1	Reproductive toxicity of linuron following gestational exposure in rats and underlying	
2	mechanisms	
3	Hongwei Ding ¹ , Wei Zheng ² , Hua Han ¹ , Xiyin Hu ¹ , Binli Hu ¹ , Feng Wang ¹ , Liyu Su ¹ , Hong Li ¹ ,	
4	and Yan Li ^{1,*}	
5	¹ Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi,	
6	Guizhou, PRC	
7	² School of Health Sciences, Purdue University, West Lafayette, Indiana, USA	
8		
9	Running Title: Reproductive Toxicity of Linuron in Male Rats	
10		
11	*To whom all correspondences shall be addressed;	 Deleted: correspondances
12	Yan Li, Ph.D.	Deleted: sent
13	Department of Hygiene Toxicology	
14	School of Public Health	
15	Zunyi Medical College	
16	Zunyi, Guizhou 563000	
17	China.	
18	E-mail: dinghw0222@163.com	
19		
20		
21	Submitted to Toxicol Letters	

24	Abstract		
25	Linuron is a widely used herbicide in agriculture; its endocrine disruptive toxicity has recently	- {	Deleted: argriculture
26	received public attention. This study was designed to examine the developmental toxicity of		
27	linuron on the reproductive system of male offsprings following maternal exposure. Mother rats	- {	Deleted: male offspring
28	received oral gavages of linuron, once daily, at the dose of 0, 50, 100, 150 or 200 mg/kg, from		
29	gestational day (GD)13 to GD18; gonadal organs from GD20 fetuses were examined. Data	- [Deleted: godanal
30	indicated that exposed male offsprings had a significantly shortened anogenital distance.	- {	Deleted: the
31	Pathological examination further revealed a lack of fusion in the urogenital fold in treated fetuses,		
32	the damaged seminiferous tubules, and the injured Leydig cell ultrastructure. Analysis of serum	- {	Deleted: injuired
33	testosterone concentrations at postnatal day (PND)2 showed a significant dose-related reduction		
34	(about 33.7-58.75%, r=-0.838, p<0.05) as compared to controls. Immunohistochemical results	- [Deleted: 34-46
35	demonstrated a significantly reduced expression of enzymes pertinent to the testosterone		Deleted: 845
36	production including P450scc, 3β-HSD, and PCNA in Leydig cells (p<0.05). qPCR studies		Deleted: Immunohistoche mistrical
37	confirmed decreased levels of mRNAs encoding P450scc, 3β-HSD and PCNA (p<0.05). Taken		Deleted: testerostone
38	together, these data suggest that maternal exposure to linuron hampers the male gonadal organ	- {	Deleted: togather
39	development; this appears to be due to linuron's direct action on the production of testosterone in	- {	Deleted: T
40	fetal and postnatal offspring.	- {	Deleted: offsprings
41			
42	Key words: linuron; testosterone; offspring; reproductive toxicity; developmental toxicity; fetus;	{	Formatted: Widow/Orphan control
43	Levdig cells		Deleted: linruron

Deleted: testerosterone

60 Introducti	on
---------------	----

61	Reproductive disorders due to environmental exposure to antiandrogenic pesticides,		Deleted: Reproducitive
62	fungicides, and herbicides have been well recognized in literature (Auger et al., 2013; Klot et al.,		Deleted: antiandrogenic
63	2014; Monosson et al., 1999;). Particularly alarming is the increased incidence of developmental		
64	disorders in male reproductive system tract due to exposure to these toxicants (Sharpe and		Deleted: of
65	Skakkebaek, 1993; Storgaard et al., 2006). Toxic chemicals can interact with the androgen		
66	receptor (AR), alter the production and metabolism of testosterone, and/or directly damage the		Deleted: testerosterone
67	formation of male reproductive organs in the fetal stage. While studies on the reproductive		
68	toxicity of antiandrogenic substances are extensive, the mechanisms underlyiong these toxic		Deleted: of
69	actions in most cases remain elusive.		
70	Linuron (also called methoxydiuron or afalon; CAS#330-55-2) is a widely used herbicide		
71	in the production of soybeans, corn, cotton, carrots, wheat, peanuts, sugar cane, fruit and other		
72	vegetables. Reports in literature suggest that linuron acts as an environmental endocrine		
73	disruptor; short-term exposures to linuron in rats result in a reduced production of testosterone		
74	(Lambright et al., 2000; Santos et al., 2014; Wilson et al., 2009). Exposure to linuron in mothers		
75	also causes the abnormal sexual differentiation and development in male offspring, such as		
76	hypospadias, cryptorchidism, prostate hyperplasia, and testicular atrophy (McIntyre, et al., 2000;		Deleted: seepered epididymis,
77	Hotchkiss et al., 2004; Sultan et al., 2001). The deformity of the male reproductive system is		Deleted: Barlow
78	irreversible and persistent, and may last for lifetime. Limited data from in vivo and in vitro		Deleted: 3 Deleted: s
79	experiments suggest that linuron may compete with androgen for the AR binding (Gray et al.,		Deleted: the
80	2001; Lambright et al., 2000). Yet, the current understanding on how maternal exposure to this	Ň	Deleted: Liminted

