
Supplementary material: Annotated JAGS code for the two empirical applications

1. A two-state OMM for daily negative affect

model{
for (i in 1:N)
{ # loop over the N persons in the sample

for (t in 1:T)
{ # loop over the T timepoints / occasions

m[t,i] ~ dcat(ps[i,t,])
# the categorical likelihood for the state m
# of person i at time t.
# ps[i,t,] is an M-length vector with the probabilities
# for being in each of the M possible states.

} # end loop over T timepoints

for (state in 1:M)
{ # loop over all the possible states

ps[i,1,state] <- probs1[state]
# The probability of being in this state at occasion 1.
# (This way, missing data at t=1 can be imputed.)
for (t in 2:T)
{ # loop over all timepoints except the first one

ps[i,t,state] <- probs[m[(t-1),i], state, i]
# choose the probability vector for the current state
# that corresponds to the observed previous state.

} # end loop over timepoints

for (prev in 1:M)
{ # loop over the possible states at the previous occasion

probs[prev,state,i] <- odds[prev,state,i]/totalodds[prev,i]
# calculate the probabilities from the underlying odds
odds[prev,state,i] <- exp(alpha[prev,state,i] +

beta[prev,state]*(scaled.neuro[i]))
# calculate the odds from the random logit intercepts
# and the regression coefficients of neuroticism.

} # end loop over possible previous states

alpha[state,state,i] <- 0
# identify the model by fixing "stability" logits at 0

totalodds[state,i] <- odds[state,1,i] + odds[state,2,i]
# a step in the transformation of odds to probabilities.
# note that this line is specific to a 2-state model.

} # end loop over possible states

scaled.neuro[i] <- (neuro[i]-mean(neuro[]))/(2*sd(neuro[]))
# center and rescale each person’s neuroticism score



alpha[1,2,i] <- raneffs[i,1]
alpha[2,1,i] <- raneffs[i,2]
raneffs[i,1:2] ~ dmnorm(alpha.means[1:2],alpha.prec[1:2, 1:2])

# normal distribution for the random transition logit intercepts
} # end of loop over persons

for (state in 1:M)
{ # loop over all the possible states

beta[state,state] <- 0
# identify the model by fixing "stability" logits at 0

} # end of loop over possible states

beta[1,2] <- rcoeff[1]
beta[2,1] <- rcoeff[2]

# collect the non-diagonal elements in a vector for convenience
alpha.Sigma[1:2,1:2] <- inverse(alpha.prec[1:2,1:2])

# We invert this because we prefer the covariance matrix.

# Below are the prior specifications:
probs1[1:M] ~ ddirich(statealpha[1:M])

# a Dirichlet prior for the initial state probability vector.
# statealpha is a vector of ones, given as data input

for (par in 1:2)
{ # a loop over the number of parameters per type

alpha.means[par] ~ dt(T.constant.mu,T.constant.tau,T.constant.k)
rcoeff[par] ~ dt(T.mu, T.tau, T.k)

# Student’s t priors for the two average logit intercepts
# and the two regression coefficients of neuroticism.
# Note that JAGS uses the inverse scaling parameter
# notation for this distribution.
} # end of loop over parameters

T.constant.mu <- 0
T.mu <- 0

# location parameters for the priors
T.constant.tau <- 1/T.constant.scale.squared
T.tau <- 1/T.scale.squared

# inverse scale parameters for the priors
T.constant.scale.squared <- T.constant.scale * T.constant.scale
T.scale.squared <- T.scale * T.scale
T.scale <- 2.5
T.constant.scale <- 10

# the actual scale parameters as mentioned in the paper
T.constant.k <- 1
T.k <- 1

# 1 degree of freedom; this results in a Cauchy density
alpha.prec[1:2,1:2] ~ dwish(Om[1:2,1:2],2)

# a Wishart prior for the precision matrix, i.e.,
# an inverse-Wishart prior for the covariance matrix.



Om[1,1] <- 1
Om[1,2] <- 0
Om[2,1] <- 0
Om[2,2] <- 1

# hyperparameters for the Wishart prior.

} # end of model file

2. A three-state LMM for family interactions with random effects in both model parts

model{

# First the conditional model part for the observed behavior:

for (t in 1:T)
{ # loop over timepoints / occasions 1 to T

for (i in 1:N)
{ # loop over families 1 to N

Mo[t,i] ~ dcat(p.Mo[m[t,i],1:4])
# the categorical likelihood for the mother’s behavior

Fa[t,i] ~ dcat(p.Fa[m[t,i],1:4])
Ad[t,i] ~ dcat(p.Ad[m[t,i],i,1:4])

# the categorical likelihood for the adolescent’s behavior
# Note that p.Ad is person-specific, whereas the
# probabilities p.Mo and p.FA are not (they are fixed).

