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General Details

All manipulations were carried out under a dry, oxygen-free atmosphere of nitrogen using standard
Schlenk and glovebox techniques. Pyridine and 1,4-dioxane were distilled from potassium and stored
over 4 A molecular sieves. Acetonitrile was distilled from CaH:z and stored over 4 A molecular sieves.
THF, Hexanes and CH2Clz2 were sparged with N2 then purified by passage through activated alumina
and stored over 4 A molecular sieves. All gases were supplied by BOC gases UK. All glassware
items, cannulae and Fisherbrand 1.2 um retention glass microfibre filters were dried at 150 °C
overnight before use.

Infrared spectra were recorded on a Perkin Elmer Spectrum 65 FT-IR spectrometer as nujol
mulls between NaCl disks. Raman spectra were recorded on a Renishaw InVia Raman spectrometer
using either a Renishaw solid-state diode laser (excitation A = 785 nm) or an argon ion gas discharge
laser (excitation A = 514 nm), each with a maximum power output of ~2 mW and laser diameter of
~3 um. A Nikon L-plan objective microscope (X100 objective, NA 0.7) was used for sample
focussing. Samples were prepared in Mettler ME-18552 melting point tubes plugged with Apiezon
H-grease. The Raman spectra were measured in the range of 1600-100 cm™' for the 785 nm
wavelength laser or from 1700-100 cm™ for the 514 nm wavelength laser. The laser power used for
the 785 nm wavelength laser was either 50 % (focus = 100 %) with 15 scans of 45 seconds of exposure
(compound 4) or 100 % (focus = 100 %) with 15 scans of 25 seconds of exposure (1-Sm, 1-Dy, 2-
Sm, 5-Sm). The laser power used for the 514 nm laser was either 10 % (focus = 100 %) with 15 scans
of 25 seconds of exposure (1-Sm), or 50 % (focus = 25 %) with 15 scans of 25 seconds of exposure
(2-Sm, 3-Dy, 4, 5-Sm). UV-vis-NIR spectra were recorded on a JASCO V-670 spectrophotometer
using a sealed quartz cuvette fitted with a Young’s tap. Pyridine solutions of 1-Sm (0.44, 5.97 mM)
and 1-Dy (0.16, 4.7 mM), and CH2Cl2 solution of 1-Sm (0.018, 0.16, 2.47 mM) and 1-Dy (0.0196,
0.145, 2.86 mM) were prepared and analysed. Elemental analyses were carried out at London
Metropolitan University, London, UK or Pascher Labor, Germany.

Single crystal X-ray diffraction data for 1-Sm-3py, 1-Dy-3py, 2-Sm and 3-Dy-4py were
collected using an Excalibur Eos diffractometer, fitted with a CCD area detector and using MoKa
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radiation (A = 0.71073 A). The data for 1-Sm-3py, 1-Dy-3py and 3-Dy-4py were collected at 173(2)
K, whereas those for 2-Sm was collected at 298(2) K. Single crystal X-ray diffraction data for 4-2py
were collected using an Oxford Diffraction Supernova instrument at 120 K, fitted with a CCD area
detector using MoKa radiation.

Todine and HN(SiMe3)2 were purchased from Sigma-Aldrich and used as was. KO'Bu and 18-
crown-6 were purchased from Sigma-Aldrich, the latter was dissolved in Et20 then passed through
molecular sieves (4 A) before being dried in vacuo. KH (suspension in oil, Fischer Scientific) was
washed with hexanes to remove the oil then dried in vacuo. [UO2Clx(THF):],l'! KN(SiMes3)2,!!
[UO2{N(SiMes3)2}2(THF)2],! [SmI2(THF)2]** and [Ul3(dioxane)is]™ were prepared according to
literature procedures. Dyl2 was either purchased from Sigma-Aldrich and stored in the glove box, or
prepared according to the literature procedure.[®!

Syntheses

[{UOa(py)s}a(Smla)]l (1-Sm)

a) Pyridine (50 mL) was added to a 200 mL Schenk flask containing [UO2Cl2(THF)2] (2.28 g, 4.69
mmol) and [Sml(THF)2] (3.24 g, 5.87 mmol), producing a deep red solution and a yellow
precipitate. The reaction mixture was stirred for 2 hours at room temperature. After 48 hours
standing at room temperature, the desired product, a lemon yellow solid, was isolated by filtration
and dried under reduced pressure; yield = 1.80 g. A second batch was obtained from the filtrate
upon concentration to half its volume and storage at —20 °C for a further two weeks; overall yield
= 3.97 g (40 %). X-ray quality crystals were obtained via vapour diffusion of hexanes into a
pyridine solution of 1-Sm at room temperature. Elemental Analysis Caled (%) for
CsoHsolsN100OsSmU2: C, 28.38; H, 2.38; N, 6.62. Found: C, 28.43; H, 2.49; N, 6.71 %. IR:
v(asym. UO2") = 818 cm™! (nujol). No X-band EPR resonances were discernible in four different
samples of 1-Sm.

b) [UO2Cl(THF)2] (36.7 mg, 0.0757 mmol), [SmI2(THF)2] (41.8 mg, 0.0757 mmol) and two
equivalents of ["BusN]I (56.2 mg, 0.151 mmol) were combined and dissolved in 1 mL of
pyridine, and allowed to stand at room temperature for 16h. The product mixture was evaporated
to dryness under reduced pressure to yield a dark brown solid which was analysed by FTIR as a
nujol mull, Figure S10 and 11, as containing a significant quantity of 1-Sm, but also other
products, so no further work-up was carried out.