94	underlies linuron toxicity is incomplete.		
95	The purpose of this study was to explore and confirm the developmental toxicity of		
96	linuron on male reproductive system following materal exposure by examining the changes in		Deleted: . We first set out to
97	male sex hormone levels (testosterone) as well as in male reproductive organs in fetal and	``	Deleted: e
98	postnatal stages. It is known that the production of testosterone is regulated by P450scc, which	``. 	Deleted: er
99	catalyzes the formation of pregnenolone, from cholesterol, and by 3β -HSD, which converts		linuron exposure
100			Deleted: exposur
100	pregnenoione to progesterone (Arukwe, 2008, Kone et al., 2009, Issop et al., 2015). 10		Deleted: in mothers
101	understand the mechanism of linuron toxicity, we further investigated the changes of P450scc,		Deleted: Since
			Deleted: pregenolone
102	3β-HSD and other male sex hormone-related enzymes in male offsprings after materal exposure.		Deleted: effect of linunon
103	The study, by offering a better understanding of linuron-induced reproductive toxicity, may		exposure in mothers on these
104	provide the useful information for better prevention and intervention.		Deleted: and proteins
			Deleted: offsprings
105			Deleted: The study bears a
		1	significant public health

importance through better understanding of the mechanism by which

linuron

Deleted: causes reproductive toxicity

Formatted: Widow/Orphan control

93 chemical may lead to the altered development of male reproductive system and what mechanism

94 underlies linuron toxicity is incomplete.

129	Materials and methods	
130	Chemicals and reagents	 Deleted: Chemials
131	Linuron was purchased from Chem Service Inc. (West Chester, USA); the enzyme-linked	
132	immunosorbent assay (ELISA) kit to quantify serum total testosterone from Diagnostic Products	
133	Corp. (Los Angeles, CA); all primary and secondary antibodies from Santa Cruz Biotechnology	
134	(Santa Cruz, CA); and formaldehyde and other routinely used reagents from Sigma (St. Louis,	 Deleted: Santz
135	MO). All reagents were of analytical grade, HPLC grade or the best available pharmaceutical	
136	grade.	
137		
138	Animals and treatments	
139	Sprague-Dawley rats (4-8 week) of both sexes were obtained from the Animal Center of	
140	the Third Military Medical University (Chongqing, China). Upon arrival, the animals were	
141	housed in a temperature ($21 \pm 1^{\circ}$ C)- and humidity ($55 \pm 5\%$)-controlled room under a 12-hr	 Deleted: controled
142	light/dark cycle and allowed for acclimatization for two weeks prior to experimentation. At the	 Deleted: one
143	time of experiment, rats were 9 weeks old weighing 240 ± 10 g for males (n = 60) and 180 ± 10	
144	g for females (n = 60). Rats had access to food and tap water at libitum. The study was	 Deleted: libertum
145	conducted in compliance with the Animal Care and Use Guidelines in China and approved by the	
146	Animal Care and Use Committee of Zunyi Medical College.	
147	After acclimatization, each male rat was caged with two females. Vaginal smears were	
148	performed daily; the sperm-positive smear in female rats was considered as Gestational Day (GD)	
149	0. The pregnant dams were housed individually and were randomly assigned to one of the	

155	following exposure conditions. Linuron was dissolved in groundnut oil. At GD13, mother rats	
156	received the oral gavage (2 mL/kg body weight), once daily, at the dose of 0 (control), 50, 100,	
157	150 or 200 mg/kg, for 5, consecutive days. The daily equivalent volume of oil vehicle was given	Deleted: -7
158	to the animals in the control group. These dosage levels were selected based on the previous	
159	report in literature (Lambright et al., 2000). Each exposure group had 10 dams. At the designated	Deleted: designatged
160	time, mother and/or fetal male rats were dissected to determine reproductive toxicity.	
161	Daily oral gavage caused the minimal stress, as animals were gradually accustomed to the	Deleted: customed
162	procedure. The dams were weighed daily before and after dose administration. After parturition	
163	(PND0), the pups were counted and weighed. Pups were then caged with their biological mother	
164	thereafter.	
165		
166	Pathological examination	
167	At 20 days into pregnancy (GD20), four mother rats from each group were sacrificed to	Deleted: About
168	collect fetuses; the genital tubercle and testis of male fetal rats were isolated and prepared for	Deleted: two
169	pathological examination. Each sample was fixed in 4% formaldehyde for 24 hr; the samples	
170	ware then debudented and embedded in new ffin ecconding to the newtine nethological commu	Deleted: For
170	were then denydrated and embedded in paratrin according to the routine pathological sample	Deleted: electorn
171	preparation procedures. The tissues were cut into 5-mm section with a microtome and stained $\frac{1}{1}$	Deleted: , similar dissection procedures were
172	with haematoxylin and eosin (H&E). Each of tissue samples was made in triplicates. During the	performed on mother rats (GD 20) to collect 30 male
173	tissue dissection, the position of testis and the development of prostate were also observed.	fetuses, followed by extracting testes bilaterally.
174	The tissue samples from the same dams described above were used for electron	The same dams used for H&E.
175	microscopic examination. The testes were fixed in 3% glutaraldehyde solution for 6 hr and	Deleted: se

treated with 1% osmium tetroxide for 45 min for tissue preparation prior to electron microscopic

analysis.