} # end of loop over all families

} # end of loop over timepoints 1:T

for (i in 1:N)
{ # loop over all families

for (state in 1:M)
{ # loop over all possible latent family states

for (beh in 1:4)
{ # loop over all possible observed behavior categories

p.Ad[state,i,beh] <- probs.Ad[state,beh,i]
# reshaping the array for ~dcat argument requirements
probs.Ad[state,beh,i] <- odds.Ad[state,beh,i] /

totalodds.Ad[state,i]
# calculate probabilities from underlying odds
odds.Ad[state,beh,i] <- exp(c[state,beh,i] +

dcoeff[beh]*scaled.depr[i])
# calculate the odds from the random logit intercepts
# and the regression coefficients of depression.
c[state,beh,i] <- state.intercept[state,beh] +

ind.deviation[i,beh]
# each random logit intercept is comprised of a
# fixed part and a person-level deviation.

} # end loop over observed behavior categories



totalodds.Ad[state,i] <- odds.Ad[state,1,i]+
odds.Ad[state,2,i]+odds.Ad[state,3,i]+odds.Ad[state,4,i]

# a step in the transformation of odds to probabilities.
# Note that this line is specific to a 4-category outcome.

} # end loop over latent family states

ind.deviation[i,1:3] ~ dmnorm(devs.means[1:3],devs.prec[1:3,1:3])
# A normal distribution for the individual deviations in the
# adolescents’ logit intercepts for the observed behaviors.

scaled.depr[i] <- depr[i] - mean(depr[])
# center the depression predictor

ind.deviation[i,4] <- 0
# identify the model by fixing "neutral behavior" logits at 0

} # end loop over all families

for (beh in 1:3)
{ # loop over the 3 categories with parameters to-be-estimated

devs.means[beh] <- 0
# fix the mean of the individual deviations at 0 so that each
# fixed effect (state.intercept) will represent the "average".

dcoeff[beh] ~ dt(T.mu,T.tau,T.k)
# Student’s t prior for the regression coeffs. of depression.
# Note that JAGS uses the inverse scaling parameter
# notation for this distribution.

} # end loop over behavior categories 1-3

dcoeff[4] <- 0
# identify the model by fixing "neutral behavior" logits at 0

T.mu <- 0
# location parameter for the prior

T.tau <- 1/T.scale.squared
# inverse scale parameter for the prior

T.scale.squared <- T.scale * T.scale
T.scale <- 2.5

# the actual scale parameter as mentioned in the paper
T.k <- 1

# 1 degree of freedom; this results in a Cauchy density.
devs.prec[1:3,1:3] ~ dwish(Om[1:3,1:3],3)

# a Wishart prior for the precision matrix, i.e.,
# an inverse-Wishart prior for the covariance matrix.

Om[3,3] <- 1
# Om is a diagonal matrix with the hyperparameters

for (om.i in 1:2)
{ # loop over rows 1-2 in the Om matrix

Om[om.i,om.i] <- 1
for (om.j in (om.i+1):3)
{ # loop over column 2-3 in the Om matrix

Om[om.i,om.j] <- 0



Om[om.j,om.i] <- 0
} # end loop over columns in the Om matrix

} # end loop over rows in the Om matrix

# the loops are a shorthand for "filling" the diagonal matrix.
devs.Sigma[1:3,1:3] <- inverse(devs.prec[1:3,1:3])

# We invert this because we prefer the covariance matrix.

for (state in 1:M)
{ # loop over the latent family states

for (beh in 1:3)
{ # loop over the 3 categories with pars to be estimated

state.intercept[state,beh] ~ dt(T.constant.mu,
T.constant.tau, T.constant.k)

# Prior for the fixed part of the logit intercepts.
} # end of loop over behavior categories 1-3

state.intercept[state,4] <- 0
# identify the model by fixing "neutral behavior" logits at 0

p.Mo[state,1:4] ~ ddirich(cond.alphas[1:4])
p.Fa[state,1:4] ~ ddirich(cond.alphas[1:4])