[{UO2(py)st2(Dyla)]l (1-Dy)

a) In a vial, a pyridine (2 mL) solution of [UO2Cl2(THF)2] (40.0 mg, 8.25x102 mmol) and Dyl>
(86.0 mg, 0.205 mmol) was stirred at room temperature for 48 hours, producing a dark red
solution. The reaction mixture was filtered then vapour diffusion of hexanes into the filtrate
yielded 1-Dy-3py as orange blocks suitable for X-ray diffraction. Yield = 65 mg (67 %).
Elemental Analysis Calcd (%) for CssHesDylsN1304U2: C, 33.00; H, 2.77; N, 7.70. Found: C,
32.97; H, 2.69; N, 7.57 %. IR: v(asym. UO2") = 825 cm™ (nujol).

b) A vial was charged with a pyridine solution of [UO2Cl2(THF)2] (20.5 mg, 0.0423 mmol, 1 mL),
Dyl2 (35.5 mg, 0.0845 mmol) and ["BusN]I (15.7 mg, 0.0423 mmol) and allowed to stand at
room temperature for 24 hours. The reaction mixture was then filtered to remove traces of
insoluble material, and the filtrate was stored at room temperature in the presence of hexanes
vapour. After several days, X-ray quality crystals of 1-Dy (ca 5 mg, unoptimized) were obtained
and their identity was confirmed by single crystal X-ray diffraction, so no further crystalline
material was isolated.

{{[UO214][Sm(MeCN)e]}n (2-Sm)
Acetonitrile (50 mL) was added to a 100 mL Schlenk flask containing [UO2CI2(THF)2] (0.536 g, 1.10
mmol) and [SmI2(THF)2] (1.22 g, 2.21 mmol), resulting in the formation of a brown/green/yellow
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solution. After approximately 1 hour the solution had lightened in colour and a yellow/green
precipitate had formed; the reaction was allowed to stir overnight at room temperature. The solution
was then filtered and the green/brown mother liquors were stored for 2 days at —20 °C, providing 2-
Sm as green/yellow needles which were isolated by filtration and dried under reduced pressure; yield
= 0.861 g (66 %). X-ray quality crystals of 2-Sm were obtained from storage of an acetonitrile
solution of [UO2Cl2(THF)2] and [Sml2(THF)2] at room temperature overnight. Note: Drying crystals
of 2-Sm under reduced pressure, or storing them in the absence of acetonitrile at ambient temperature
and pressure N2 atmosphere results in loss of one MeCN ligand. Elemental Analysis Calcd (%) for
Ci0H1514N502SmU: C, 10.60; H, 1.33; N, 6.18. Found: C, 10.36; H, 1.43; N, 5.99. IR: v(MeCN) =
2303, 2275 em™!; v(asym. UO2") = 722 cm™! (nujol). Laser irradiation caused excessive fluorescence
of the sample in the Raman experiment so the symmetric [UO2]" stretch could not be located.

[(UO:14){Dyl(py)s}a] ] (3-Dy)

Pyridine (1 mL) was added to a 3 mL vial containing [UO2{N(SiMe3)2}2(THF)2] (24.6 mg, 3.35x10~
2 mmol) and Dyl2 (42.2 mg, 0.100 mmol), producing a red/orange coloured solution. The reaction
solution was stored overnight at room temperature then filtered through glass filter paper to remove
any insoluble material. The filtrate was then stored at room temperature for several days to obtain X-
ray quality crystals of 3-Dy via vapour diffusion with hexanes. Yield of single-crystal quality material
(allowed to dry at room temperature inside the glove box under an N2 atmosphere) 10 mg (14 %).
Elemental Analysis Calcd (%) for CsoHsoDy216N1002U: C, 27.96; H, 2.35; N, 6.52. Found: C, 27.83;
H, 2.43; N, 6.25 %.

[(UO2l4){UClI(py)a}2] (4)

Pyridine (10 mL) was added into 20 mL vial containing [UO2Cl2(THF)2] (0.392 g, 0.808 mmol) and
[Ulz(dioxane)is] (1.22 g, 1.62 mmol) in the glove box, resulting in the formation of a deep red
solution. After approximately 1 hour the solution had lightened in colour and a yellow/green
precipitate had formed; the reaction was allowed to stir overnight at room temperature. The mother
liquors were then decanted from the precipitated product, and the remaining pistachio coloured solid
was washed with pyridine (2 x 10 mL). Yield = 1.47 g (82 %). X-ray quality crystals were obtained
via vapour diffusion of hexanes into a solution of [UO2CI2(THF):2] and [UIs(dioxane)i.s] in pyridine
at room temperature. Elemental Analysis Caled (%) for C40H40CL2I6NsO2U3: C, 21.73; H, 1.82; N,
5.07. Found: C, 21.80; H, 1.83; N, 5.13.