196	Determination of serum testosterone levels in postnatal male rats	
197	Blood samples were collected from 2-3 PND2 male pups from 4-5 litters in each	
198	treatment group by decapitation and allowed to coagulate on ice. Serum samples were prepared	Deleted: rats
199	by centrifuging the whole blood samples at approximately $1000 \times g$ at 4°C for 30 min and stored	
200	at -20°C until analysis. Serum total testosterone was determined in duplicates by using an	
201	enzyme-linked immunosorbent assay (ELISA) kit (Diagnostic Products Corp, Los Angeles, CA).	
202		
203	Immunohistochemical examination	
204	Bilateral testes from male fetuses of GD20 rats (2 pups from 4 litters in each treatment	
205	group) were extracted as described above and prepared in 4% formaldehyde solution for 48 hr.	
206	Conventional immunohistochemical procedure (including dehydration in gradient ethanol,	
207	xylene clearance, and paraffin embedding) was followed to prepare the sections. Sections were	
208	heated to 62°C to remove wax and then rehydrated prior to treatment with blocking serum	
209	(phosphate-buffered saline/0.5% Triton X-100 with 5% serum) for 1 hr at room temperature.	
210	Primary antibodies, i.e., mouse Mab against 3β-HSD (1:300 dilution), mouse Mab against	
211	P450scc (1:200 dilution), anti-proliferating cell nuclear antigen (PCNA) (1:100 dilution) and	
212	mouse Mab against AR (1:200 dilution) were incubated overnight at 4°C. After washes, the	
213	sections were incubated at room temperature with the secondary antibodies for 1 hr. Secondary	

215	antibodies included mouse anti-biotin (1:75 dilution) and goat anti-rabbit immunoglobulin G	
216	(IgG) rhodamine (1:300 dilution). Samples were examined under a light microscope; an	
217	IPWIN60 software was used to analyze the optical density (OD) value for the signals from	
218	Leydig cells. Each group had 8 sections and each section had 3 visual fields.	 Deleted: leydig
219		
220	Real-time RT-qPCR analysis	
221	The expression levels of mRNAs encoding P450c17, 17β -HSD and AR in bilateral testes	
222	collected from male GD20 fetuses were quantified using qPCR. The total RNA was isolated by	
223	using TRIzol reagent. An aliquot of 0.5 μ g RNA was reverse-transcribed into cDNA. The iTaq	
224	Universal SYBR Green Supermix (Bio-Rad, CA) was used for qPCR analyses. The amplification	
225	was run in the FTC-2000A Real-Time PCR Detection system (Funglyn Biotech, CHN). After	
226	initial 2-min denaturation at 94 °C, the amplification program was set at 45 cycles of 20 sec	
227	denaturation at 94°C, 30 sec gradient 55.0 to 60.0°C and 40 sec extension at 72°C. Each	
228	real-time RT-PCR reaction was run in triplicates. The forward and reverse primers for tested	
229	genes were designed by Takara Biotechnology (Shiga, Japan). Primers sequences for these genes	
230	are listed in Table 1. The rat glyceraldehyde, 3-phosphate dehydrogenase (GAPDH) was used as	 Deleted: glyceraldehydes
231	an internal control. To compare the interest gene expression levels in different groups, the	
232	comparative $2^{-\Delta\Delta Ct}$ method was used (Livak and Schmittgen, 2001).	
233		
234	Statistical analysis	

235 The statistical analyses were performed with SPSS software version 21.0 for Windows

- 238 (SPSS Inc., Chicago, IL). Values of all variables are presented as mean ± standard deviation.
- 239 One-way analysis of variance (ANOVA) with Tukey's HSD as post-hoc test and LSD-t test were
- 240 used to determine the differences between different treatment groups. The differences between
- two means were considered significant if p values were equal or less than 0.05.