# Dirichlet priors for the parents’ behavior probabilities.
# cond.alphas is a vector of ones given as data input.

} # end loop over the latent family states

T.constant.mu <- 0
# location parameter for the prior

T.constant.tau <- 1/T.constant.scale.squared
# inverse scale parameter for the prior

T.constant.scale.squared <- T.constant.scale * T.constant.scale
T.constant.scale <- 10

# the actual scale parameter as mentioned in the paper
T.constant.k <- 1

# 1 degree of freedom; this results in a Cauchy density.

# Now the transition model part for the latent family states:

for (i in 1:N)
{ # loop over all families

for (t in 1:T)
{ # loop over all timepoints

m[t,i] ~ dcat(ps[i,t,1:M])
# the categorical likelihood for the state m
# of family i at time t.
# ps[i,t,] is an M-length vector with the probabilities
# for being in each of the M possible states.

} # end loop over timepoints



for (state in 1:M)
{ # loop over all possible latent family states

ps[i,1,state] <- probs1[state]
# The probability of being in this state at occasion 1.
# (Not dependent on the state at the previous occasion).
for (t in 2:T)
{ # loop over all timepoints except the first one

ps[i,t,state] <- probs[m[(t-1),i],state,i]
# Choose the probability vector for the current state
# that corresponds to the observed previous state.

} # end loop over timepoints

for (prev in 1:M)
{ # loop over the possible states at the previous occasion

probs[prev,state,i]<- odds[prev,state,i]/totalodds[prev,i]
# calulate the probabilities from the underlying odds
odds[prev,state,i] <- exp(v[prev,state,i])

# calculate the odds from the random logits.
} # end loop over possible previous states

v[state,state,i] <- 0
# identify the model by fixing "stability" logits at 0

totalodds[state,i]<- odds[state,1,i]+odds[state,2,i]+
odds[state,3,i]

# a step in the transformation of odds to probabilities.
# Note that this line is specific to a 3-state model.

} # end loop over possible states
v[1,2,i] <- raneffs[i,1]
v[1,3,i] <- raneffs[i,2]
v[2,1,i] <- raneffs[i,3]
v[2,3,i] <- raneffs[i,4]
v[3,1,i] <- raneffs[i,5]
v[3,2,i] <- raneffs[i,6]
raneffs[i,1:6] ~ dmnorm(v.means[1:6], v.prec[1:6,1:6])

# normal distribution for the random transition logits
} # end of loop over persons

probs1[1:M] ~ ddirich(start.alphas[1:M])
# a Dirichlet prior for the initial state probability vector.

vmeans[1,2] <- v.means[1]
vmeans[1,3] <- v.means[2]
vmeans[2,1] <- v.means[3]
vmeans[2,3] <- v.means[4]
vmeans[3,1] <- v.means[5]
vmeans[3,2] <- v.means[6]

for (row in 1:M)
{ # loop over rows for latent states

vmeans[row,row] <- 0
# identify the model by fixing "stability" logits at 0



} # end loop over rows for latent states

v.prec[1:6,1:6] ~ dwish(v.Om[1:6,1:6],6)
# a Wishart prior for the precision matrix, i.e.,
# an inverse-Wishart prior for the covariance matrix.

v.Om[6,6] <- 1
# v.Om is a diagonal matrix with the hyperparameters

for (vom.i in 1:5)
{ # loop over rows 1-5 in the v.Om matrix

v.Om[vom.i,vom.i] <- 1
for (vom.j in (vom.i+1):6)
{ # loop over columns 2-6 in the v.Om matrix

v.Om[vom.i,vom.j] <- 0
v.Om[vom.j,vom.i] <- 0

} # end loop over columns of v.Om

} # end loop over rows of V.Om

# the loops are a shorthand for "filling" the diagonal matrix.
v.Sigma[1:6,1:6] <- inverse(v.prec[1:6,1:6])
# We invert this because we prefer the covariance matrix.

for (par in 1:6)
{ # loop over the number of fixed logit parameters

v.means[par]~dt(T.constant.mu,T.constant.tau,T.constant.k)
# Student’s t prior for the average transition logits,
# with the same hyperparameters used and specified above.
} # end loop over number of parameters

} # end of model file