Reactions of the multinuclear complexes

Reaction of 1-Sm with 18-crown-6; synthesis of [{UO2(18-crown-6)}(Smla)]l (5-Sm)

Method a: THF (60 mL) was added to a 100 mL Schlenk flask containing [UO2Cl2(THF)2] (65.3 mg,
0.135 mmol), [SmI2(THF)2] (92.9 mg, 0.168 mmol) and 18-crown-6 (44.5 mg, 0.168 mmol) via
cannula and the reaction mixture was stirred overnight at room temperature, resulting in the
precipitation of a beige solid. The beige solid was isolated by filtration and dried under reduced
pressure and characterised as [{UO2(18-crown-6)}2(Smls4)]l (5-Sm). Yield = 62.7 mg (50 %).
Elemental Analysis Calcd (%) for C24Hasls016SmUz: C, 15.56; H, 2.61. Found: C, 15.45; H, 2.67.
IR: v(asym. UO2") = 834 cm™! (nujol). Dissolution in pyridine releases free 18-cr-6, and the complex
decomposes slowly on contact with CH2Clz in which it is only sparingly soluble, so an NMR spectrum
was not obtained.

Method b: THF (60 mL) was added into a 100 mL Schlenk flask containing 1-Sm (309 mg, 0.146
mmol) and 18-crown-6 (96.2 mg, 0.364 mmol) via cannula and the reaction mixture was stirred for 3
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days at room temperature, resulting in precipitation of a beige solid. The beige solid was isolated by
filtration and dried under reduced pressure. Yield = 102 mg (38 %). Elemental Analysis Caled (%)
for C24HasIsO16SmUz: C, 15.56; H, 2.61. Found: C, 15.60; H, 2.67. IR: v(asym. UO2") = 836 cm™!
(nujol).

The 'H NMR spectrum of a ds-pyridine solution of 5-Sm (15.4 mg, 8.31x10~* mmol, ~0.6 mL) and
Si(SiMes)s (5.3 mg, 1.7x102 mmol; internal standard) shows by integration that the solvent has
displaced the 18-crown-6. '"H NMR (ds-pyridine, 298 K, 500 MHz): § 3.63 (s, 24H, 18-crown-6),
0.25 (s, 36H, Si(SiMe3)4). 5-Sm is insoluble in all other common polar aprotic solvents tried (ds-THF,
CD2Cl2, CeDs, ds-toluene), but spectra of samples in these contain no resonances, supporting the
formulation of 5-Sm. It is known that this crown ether is readily displaced from U(VI) uranyl crown
ether complexes by competing donors.!”!

Reaction of 1-Sm with KO'Bu; synthesis of [{UO2(py)st(Kl2(py)2)]n

Pyridine (3 mL) was added to a 7 mL vial containing 1-Sm (148 mg, 6.97x10~2 mmol) and KO'Bu
(15.7 mg, 0.140 mmol), which resulted in immediate precipitation of both a white and an orange
solid; the reaction was stirred for 3 hours at room temperature. The mother liquors were then decanted
and the remaining orange solid was dried under reduced pressure. Yield = 62.4 mg (40 %).

Reaction of 1-Sm with KN(SiMes)2; synthesis of [{UO2(py)s}(Kl2(py)2)]n

Pyridine (2 mL) was added to a 7 mL vial containing 1-Sm (39.1 mg, 1.85x10 mmol) and
KN(SiMe3)2 (14.8 mg, 7.42x1072 mmol), which resulted in the immediate precipitation of both a
white and an orange solid. The solution was filtered, and the filtrate was allowed to stand at room
temperature overnight. The mother liquors were then decanted and the remaining orange solid was
dried under reduced pressure. Yield = ~5 mg (48 %).

Crystallographic Details

General X-ray experimental details

The molecular structures of 1-Sm-3py, 1-Dy-3py and 4-4py were solved using SHELXT!®! and least-
square refined using SHELXLP! in Olex2.['% 2-Sm and 3-Dy-4py were solved using SuperFlip in
SHELXS-97,[''l and were refined using a full-matrix least-square refinement on |F|* using SHELXL-
971 in the WinGX suite.['?! Hydrogen atoms were treated by constrained refinement.

One lattice pyridine molecule (N(7), C(31)-C(35)) and the iodide anion in 1-Sm-3py are
occupationally disordered over overlapping positions, therefore their occupancy was set to 0.5. One
lattice pyridine molecule (N(6), C(26)-C(30)) and the iodide anion in 1-Dy-3py are occupationally
disordered over overlapping positions, therefore their occupancy was set to 0.5. One of the lattice
pyridine molecules in 3-Dy-4py (N(80), C(81)-C(85); N(90), C(91)-C(95)) is positionally disordered
over two positions, therefore the occupancy of all 10 atoms was set to 0.5 with thermal parameters
refined anisotropically and restrained using the SIMU command. In addition, one of the coordinated
pyridine ligands in 3-Dy-4py (N(7), C(31)-C(35)) is positionally disordered over two positions; it’s
thermal parameters were split into two parts with their occupancy refined in a 38:62 ratio (py-A:py-
B). Furthermore, the geometry of py-A was constrained using the AFIX 66 command, and the
geometry of py-B was constrained to the same geometry as py-A through the use of the SAME
command. Finally, the thermal parameters of N(7A) and N(7B) were restrained to have similar
thermal parameters using the SIMU command, and those of C(31A)-C(35B) were restrained to have
similar thermal parameters using the SIMU command; the thermal parameters of all the disordered
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atoms were refined anisotropically. The iodo ligands in the UO:l4 unit in 4-4py (I(3A), I(3B), I(4A),
I(4B)) are positionally disordered over two positions, so were split into two parts and refined with
occupancies of 0.9:0.1 for I-A:I-B. In addition, the iodo ligand bound to U(1) (I(1A), I(1B)) is
positionally disordered over two positions, and was split into two parts with occupancies of 0.9:0.1
for I-A:I-B; the thermal parameters of all i0odo ligand were refined anisotropically with no restraints.
Furthermore, the thermal parameters of N(2) and N(3) were constrained to be the same as one another