- - **Formatted:** Widow/Orphan control

Results

244	Systemic effects of linuron on postnatal male rats following maternal exposure	ر میں میں	Deleted: ¶
245	To understand the developmental toxicity of linuron on male reproductive system, the		Deleted: devevlopmental
246	mother rats were orally exposed to various doses of linuron from GD13 to GD18; the male		
247	offspring were then subjected to testing serum testosterone level at postnatal day 2 (PND2), and		Deleted: offsprings
248	to measurement of body weight and anogenital distance (AGD) at PND28. Linuron exposure in		Deleted: determination
249	mothers caused a dose-related reduction in male offspring in their serum testosterone		Deleted: offsprings
250	concentrations, about 33.7%, 46.0%, and 58.8% reduction in 100-mg/kg, 150-mg/kg and		Deleted: and
251	200-mg/kg groups, respectively, as compared to controls (p<0.05) (Table 2). A linear regression		Deleted: 55.2
252	analysis of this dose-effect relationship established a correlation coefficient of $r = -0.838$		Deleted: 688
253	(<i>p</i> <0.05).		
254	At PND28, while the body weights were not significantly changed in male offsprings, the		Deleted: offsprings
255	AGD, as measured between the anus and penis, were significantly shortened in male pups of the		
256	linuron-exposed groups, about 17.7-24.6% reduction in 100-200 mg/kg groups, as compared to		Deleted: 8
257	controls (Table 2). Further linear regression analysis revealed a dose-related correlation.		Deleted: 19
258	efficiencient of $r = 0.873$ ($r < 0.05$). Clearly, the maternal exposure to linuron caused the damage		Deleted: correlcaiton
238	c_{11} (c)		Deleted: 845
259	to offspring male reproductive functions.		
260			
261	Pathological changes of fetal male reproductive system following maternal linuron		
262	exposure		
263	Oral exposure to linuron in maternal rats for five consecutive days caused a significant		Deleted: one week

280	pathological damage to offspring male reproductive structure (Fig. 1). In control fetuses, the HE	
281	staining showed that the genital tubercles possessed a well-developed urethra; the urogenital fold	
282	became confluent; and no epithelial gaps were observed (Fig.1A). In contrast, the samples from	
283	the linuron-exposed fetuses showed that the genital tubercles were opened with continuous	
284	urethral groove; there was no fusion in the urogenital fold, but the epithelial gaps were evident	
285	(Fig.1B). Noticeably also, the location of urethral opening was unusual. It is known that an	
286	incompletely developed urogenital fold will ultimately lead to hypospadias (Baskin et al., 2006).	
287	Further examination of testicular cord under microscope revealed four typical cell types	Deleted: typitcal
288	in the seminiferous tubules, including Leydig cells, spermatogonia, supporting Sertoli cells and	
289	peritubular myoid cells. In controls, spermatogonia had clear nuclear staining and lined against	
290	the basement membrane; there were abundant Sertoli cells in lumen of tubules (Fig. 2A).	
291	Treatment with linuron appeared to reduce spermatogonia, disrupt the normal arrangement of	
292	cell layers in tubule lumens, and cause karyopyknosis (Fig. 2B). There were obvious vacuoles in	Deleted: obrious
293	nearly all of the cell types. With the increase of linuron dose, these morphological changes	
294	became more severe (Fig. 2C,D) and significant cell loss could be seen in Fig. 2D.	
295	The Leydig cells distributing in interstitial space function to secrete male sex hormone.	
296	Under the electron microscope, a distension of rough endoplasmic reticulum in Leydig cells	
297	became evident (Fig. 3B). At the high dose (200 mg/kg), the swollen mitochondria in Leydig	
298	cells could be observed in most cases (Fig. 3C).	
299		

303 Effect of maternal linuron exposure on enzymes and proteins participating in male

304 reproduction

305	The apparent reproductive toxicity following maternal linuron exposure could be due to		
306	the altered production of male sex hormones or androgen receptor (AR) in fetuses. To test this		
307	hypothesis, we used the immunohistochemistry to examine the expression of a host of selected	, r ^{r r}	Deleted: immunocytoche mistry
308	enzymes and proteins in fetal Leydig cells from GD20 dams. Data presented in Fig. 4 showed		
309	that PCNA, a marker for DNA synthesis during cell proliferation, was apparently reduced, so		
310	were the enzymes involving in synthesis of testosterone, i.e., P450scc and 3β -HSD. By		Deleted: testerosterone
311	quantitation of expression signals, there were 18.3%, 15.5%, and 16.9% reductions in PCNA,		
312	P450scc and 3 β -HSD, respectively, as compared to controls (p<0.05) (Table 3), while the signal		
313	levels for AR in Leydig cells were not changed (Fig. 4 and Table 3).		
314	To verify the results from immunohistochemical studies, we further employed aPCR to quantify		Deleted: immunocytoche mical
315	the mRNAs encoding these proteins. Data presented in Table 4 demonstrated that the gene		Deleted: qRCP
316	expressions of PCNA, P450c17 and 17β -HSD in fetal testes at GD20 were significantly lower,		Formatted
317	about 47.0%, 50.8% and 39.9%, respectively, than those in controls ($p < 0.05$), while the gene		
318	expression of AR was not changed (Table 4).		

