1., + k)
we obtain the equation:
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Where the only positive root is:
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So that if we define 7;, = 7;, + k, we will have:
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For the ELASSO model we follow the same procedure with
respective change of variables a, , = « and k, = a57;, m

Hyperparameters For ENET we will have:
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Substituting A; ; = Zi_t/al_t and equating to zero:
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For the hyperparameter defined by [2-5] we will have:
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For the ELASSO model we have:
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Hyperparameters. In both ENET and ELASSO we will

have:
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Equating to zero we obtain:
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From where it is easy to get equations [D6] and [D12] by

using [2-4] and [2-20] for ENET and ELASSO,
respectively. m
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E. Inference strategy and implementation
details

The high computational cost for obtaining £, by means of a
matrix inversion operation can be avoided by using the
economical singular value decomposition (SVD) of the lead
field K = LDR”, and the Woodbury identity (Magnus and
Neudecker, 2007), leading to:

%, = B,diag(A.,)R(R" diag(A.,)R + B,D~2) " D~2R7 [2-26]
The update formulas in Proposition 2.3.2 a), b) are consistent
with the sparsity constraint in both the ENET and ELASSO
models, since the elements of the effective prior variance
matrix A (or equivalently A) select which elements of u become
zero. When A;, — 0, the i-th row and i-th -column of the
matrix X, in [2-26] tend to zero vectors, from where f1;, — 0.
In the same way, if some parameters are very small in a
previous iteration (4;, ~ 0, i-th diagonal elementZ;;, ~ 0),
they will lead to A;, — 0 in the next iteration (equations [D2]
and [D8]). In some algorithms, this property usually means that
if one activation is set to zero (e.g. removed from the active set)
in an iteration, it will not appear as part of the solution. In our
case, however, we do not prune to zero the small coefficients.
Therefore, although unlikely, a “zeroed” activation might be re-
estimated in a future iteration and contribute to the solution.
The non-linear terms in [D5] and [D10] are obtained from the
derivative of the normalization constants in [2-8] and [2-21].
These terms decrease strictly with respect to their arguments
leading to smaller values of F for higher values of k, and «a,
which is equivalent in both cases to have more zero elements in
A. The measurements variance B, in [D6] and [D12] is
generally considered superfluous in the learning process,
because it only acts as a scale factor for the parameters and
usually decelerates the algorithm convergence (Babacan et al.,
2010). In our case, we fix it to 8,=1, for all time points.

We also use fixed values for the parameters of the Gamma
distribution [2-11] in the ENET model. In particular we chose
=S, which preserves the monotony of [D5] (in the sense that
only one zero of F exists), and v=eS, where € is such that k,
has a flexible prior, with mean(k,)~ 1/e and variance(k,)~
1/(e2S). Obviously, the value of k, that optimizes £ will
depend on (z,v), since these have some influence in the
intercept of [D5]. In order to keep an adequate balance we
impose identical prior to a;, which allows the flexibility in our
learning of different degrees of sparsity. Although optimal
values for (z,v) might also be estimated within the Empirical
Bayes (setting their corresponding priors), we only consider
here an exploratory study where they are fixed in the ENET
model.



F. Pseudo code for the algorithms

Algorithm ENET-SSBL

INPUT: K,V
OUTPUT: u, B, a4, k
Forallt =1,T.
Initialize A. ;.
Iterate until convergence criteria holds
Compute X, [2-26].
Update ., [D1], 4., [D2], a4, [D3], k, [D4]
and B, [D6].

End
End

Algorithm ELASSO-SSBL

INPUT: K,V
OUTPUT: u, B,

Initialize A.

Iterate until convergence criteria holds
Forallt=1,T.
Compute X, [2-26].
Update p., [D7], A., [D8], 8., [D11]
and B, [D12].

End

Update a [D9].

End

G. Mathematical notation

Symbol | Description

140! Continuous function that represents the scalp
voltage, dependent on scalp coordinates (r,) and
time (t).

7, Scalp coordinates.

|4 NXT spatio-temporal matrix that represents the
scalp voltage (data), rows represent sensors and
columns represent time points.

N Number of scalp sensors.

€ NXT spatio-temporal matrix that represents
sensors’ noise.

Je Continuous function that represents the PCD,
dependent on the source’s space coordinates ()
and time (t).

r Sources’ space coordinates.

dr3 Volumetric differential element in the sources’
space.

Ji SXT spatio-temporal matrix that represents the
PCD (parameters), rows represent points within
the discretized sources’ space and columns
represent time points.

S Number of points in the discrete sources’ space

i,j Indexes used to represent points within the
discretized sources’ space.

It t’th column vector of the spatio-temporal

parameters matrix (PCD).

Jie, S — 1 dimensional column vector obtained from
J.: by subtracting the i’th element

dfic, S — 1 dimensional volumetric differential
element of the ;e , column vector.

40 Continuous function that represents the Lead
Field, dependent on scalp coordinates (r,) and
source space coordinates (r).

K NxS Lead Field matrix.

L SxS matrix that represents the Laplacian
operator.

t Continuous/discrete time index.

T Number of time points.

P() Function that represents the constraints or
penalties.

A Regularization parameter.

p() Probability density function

Z Normalization constant of some of the
probability density functions

a,aq,a, | Different model’s hyperparameters (precisions).

B Noise variance’s hyperparameter.

k Lower truncation limit (hyperparameter) of the
Truncated Gamma distribution.

y SXT matrix of the new hyperparameters derived
from scaled Gaussian mixtures procedures.

1) SXT matrix of the new hyperparameters derived
from the Elitist Lasso hierarchization.

z Normalization constant of the hyperparameter §
probability density function.

A SXT matrix of parameter’s variances in the
hierarchical ENet and ELasso models.

A SXT matrix proportional to parameter’s
variances in the hierarchical Elastic Net and
Elitist Lasso models.

T,V Scale and shape of the hyperparameter’s Gamma
prior.

x General variable used to represent Markov
Random Fields and some integrals.

X3¢, Xgee | General variable that furnishes a subset of
elements indexed by  within the vector x and
its complement correspondingly.

P(), Potentials of the Elitist Lasso spatial Markov

Pi; () Random Field.

J General variable that represent a set of indexes.

lous SxS matrix of ones.

Igxs SXS identity matrix

Is Indicator function of the set of non-negative
coordinates points in the S dimensional real
space.

A() Dirac delta distribution.

0, 0, Variables that correspondingly embrace all
hyperparameters of the model and all
hyperparameters of the model for a single time
point.

u Variable that represents the mean of the
parameters Gaussian posterior distribution.

x Parameter’s posterior distribution covariance

matrix.