using the EADP command.
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Standard X-ray details for each complex
Table S1. Crystallographic data summary for complexes 1-Sm-3py, 1-Dy-3py and 2-Sm.

Complex
label in cif file
Local code

Chemical
formula

Mr

Crystal
system, space
group
Temperature
)
a,b,c(d)

o, B,y (%)

V (A%

z

Radiation type
p (mm")

Crystal size
(mm)

Diffractometer

Absorption
correction

Tmin; Tmax

9mim emax

No. of
measured,
independent
and observed
[1>20(1)]
reflections

Rinl

R[F*>
26(F?)],
WR(F?), S
No. of
reflections

No. of
parameters

No. of
restraints

Apmax, Apmin (C
A3

[{UOx(py)s}2(SmLy)]I (1-Sm-3py)
1-Sm.3py
exp_ 1664

CsoHs0l4N19004SmU,-3(CsHsN)-I

2353.22

monoclinic, P2,/n

173(2)

12.1522(2), 17.1078(2), 18.4527(2)
90, 103.847(1), 90

3724.78 (9)

2

Mo Ka

7.24

0.19 x 0.13 x 0.07

Xcalibur, Eos

Analytical CrysAlis PRO, Agilent
Technologies, Version 1.171.37.34
(release 22-05-2014 CrysAlis171
NET) (compiled May 22
2014,16:03:01) Analytical numeric
absorption correction using a
multifaceted crystal model based on
expressions derived by R.C. Clark &
J.S. Reid. (Clark, R. C. & Reid, J. S.
(1995). Acta Cryst. A51, 887-897)
Empirical absorption correction using
spherical harmonics, implemented in
SCALE3 ABSPACK scaling
algorithm.

0.3400, 0.6312
3.287, 28.590

84459, 8528, 7549

0.049

0.051, 0.145, 1.09

8528

427

0

1.640,-5.972

[{UOx(py)s}2(Dylo)]l (1-Dy-3py)
1-Dy.3py
pl6198

CsoHsoDyLN 1g04U5-3(CsH;sN) T

2365.36

monoclinic, P2;/n

173(2)

12.2179(2), 17.1019(2), 18.4444(2)
90, 104.201(1), 90

3736.15(8)

2

Mo Ka

7.43

0.43 x0.24 x 0.12

Xcalibur, Eos

Analytical CrysAlis PRO 1.171.38.42b

(Rigaku Oxford Diffraction, 2015)
Analytical numeric absorption
correction using a multifaceted crystal
model based on expressions derived
by R.C. Clark & J.S. Reid. (Clark, R.
C. & Reid, J. S. (1995). Acta Cryst.
A51, 887-897) Empirical absorption
correction using spherical harmonics,
implemented in SCALE3 ABSPACK
scaling algorithm.

0.665, 0.863
3.282,29.019

97459, 9596, 8057

0.042

0.045, 0.127, 1.07

9596

427

145

2.623,-3.956

[(UOL) {Sm(MeCN)g} ] (2-Sm)
2-Sm
p17008 077orth

C 1 2H 1 8I4NﬁOZSmU

1174.30

Orthorhombic, Pnam

298(2) K

15.7944(3), 10.2473(2), 17.3932(4)
90, 90, 90

2815.1(1)

4

Mo Ka

12.213

0.30 x 0.16 x 0.08

Xcalibur, Eos

Analytical CrysAlis PRO 1.171.38.42b
(Rigaku Oxford Diffraction, 2015)
Analytical numeric absorption correction
using a multifaceted crystal model based on
expressions derived by R.C. Clark & J.S.
Reid. (Clark, R. C. & Reid, J. S. (1995).
Acta Cryst. A51, 887-897) Empirical
absorption correction using spherical
harmonics, implemented in SCALE3
ABSPACK scaling algorithm.

0.1207, 0.4416
3.317,29.924

65045, 3339, 3022

0.0608

0.0259, 0.0538, 1.117

3339

137

1.379, —0.828

Table S2. Crystallographic data summary for complexes 3-Dy-4py and 4-4py.