325 Discussion

326	Results of these experiments demonstrate that oral exposure to linuron in mother rats can	
327	profoundly alter the reproductive organ development in male fetal and neonatal rats. The	Deleted: offsprings
		 Deleted: offspring of
328	alteration can be observed at morphological, biochemical, and molecular levels. Under normal	 Deleted: takes place
329	physiological condition, the urogenital folds have two fusions; one is on the surface of the genital	Deleted: the
330	tubercle and the other is positioned in the middle. Upon the formation of complete urethral, the	 Deleted: where the chamber is divided into
331	chamber is absorbed to form the epidermis. Urogenital groove and urogenital fold can integrate	two rooms.
332	together to form a cavernous body of urethra tube (Lambright et al., 2000). Following maternal	
333	exposure to linuron, however, the fusion of urogenital groove and urogenital fold was incomplete,	
334	resulting in an abnormal location of the urethral orifice. The failure to form a complete	
335	urogenital groove may lead to a shortened anogenital distance in postnatal rats. Our evidence	 Deleted: led
336	supports the view that maternal linuron exposure hampers sexual differentiation and	
337	development in male offspring.	
338	The formation and differentiation of the gonadal organs during the embryonic	
339	development are regulated by a host of hormones through the hypothalamus-pituitary-gonad axis	
340	in mother as well as in fetus (Barlow et al., 2003; Hotchkiss et al., 2004; Kroupova et al., 2014);	
341	the process is highly sensitive to variation of hormone levels in the fetal stage (Vukusic et al.,	 Deleted: , and
342	2013). Reports by Fitch et al. (1990) show that from the embryonic day GD17 to the postnatal	
343	day 6-8, the secretion of testosterone in offspring testes reaches the peak, which determines the	Deleted: the
344	early differentiation and development of testis (Sinha et al., 1999; Russell et al., 2008). Other	Deleted: i
345	reports also show that impaired testosterone secretion during this stage usually causes the	

357	irreversible and permanent damage to testicular development, which in turn directly affects the	Deleted: testical
358	reproductive function in adulthood (Han et al., 2004; Wu et al., 2010; Esteves et al., 2011). Our	
359	data clearly show that exposure to linuron in mother rats caused a dose-related decline of	
360	testosterone in offspring testes. Thus, it appears that linuron's reproductive toxicity is directly	Deleted: toxdicity
361	associated with the production of testosterone.	Deleted: aossicated
362	What is the targeted cell type underlying linuron developmental, reproductive and	
363	toxicity? Results from electron microscopic studies demonstrated that at GD20, the Leydig cells	Deleted: deverlopmental and reproditive toxdicity
364	in fetal rats appeared to be significantly injuried by linuron treatment. The rough endoplasmic	Deleted: affected
365	reticulum in Leydig cells became dilated and the mitochondria were swollen. Since the	
366	endoplasmic reticulum in Leydig cells is a known intracellular location where testosterone is	Deleted: to synthesize
367	synthesized, it is likely that the damage on endoplasmic reticula in Leydig cells, in combination	
368	with the distorted energy supply in malfunctioned mitochondria, may reduce the production of	Deleted: hampered
369	testosterone from the fetal to postnatal stage	Deleted: s
370	Synthesis of testosterone requires numerous enzymes that transport cholesterol across the	
371	mitochondrial membrane and convert cholesterol to pregnenolone; the latter reaction is catalyzed	Deleted: member
372	by mitochondrial P450scc. Pregnenolone is then further catalyzed by 3B-HSD to form	Deleted: catalized
373	progesterone. These reactions are the rate-limiting steps in the synthesis of testosterone. (Arukwe	
274	2008: Dono et al. 2000: Jacon et al. 2012). It is also known that Loudia calls in fatal mouse	
3/4	2008; Rone et al., 2009; Issop et al., 2013). It is also known that Leydig cells in fetal mouse	
375	differentiate rapidly during GD12 to GD14, followed by synthesis of testosterone. To investigate	Deleted: the
376	the mechanism of linuron toxicity, we determined a number of key enzymes and proteins	
377	involving testosterone production in fetal GD20 rats. Our IHC data demonstrated a significant	Deleted: testerstorone

392	reduced expression of P450scc and 3 β -HSD in Leydig cells of fetal GD20 rats. The qPCR	
393	experiments confirmed these findings and <u>further</u> indicated a 40-51% reduction of these two	Deleted: futher
394	critical enzymes in fetal gonad organs. It is interesting to notice that linuron exposure had no any	
395	significant effect on AR gene expression. Recent data in literature have also suggested that	Deleted: n
396	exposure to other gonadotoxicants such as polychlorinated biphenyls or acteoside can inhibit	
397	P450scc activity and decrease testosterone synthesis, leading to hypospadias and cryptorchidism	
398	(Mcglynn et al., 2009; Liu et al. 2015). Thus, our results establish that linuron exposure in	
399	mothers inhibits the key enzymes indispensable to male sex hormone production. The exact	
400	mechanism on how linuron interacts with these enzymes at molecular and/or genetic levels	
401	remains unknown and deserves further in-depth investigation,	Deleted: ingestigation
402	In summary, the present study confirms the developmental toxicity of linuron on male	
403	reproductive system. Our data show that maternal exposure to linuron results in an altered	
404	development of male gonadal organs, damaged seminiferous tubules, and abnormal Leydig cell	
405	ultrastructure. The mechanism underlying linuron toxicity appears to be associated with the	
406	direct action of the chemical on the production of testosterone in fetal and postnatal offspring.	Deleted: offsprings

414	Acknowledgments

415	This study was partly supported by the Natural Science Foundation of Guizhou
	The state of the s

- 416 Provincial Scientific and Technology Department Grant (J[2007]2125) (Li Yan), Education
- 417 Department of Guizhou Province ([2008]033) (Li Yan), International Scientific and Technology
- 418 cooperation project of Guizhou Province (G[2014]7012) (Li Yan), Innovative talent team training
- 419 project of Zunyi city ([2015]42) (Li Yan) and the Scientific and Technology Foundation of
- 420 Health and Family Planning Commission of Guizhou Provincial (D-424) (Li Yan).

422	References	 Deleted: ¶
423	Arukwe A (2008). Steroidogenic acute regulatory (StAR) protein and cholesterol side-chain	
424	cleavage (P450scc)-regulated steroidogenesis as an organ-specific molecular and cellular	
425	target for endocrine disrupting chemicals in fish. Cell Biol Toxicol 24(6):527-540.	
426	doi:10.1007/s10565-008-9069-7.	
427	Auger J, Le Denmat D, Berges R, Doridot L, Salmon B, Canivenc-Lavier MC, and Eustache F	
428	(2013). Environmental levels of oestrogenic and antiandrogenic compounds feminize	
429	digit ratios in male rats and their unexposed male progeny. Proc Biol Sci 280(1768):1532.	
430	doi:10.1098/rspb.2013.1532.	
431	Baskin LS, and Ebbers MB (2006). Hypospadias: anatomy, etiology, and technique. J Pediatr	 Deleted: Barlow NJ, Phillips SL, Wallace DG,
432	Surg 41(3), 463-472. doi:10.1016/j.jpedsurg.2005.11.059.	Sar M, Gaido KW, and Foster PM (2003).
433	Esteves SC, Miyaoka R, and Agarwal A (2011). An update on the clinical assessment of the	Quantitative changes in gene expression in fetal rat
434	infertile male. Clinics 66(4):691-700. doi:10.1590/S1807-59322011000400026.	testes following exposure to di(n-butyl) phthalate.
435	Fitch RH, Berrebi AS, Cowell PE, Schrott LM, and Denenberg VH (1990). Corpus callosum:	Toxicol Sci 73(2):431-441. doi:10.1093/toxsci/kfg087.
436	effects of neonatal hormones on sexual dimorphism in the rat. Brain Res	
437	515(1-2):111-116. doi:10.1016/0006-8993(90)90584-X.	
438	Gray LE, Ostby J, Furr J, Wolf CJ, Lambright C, Parks L, and Guillette L (2001). Effects of	
439	environmental antiandrogens on reproductive development in experimental animals. Hum	
440	Reprod Update 7(3):248-264. doi:10.1093/humupd/7.3.248.	
441	Han XD, Tu ZG, Gong Y, Shen SN, Wang XY, Kang LN, and Chen JX (2004). The toxic effects	
442	of nonylphenol on the reproductive system of male rats. Reprod Toxicol 19(2):215-221.	

454 doi:10.1016/j.reprotox.2004.06.014.

455	Hotchkiss AK, Parks-Saldutti	LG, Ostby JS,	Lambright C, Furr J,	Vandenbergh JG, and Gray L.
-----	------------------------------	---------------	----------------------	-----------------------------

- 456 (2004). A mixture of the "antiandrogens" linuron and butyl benzyl phthalate alters sexual
- differentiation of the male rat in a cumulative fashion. Biol Reprod 71(6):1852-1861.
- 458 doi:10.1095/biolreprod.104.031674.
- 459 Issop L, Rone MB, and Papadopoulos V (2013). Organelle plasticity and interactions in
- 460 cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol 371(1-2):34-46.
- 461 doi:10.1016/j.mce.2012.12.003.
- 462 Klot CAJV, Kramer MW, Böker A, Herrmann TR, Peters I, Kuczyk MA, and Merseburger AS
- 463 (2014). Is there an anti-androgen withdrawal syndrome for enzalutamide? World J Urol
 464 32(5):1171-1176. doi:10.1007/s00345-014-1288-3.
- 465 Kroupova HK, Trubiroha A, Lorenz C, Contardo-Jara V, Lutz I, Grabic R, and Kloas W (2014).
- 466 The progestin levonorgestrel affects hypothalamus–pituitary–gonad axis in pubertal roach
 467 (Rutilus rutilus). Toxicol Lett 229:S114-S115. doi:10.1016/j.toxlet.2014.06.413.
- Lambright C, Ostby J, Bobseine K, Wilson V, Hotchkiss AK, Mann PC, and Gray LJ (2000).
- 469 Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that
- 470 produces reproductive malformations in male rats. Toxicol Sci 56(2):389-399.
- 471 doi:10.1093/toxsci/56.2.389.
- 472 Liu S, Zhang J, Li W, Zhang T, and Hu D (2015). Acteoside reduces testosterone by inhibiting
- 473 cAMP, p450scc, and StAR in rat Leydig cells. Mol & Cell Toxicol 11(1):11-17.
- 474 doi:10.1007/s13273-015-0002-x.