Complex
label in cif file

Local code

[(UO:1y){Dyl(py)s}-] (3-Dy-4py)
3-Dy.4py
p17020a_tri

[(UO,L){UICI(py)s}-] (4-4py)

4.4py
po16003
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Chemical formula
Mr

Crystal system,
space group

Temperature (K)
a, b, c(A)

o B,y (%)

V(A%

z

Radiation type

u (mm)

Crystal size (mm)

Diffractometer

Absorption
correction

Tonins Tnax

emim 9max

No. of measured,
independent and
observed [I >
26(1)] reflections

Rinl

RIF? > 26(F)],
WR(F2), S

No. of reflections
No. of parameters

No. of restraints

CsoHsoDyls0,U-3(CsHsN)-0.5(CoH;oN>)
2463.83

Triclinic, P-1

1732) K

13.0413(2), 15.3427(3), 20.2947(4)
86.671(2), 81.741(2), 82.841(2)
3983.96(13)

2

Mo Ka

6.258

0.61 x 0.36 x 0.08

Xcalibur, Eos

Analytical CrysAlis PRO 1.171.38.42b (Rigaku Oxford
Diffraction, 2015) Analytical numeric absorption
correction using a multifaceted crystal model based on
expressions derived by R.C. Clark & J.S. Reid. (Clark, R.
C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm.

0.1148, 0.6344
2.8767,30.2637

78601, 18230, 14658

0.0405
0.0341, 0.0639, 1.045

18230
929
294

APmaxs APmin (€ A7) 1.334,-1.058

S7

C40H40ClLI6NgO,U3-4(CsH;sN)
2527.59

monoclinic, P2,/n

120

12.5860(3), 15.6705(4), 18.8464(5)

90, 105.211(2), 90

3586.8

2

Mo Ka

9.460

0.16 x 0.15 x 0.08

SuperNova, Dual, Cu at zero, Atlas

Gaussian CrysAlis PRO 1.171.38.42b (Rigaku Oxford
Diffraction, 2015) Numerical absorption correction based
on gaussian integration over a multifaceted crystal model
Empirical absorption correction using spherical
harmonics, implemented in SCALE3 ABSPACK scaling
algorithm.

0.565,0.711

3.403,29.171

63656, 9339, 7079

0.066
0.056, 0.127, 1.033

9339

406

0

2.798, -2.685



Figure S1. Solid-state structure of 1-Sm-3py with ellipsoids drawn at 50% probability. Hydrogen
atoms, lattice solvent and the iodide counter-anion are omitted for clarity. Key bond lengths [A] and
angles [°]: U(1)-O(1) = 1.801(6); U(1)-0O(2) = 1.916(6); U(1)-N(1) = 2.576(7); U(1)-N(2) =
2.597(8); U(1)-N(@3) = 2.588(7); U(1)-N(4) = 2.626(8); U(1)-N(5) = 2.584(7); Sm(1)-I(1) =
2.993(1); Sm(1)-1(2) = 3.1135(6); Sm(1)-O(2) = 2.330(6); O(1)-U(1)-O(2) = 177.7(3). O(2)—
Sm(1)-0(2") = 180.0(3); N(1)-U(1)-N(2) = 71.0(3); N(2)-U(1)-N(3) = 71.8(2); N(3)-U(1)-N(4) =
70.5(2); N(4)-U(1)-N(5) = 72.2(2); I(1)-Sm(1)-1(2) = 89.39(3); I(2)-Sm(1)-I(1") = 90.61(3); I(1")-
Sm(1)-1(2") = 89.39(3); I(2")-Sm(1)-I(1) = 90.61(3); I(1)-Sm(1)-I(1") = 180.0; I(2)-Sm(1)-1(2") =
180.0.

[+ T

Figure S2. Solid-state structure of 1-Dy-3py with ellipsoids drawn at 50% probability. Hydrogen
atoms, lattice solvent and the iodide counter-anion are omitted for clarity. Key bond lengths [A] and
angles [°]: U(1)-O(1) = 1.808(5); U(1)-O0(2) = 1.919(5); U(1)-N(1) = 2.586(6); U(1)-N(2) =
2.582(6); U(1)-N(3) = 2.625(7); U(1)-N(4) = 2.584(6); U(1)-N(5) = 2.584(6); Dy(1)-1(1) =
2.9992(7); Dy(1)-1(2) = 3.0655(5); Dy(1)-O(2) = 2.270(5); O(1)-U(1)-O(2) = 177.6(2); O(2)—
Dy(1)-0(2") = 180.0; N(1)-U(1)-N(2) = 71.8(2); N(2)-U(1)-N(3) = 70.43(19); N(3)-U(1)-N(4) =
71.77(19); N(4)-U(1)-N(5) = 73.82(19); I(1)-Dy(1)-1(2) = 90.46(2); I(2)-Dy(1)-1(1") = 89.54; I(1")—
Dy(1)-1(2")=90.46(2); 1(2")-Dy(1)-I(1) = 89.54; I(1)-Dy(1)-1(1") = 180.0; 1(2)-Dy(1)-1(2") = 180.0.
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Figure S3. Solid-state structure of 2-Sm with ellipsoids drawn at 50% probability. Hydrogen atoms
and lattice solvent are omitted for clarity. Key bond lengths [A] and angles [°]: U(1)-O(1) = 1.868(5);
U(1)-0(2)=1.883(4); Sm(1)-O(1)=2.351(5); Sm(1)-O(2) =2.318(4); U(1)-1(1)=3.1007(4); U(1)-
I(2) = 3.1313(4); Sm(1)-N(1) =2.518(6); Sm(1)-N(2) = 2.563(5); Sm(1)-N(3) = 2.556(7); Sm(1)—
N(4) = 2.507(7). O(1)-U(1)-O(2) = 179.3(2); O(1)-Sm(1)-0O(2) = 145.62(17); I(1)-U(1)-1(2) =
89.412(11); I1(2)-U(1)-1(2") = 88.379(17); IR"Y-U(1)-I(1) = 89.412(11); I(1)-U(1)-I(1") =
92.786(16); I(1)-U(1)-1(2") = 177.668(12).