475	Livak KJ, and Schmittgen TD (2001). Analysis of relative gene expression data using real-time
476	quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-408.
477	doi:10.1006/meth.2001.1262.
478	McGlynn KA, Guo X, Graubard BI, Brock JW, Klebanoff MA, and Longnecker MP (2009).
479	Maternal pregnancy levels of polychlorinated biphenyls and risk of hypospadias and
480	cryptorchidism in male offspring. Environ Health Persp 117(9):1472-1476.
481	doi:10.1289/ehp.0800389.
482	McIntyre BS, Barlow NJ, Wallace DG, Maness SC, Gaido KW, and Foster PM (2000). Effects of
483	in utero exposure to linuron on androgen-dependent reproductive development in the
484	male Crl:CD(SD)BR rat. Toxicol Appl Pharm 167(2):87-99. doi:
485	10.1006/taap.2000.8998.
486	Monosson E, Kelce WR, Lambright C, Ostby J, and Gray LJ (1999). Peripubertal exposure to the
487	antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of
488	androgen-dependent tissues, and alters androgen receptor function in the male rat.
489	Toxicol Ind Health 15(1-2):65-79. doi:10.1191/074823399678846600.
490	Rone MB, Fan J, and Papadopoulos V (2009). Cholesterol transport in steroid biosynthesis: role
491	of protein-protein interactions and implications in disease states. Biochim Biophys Acta
492	1791(7):646-658. doi:10.1016/j.bbalip.2009.03.001.
493	Russell LD, Ettlin RA, Hikim APS, and Clegg ED (1993). Histological and Histopathological
494	Evaluation of the Testis. Int J Androl 16(1):83. doi:10.1111/j.1365-2605.1993.tb01156.x.
495	Santos SM, Videira RA, Fernandes MA, Santos MS, Moreno AJ, Vicente JA, and Jurado AS

496	(2014). Toxicity of the herbicide linuron as assessed by bacterial and mitochondrial
497	model systems. Toxicol In Vitro 28(5):932-939. doi:10.1016/j.tiv.2014.04.004.
498	Sharpe RM and Skakkebaek NE (1993). Are oestrogens involved in falling sperm counts and
499	disorders of the male reproductive tract? Lancet 341(8857):1392-1395.
500	doi:10.1016/0140-6736(93)90953-E.
501	Sinha HA, and Swerdloff RS (1999). Hormonal and genetic control of germ cell apoptosis in the
502	testis. Rev Reprod 4(1):38-47. doi:10.1530/ror.0.0040038.
503	Storgaard L, Bonde JP, and Olsen J (2006). Male reproductive disorders in humans and prenatal
504	indicators of estrogen exposure: A review of published epidemiological studies. Repro
505	Toxicol 21(1):4-15. doi:10.1016/j.reprotox.2005.05.006.
506	Sultan C, Balaguer P, Terouanne B, Georget V, Paris F, Jeandel C, and Nicolas J (2001).
507	Environmental xenoestrogens, antiandrogens and disorders of male sexual differentiation.
508	Mol Cell Endocrinol 178(1-2):99-105. doi:10.1016/S0303-7207(01)00430-0.
509	Vukusic PT, Janjic T, Dujmovic I, Poljicanin A, Soljic V, Saraga-Babic M, and Vukojevic K
510	(2013). The involvement of proliferation and apoptosis in the early human gonad
511	development. J Mol Histol 44(1):55-63. doi:10.1007/s10735-012-9455-6.
512	Wilson VS, Lambright CR, Furr JR, Howdeshell KL, and Earl GLJ (2009). The herbicide linuron
513	reduces testosterone production from the fetal rat testis during both in utero and in vitro
514	exposures. Toxicol Lett 186(2):73-77. doi:10.1016/j.toxlet.2008.12.017.
515	Wu JJ, Wang KL, Wang SW, Hwang GS, Mao IF, Chen ML, and Wang PS (2010). Differential

516 effects of nonylphenol on testosterone secretion in rat Leydig cells. Toxicology

517 268(1-2):1-7. doi:10.1016/j.tox.2009.10.030.

521	Figur	e Legends	
522	Fig.1	Pathological changes of the genital tubercle following maternal exposure to linuron.	
523		Mother rats received oral gavage at 150 mg/kg from GD13 to GD18; fetal male gonadal	
524		organs at GD20 were dissected for examination. (A). A typical genital tubercle from a	
525		control fetus. Arrowhead indicates a normal urogenital fold. (B). A typical genital	
526		tubercle from a linuron-exposed fetus. Arrowhead indicates no fusion in the urogenital	
527		fold and the epithelial gaps. (×100)	
528	Fig. 2	Pathological changes in seminiferous tubules following maternal exposure to linuron.	
529		Mother rats received oral gavage at 0 (A), 100 mg/kg (B), 150 mg/kg (C), or 200 mg/kg	
530		(D) from GD13 to GD18. Fetal male dams at GD20 were dissected for examination.	
531		Arrowheads indicate karyopyknosis and vacuoles. (×400).	
532	Fig. 3	Ultrastructure of Leydig cells. Mother rats received oral gavage from GD13 to GD18;	
533		fetal male gonadal organ at GD20 were dissected for electron microscopic study. (A) A	Deleted: goantal
534		typical sample from a control rat. Arrowhead indicates a normal mitochondrion. (B) A	Deleted: mitochondrium
535		typical sample from a rat treated with 150 mg/kg linuron. Arrowheads indicate a dilated	
536		endoplasmic reticulum. (C) A typical sample from a rat treated with 200 mg/kg linuron.	
537		Arrowhead indicates swollen mitochondrion. (×12500)	Deleted: mitochondrium
538	Fig. 4	Immunohistochemical analysis of PCNA, P450scc, 3β-HSD and AR expression in	Formatted: Indent: Left: 0", Hanging: 0.5", No widow/orphan control
539		Leydig cells. Mother rats received oral gavage at 200 mg/kg from GD13 to GD18; fetal	
540		male gonadal organ at GD20 were dissected for IHC study. (×400)	Deleted: goantal

Formatted: Font: 14 pt

545

546 Tables

547

Table 1. Forward and reverse primer sequence for selected genes in qPCR study

Gene	Forward primer (5'-3')	Reverse primer (5'-3')	
PCNA	AAGAGGAAGCTGTGTCCATAGA	CTTCATCTTCGATCTTGGGA	204bp
P450c17	GGAGAAGCTAATCTGTCAGGAA	GCATCCACGATACCCTCAGT	198bp
17β-HSD	CAGAAGAGATTGAGAGGACCA	CAGGAAATGACTTGGGAGCA	158bp
AR	GGACATGCGTTTGGACAGTA	ACTTCTGTTTCCCTTCCGCA	173bp
GAPDH	TGGGTGTGAACCACGAGAA	GGCATGGACTGTGGTCATGA	141bp

The forward and reverse primer sequences for selected genes were designed with the ABI Primer Expresssoftware (Foster City, CA)

551

552

Table 2. Comparison of testosterone (Tes), anogenital distance (AGD) and body weight

Deleted: Comparision

Group (mg/kg)	PND2		PND28			
	n	Tes (ng/ml)	n	AGD (mm)	Body weight (g)	
0 (control)	10	4.63±0.72	20	20.3±0.65	77.5±0.65	
50	10	4.43±0.62	20	20.3±0.78	77.3±0.56	
100	10	3.07±1.22*	20	16.7±1.11*	77.3±0.44	
150	10	2.50±0.95*	20	16.5±0.69*	77.3±0.52	
200	10	1.91±0.82*	20	15.3±0.84*	76.3±0.42	

554

4 For PND2 experiments, male pups (2-3) from 4-5 litters in each treatment group underwent experimentation.

Animal numbers were doubled for PND28 study. Data represent mean \pm SD. *: p < 0.05 as compared to

556 controls. PND: postnatal day.

560 561 Table 3. Quantitation of signal density of PCNA, P450scc, 3β-HSD and AR expression in GD20 testicular tissue by immunohistochemical analysis 562 Deleted: testical **Optical** Density Deleted: Optial Group n PCNA P450scc 3β-HSD (mg/kg/day) AR control 8 1931±39 1683±21 1714±21 1238±68 1578±18* 1422±14* $1424\pm28^{*}$ 200 8 1277±62 Mother rats received oral gavage at 200 mg/kg from GD13 to GD18. Fetal male pups (2 from 4 litters in each 563 Deleted: dams 564 treatment group) at GD20 were dissected for IHC examination. The optical density for each protein was 565 analyzed using IPWIN60 software. Data represent mean \pm SD, n=8 different fetal rats. *: p<0.05 compared to 566 controls. 567

568

569 Table 4. Relative mRNA expression of PCNA, 17β-HSD, P450c17 and AR in GD20 testes

group	-	$2^{-\Delta\Delta Ct}$					
	п	PCNA	17β-HSD	P450c17	AR		
control	10	1.64±0.98	1.87±0.26	1.53±0.50	1.51±0.43		
exposure	10	$0.87 \pm 0.32^*$	$0.92{\pm}0.26^{*}$	$0.92{\pm}0.42^{*}$	1.35±0.56		

570 Mother rats received oral gavage at 200 mg/kg from GD13 to GD18. Fetal gonadal organs (2 from 5 litters in

571 each treatment group) at GD20 were dissected for qPCR analysis. Data represent mean \pm S.D. *: p < 0.05

572 compared to controls.