Figure S4. Solid-state structure of 3-Dy-4py with ellipsoids drawn at 50% probability. Hydrogen
atoms and lattice solvent omitted for clarity. One of the pyridine ligands coordinated to Dy(2) is
disordered over two positions (N(6), C(31), C(32), C(33), C(34), C(35); occupancy of orientation
A:B is equal to 0.38:0.62); both orientations are shown. Key bond lengths [A] and angles [°]:U(1)-
O(1) =2.058(3); U(1)-0O(2) = 2.068(3); U(1)-I(1) = 3.1504(4); U(1)-1(2) = 3.1588(4); U(1)-I(3) =
3.1618(4); U(1)-1(4) = 3.1425(4); Dy(1)-O(1) = 2.126(3); Dy(1)-I(5) = 3.0914(4); Dy(1)-N(1) =
2.557(4); Dy(1)-N(2) = 2.545(5); Dy(1)-N(3) = 2.575(4); Dy(1)-N(4) = 2.537(5); Dy(1)-N(5) =
2.542(4); Dy(2)-0(2) = 2.119(3), Dy(2)-1(6) = 3.1109(4); Dy(2)-N(6) = 2.566(5); Dy(2)-N(7) =
2.547(15)/2.514(12); Dy(2)-N(8) = 2.544(4); Dy(2)-N(9) = 2.519(5); Dy(2)-N(10) = 2.591(4).
O(1)-U(1)-0(2) = 177.67(14); 1(5)-Dy(1)-O(1) = 176.59(9); 1(6)-Dy(2)-O(2) = 178.31(9); Dy(1)-
O(1)-U(1)=170.47(19); Dy(2)-O(2)-U(1) = 173.61(18); I(1)-U(1)-1(2) = 91.43(9); 1(2)-U(1)-1(3)
= 88.135(11); I3)-U(1)-1(4) = 91.565(11); I(4)-U(1)-I(1) = 90.235(11); I(1)-U(1)-I(3) =
177.569(11); 1(2)-U(1)-1(4) = 178.421(11); N(1)-Dy(1)-N(2) = 75.01(14); N(2)-Dy(1)-NQ3) =
72.56(15); N(3)-Dy(1)-N(4) = 70.10(15); N(4)-Dy(1)-N(5) = 70.02(14); N(5)-Dy(1)-N(1) =
71.30(15); N(6)-Dy(2)-N(7) = 71.8(10)/ 68.0(7); N(7)-Dy(2)-N(8) = 69.7(10)/74.0(7); N(8)—
Dy(2)-N(9) = 72.59(15); N(9)-Dy(2)-N(10) = 70.77(14); N(10)-Dy(2)-N(6) = 74.24(16).
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Figure S5. Solid-state structure of 4-4py with ellipsoids drawn at 50% probability. Hydrogen atoms
and lattice solvent are omitted for clarity. The iodo ligands bound to U(2), and I(1) and the N(3)-
pyridine ligand are disordered over two positions; key bond lengths [A] and angles [°] are given for
the orientation of highest occupancy (A = 0.9, B =0.1). Note: Refinement of the B-orientation of the
N(3)-pyridine ligand was unstable, therefore it was not modelled in the final solution. U(1)-O(1) =
2.042(5); U(2)-O(1) = 2.166(5); U(1)-N(1) =2.578(7); U(1)-N(2) = 2.609(7); U(1)-N(3) = 2.56(1);
U(1)-N(4) =2.632(8); U(1)-1(1) = 3.0679(8); U(1)-CI(1) = 2.640(2); U(2)-1(3) = 3.0572(8); U(2)—
[(4) =3.0436(8); CI(1)-U(1)-O(1) = 173.9(2); O(1)-U(2)-O(1') = 180.0; N(1)-U(1)-N(2) = 67.0(2);
N(2)-U(1)-N(3) = 70.4(3); N(3)-U(1)-N(4) = 69.1(3); N(4)-U(1)-I(1) = 76.2(2); 1(3)-U(2)-1(4) =
88.51(3); I(4)-U(2)-1(3") = 91.49(3); I(3")-U(2)-1(4") = 88.51(3); 1(4"-U(2)-1(3) = 91.49(3); 1(3)-
U(2)-1(3") = 180.0; I(4)-U(2)-1(4") = 180.0.

S10



Variable Temperature SQUID Magnetic Measurements and Analysis

The susceptibility for 1-Sm is essentially featureless, the ¥T vs T plot for 4 shows a clear upturn
between 8 and 6 K followed by a sharp drop upon further decreasing the temperature. Such an upturn
is usually considered as a signature of ferromagnetic coupling, which is extremely unusual in oxygen-
bridged U(IV) complexes. However, an alternative possibility is that each of the two outer U(IV)
interacts antiferromagnetically with the central one, whilst also carrying a larger magnetic moment.
We favour the latter hypothesis in this case, because fitting the high-temperature part of the inverse
susceptibility of 4 (

6) with a Curie-Weiss law ¢! = 8(T — ©)/pef? gives e = 21.4 p? and ® = -36.2 K; the negative
Curie-Weiss temperature © usually indicates the presence of antiferromagnetic interactions, whereas
the obtained value for the effective magnetic moment is only slightly larger than that corresponding
to two U(IV) ions and definitely lower than for three.

O T T T T T T T T T T T T
0 50 100 150 200 250 300
T (K)

Figure S6: inverse dc magnetic susceptibility x' as a function of temperature T plotted for 4. The
filled black dots are the experimental points, the red line is the fit to a Curie-Weiss law (see the main
text for more details).
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Figure S7: Zero-field ac magnetic susceptibility of 4 plotted as a function of temperature T.

The ac magnetic susceptibility of 4 was measured at various temperatures, frequencies and fields.
Unfortunately we did not find any significant slowing down of the magnetic relaxation processes.

The zero-field data are presented in Figure S7; ac magnetic susceptibility curves measured for 4
without external dc magnetic field.

S12



FTIR and Raman Spectra

General Details: IR samples were mulled in nujol. Raman spectra were recorded on powders sealed
in melting point capillaries using either a 785nm laser (100 % laser power) or 514nm (10 % power,
100 % focus or 50 % power, 25 % focus; 100 % power showed sample degradation after 1 scan).

Some of the data are presented without assignment as it is not clear whether sample degradation is
occurring in the Raman experiments. The symmetric stretch is anticipated to be located at lower
energy than the associated antisymmetric stretch, but in some cases spectra of analytically pure
material are either blank or complicated. Where assignments have been made, these are tentative, and
have been made by comparison with literature precedents.

IR Spectrum of 1-Sm in Nujol Mull
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Figure S8. IR spectrum of 1-Sm (method a) in nujol mull.

Expanded View (1700-500 cm™?) of the IR Spectrum of 1-Sm in Nujol Mull
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Figure S9. Expansion of the IR spectrum of 1-Sm in nujol mull. The antisymmetric stretch,
v3(UQOy) is tentatively assigned as 818 cm’'.
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Stoichiometric [UO,Cl,(THF),] + [SmI,(THF),] Reaction with an lodide Source
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Figure S10. IR spectrum of 1-Sm made by method b from stoichiometric U/Sm and an external

iodide source. nujol mull.

Stoichiometric [UO,Cl,(THF),] + [SmI,(THF),] Reaction with an lodide Source
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Figure S11. Expansion of the IR spectrum of 1-Sm made by method b from stoichiometric U/Sm

and an external iodide source. nujol mull.
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Raman Spectrum of 1-Sm (Laser Wavelength = 785 nm)
200000

180000

2,4,6 carbon radial stretch of
160000

, -1

pyridine 979 cm

140000 —
120000
100000

50000 vV sym region . [UOZ]

Intensity (ctss™)

60000

40000

20000

0 200 400 600 800 1000 1200 1400 1600 1800
av (em-1)

Expansion, 1-Sm
40000

35000
30000
25000
20000
15000

Intensity (cts s7%)

10000

5000

600 650 700 750 800 850 900 950
Av (cm™?)

Figure S12. Raman spectrum of 1-Sm. Scanned from 1600-100 cm™' (upper) and 950-600 cm™!
(lower). laser wavelength = 785 nm, laser focus = 100%, laser power = 100%, exposure = 25
seconds, scans = 15.

Raman Spectrum of 1-Sm (Laser Wavelength = 514 nm)
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Figure S13. Raman spectrum of 1-Sm. Scanned from 1700-100 cm™', laser wavelength = 514 nm,
laser focus = 100%, laser power = 10%, exposure = 25 seconds, scans = 15. It is unclear whether
the sample has decomposed.
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IR Spectrum of 1-Dy in Nujol Mull
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Figure S14. IR spectrum of 1-Dy in nujol mull.

Expanded View (1700-500 cm™) of the IR Spectrum of 1-Dy in Nujol Mull
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Figure S15. Expansion of the IR spectrum of 1-Dy in nujol mull. The antisymmetric stretch,
v3(UQ2) is tentatively assigned as 825 cm™)
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Figure S16. Raman spectrum of 1-Dy. Scanned from 1600-100 cm™!, laser wavelength = 785 nm,

laser focus = 100%, laser power = 100%, exposure = 25 seconds, scans = 15.
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Figure S17. IR spectrum of 2-Sm in nujol mull.
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Raman Spectrum of 2-Sm (Laser Wavelength = 785 nm)
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Figure S18. Raman spectrum of 2-Sm. Scanned from 1600-100 cm™!, laser wavelength = 785 nm,
laser focus = 100%, laser power = 50%, exposure = 45 seconds, scans = 15.

Raman Spectrum of 2-Sm (Laser Wavelength = 514 nm)
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Figure S19. Raman spectrum of 2-Sm. Scanned from 1700-100 cm™, laser wavelength = 514 nm,
laser focus = 25%, laser power = 50%, exposure = 25 seconds, scans = 15.
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IR Spectrum of 3-Dy in Nujol Mull
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Figure S20. IR spectrum of 3-Dy in nujol mull.
Raman Spectrum of 3-Dy (Laser Wavelength =514 nm)
7000
sym. [UO,] =651, 661 cm™, ——————— 2,4,6 carbon radial stretch
6000 Ofpyridineu
1012cm™
5000
5 4000
E u
$ 3000
E
2000
1000
0
0 200 400 600 200 1000 1200 1400 1600 1800
fv (em-1)

Figure S21. Raman spectrum of 3-Dy. Scanned from 1700-100 cm™!, laser wavelength = 514 nm,
laser focus = 25%, laser power = 50%, exposure = 25 seconds, scans = 15.
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IR Spectrum of 4 in Nujol Mull
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Figure S22. IR spectrum of 4 in nujol mull.

Expanded View (1700-500 cm™) of the IR Spectrum of 4 in Nujol Mull
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Figure S23. Expansion of the IR spectrum of 4 in nujol mull.
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Raman Spectrum of 4 (Laser Wavelength = 785 nm)
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Figure S24. Raman spectrum of 4. Scanned from 1600-100 cm™!, laser wavelength = 785 nm, laser
focus = 100%, laser power = 50%, exposure = 45 seconds, scans = 15. Tentative assignment of
Vsymm 18 labelled.

Raman Spectrum of 4 (Laser Wavelength = 514 nm)
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Figure S25. Raman spectrum of 4. Scanned from 1700-100 cm ™!, laser wavelength = 514 nm, laser
focus = 25%, laser power = 50%, exposure = 25 seconds, scans = 15.
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IR Spectrum of 5-Sm in Nujol Mull
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Vasymm is labelled.

Expanded View (1500-550 cm™?) of the IR Spectrum of 5-Sm in Nujol Mull

Figure S26. IR spectrum of 5-Sm prepared via Method a in nujol mull. Tentative assignment of
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Figure S27. Expansion of the IR spectrum of 5-Sm prepared via Method a in nujol mull.
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IR Spectrum of 5-Sm in Nujol Mull
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Figure S28. IR spectrum of 5-Sm prepared via Method b in nujol mull.

Expanded View (1650-500 cm™) of the IR Spectrum of 5-Sm in Nujol Mull
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Figure S29. Expansion of the IR spectrum of 5-Sm prepared via method b in nujol mull. Tentative
assignment of Vasymm is labelled.
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Raman Spectrum of 5-Sm (Laser Wavelength = 785 nm)
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Figure S30. Raman Spectrum of 5-Sm. Scanned from 1600-100 cm™!, laser wavelength = 785 nm,
laser power = 100%, laser focus = 100%, exposure = 25 seconds, scans = 15. Tentative assignment
of Vsymm 1s labelled.
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Figure S31. Raman Spectrum of 5-Sm, with suggested UO2 symmetric stretch labelled as 737 cm™!
and anticipated region for pyridine vibrations labelled, supporting the absence of coordinated
pyridine. Scanned from 1700-100 cm™', laser wavelength = 514 nm, laser power = 50%, laser focus
= 25%, exposure = 25 seconds, scans = 15.
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NMR Spectra
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Figure S32. 'H NMR spectrum of 5-Sm in ds-pyridine (500 MHz). Si(Me3)4 was added as an
internal standard (in a 2:1 ratio relative to 5-Sm) to quantify the amount of 18-crown-6 displaced
from U upon solvation in pyridine. The integrals are approximately 22:36 for 18-crown-
6:Si(SiMes)s, in good agreement to the expected values (24:36).
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UVVisNIR Spectra
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Figure S33. UV/VIS spectrum of 1-Sm in pyridine.
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Figure S34. UV/VIS/NIR spectrum of 1-Sm in pyridine.
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Molar Absorption Coefficient (M lem?)

45000

UV/Vis Spectrum of 1-Sm in CH,Cl, (0.018 mM)

35000 -

30000 4

25000 4

20000 A

15000 —J

Wavelength (nm)

10000 A
5000 A
0 ; : : . ; . :
200 300 400 500 600 700 800 900 1000
Wavelength (nm)
Figure S35. UV/VIS spectrum of 1-Sm in CH2Cly, dilute.
UV/VIS Spectrum of 1-Sm in CH,Cl, (0.16 mM)
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Figure S36. UV/VIS spectrum of 1-Sm in CH2Cla.
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Molar Absorption Coefficient (Mcm1)
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Figure S37. UV/VIS/NIR spectrum of 1-Sm in CH2Clz, concentrated.
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UV/VIS Spectrum of 1-Dy in Pyridine (0.16 mM)
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Figure S38. UV/VIS spectrum of 1-Dy in pyridine.
UV/VIS/NIR Spectrum of 1-Dy in Pyridine (4.7 mM)
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Figure S39. UV/VIS/NIR spectrum of 1-Dy in pyridine, concentrated.
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Molar Absorption Coefficient (M 'em?)
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Figure S40. UV/VIS spectrum of 1-Dy in CH2Clz, dilute.
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Figure S41. UV/VIS spectrum of 1-Dy in CH2Cla.
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Molar Absorption Coefficient (M em?)

UV/VIS/NIR Spectrum of 1-Dy in CH,Cl, (2.86 mM)
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Figure S42. UV/VIS/NIR spectrum of 1-Dy in CH2Cl2, concentrated.
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