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Supplementary Figure 1 | Correlation of PC1 values of biological replicates prior of
merging

Data shown are scatter plots of PC1 values of biological replicates. a-e, Depicted are results of
different developmental stages of cardiac myocytes (a, cardiac progenitor; b, fetal, E14; c,
newborn, P1; d, adult) and of cardiac myocytes after ablation of DNMT3A/B (e, CM-DKO, Dnmt3a
~/Dnmt3b7). f, g, Scatter plots of wild type ES cells (f) and ES cells with ablation of DNMT1 and
DNMT3A/B (g, ESC-TKO, Dnmt1//Dnmt3a’/Dnmt3b”") are shown for two independent cell lines
(cell line 1 and 2). Numbers represent Pearson correlation coefficients of biological replicates.
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Supplementary Figure 2 | Interplay of chromatin organization, chromatin state and DNA
methylation in mouse adult CM and ES cell

a,b, Heat maps of gene expression (RNA-seq, FPKM), CTCF (RPKM), histone modifications
(RPKM), DNA modifying enzymes (TET1, DNMT3A and B) and 5-hydroxymethylcytosine (5hmC)
were depicted together with the density of LMRs and PMDs per 40kb bin. Bins of autosomes
separated by A/B-compartment status and sorted according to chromosomal location (A, PC1 >0;
B; PC1 <0). PC1 values were shown in the upper parts of the figure. Percentages indicate the
distribution of A/B-compartments in mouse adult CM (a) and ES cells (b). Data shown are merged
from n=1-2 replicates (see Supplementary Table 1 and 2). Abbreviations: RPKM, Reads Per
Kilobase per Million; FPKM, Fragments Per Kilobase per Million
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Supplementary Figure 3 | Annotation of chromatin states using automated chromatin
segmentation in adult cardiac myocytes.

(a,b) Shown are heat maps for model parameters derived by ChromHMM. a, Chromatin states
were learned using a multi variant hidden Markov model on the basis of genome wide occurrence
of combinations of different histone marks, CTCF and cohesin. States with frequent observation
of H3K9me3 represent heterochromatin, with H3K27me3 polycomb repressed regions, with
H3K4me3 and H3K27me3 bivalent regions, with H3K4me1 silent/poised enhancer, with H3K27ac
and H3K4me1 strong enhancer, with H3K4me3 promoter and with H3K36me3 actively transcribed
regions. Enhancers were further separated according to presence or absence of CTCF. b, The
enrichment of chromatin states in partially methylated domains (PMDs), fully methylated regions
(FMRs) and low methylated regions (LMRs) indicates that PMDs span mainly inactive chromatin,
FMRs transcribed regions and LMRs enhancers.
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Supplementary Figure 4 | Global dynamics of chromatin architecture, CpG-methylation
and transcription during differentiation and maturation of CM

a, Depicted are dynamic and stable A/B-compartments during differentiation and maturation of
cardiac myocytes (A, PC1 > 0; B, PC1 < 0). Numbers indicate genome wide portions. b,c,d,
Cumulative size of low methylated regions (LMRs) and partially methylated domains (PMDs) as
well as gene expression (FPKM) in dynamic and stable A- and B-compartments. Data shown are
from n=1-3 replicates (see Supplementary Table 1 and 2). Shown are mean + SEM. Abbreviations:
FPKM, Fragments Per Kilobase per Million
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Supplementary Figure 5 | Cell type specificity of chromatin compartments

a, Pie chart of compartments (40kb bins) exhibiting identical or differential A/B-status in CM (CM-
A) versus ES cells (ES-A). Blue represents compartments with A status in CM but not in ES cells
and black A status in ESC and not in CM. b, Representative regions with differential A/B-status
(A, PC1 > 0; B, PC1 <0) in CM versus ES cells (grey background). Abbreviations: Myocd,
Myocardin; Sic8a1 (NCX1), Sodium-Calcium-Exchanger. Shown are PC1 values and RNA
expression (FPKM) ¢,d, Gene ontology analysis of genes situated in CM-A (c) or in ES-A (d).
Shown are terms with P values < 10-¢ (Bonferroni corrected hypergeometric test). e, Frequency of
transcription factor motifs within strong enhancers positive for H3K27ac and H3K4me1 of CM-A,
Common-A and CM-B. ** P < 0.01 and *** P < 0.001 as compared to Common-A (A), Chi-square.
Abbreviations: FPKM, Fragments Per Kilobase per Million. Data shown are merged from n=1-3
replicates (see Supplementary Table 1 and 2).
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Supplementary Figure 6 | Principal component analysis of A/B-compartment values and
DNA methylation of independent replicates (Replication of Figure 2d)

Genome-wide principle component analysis (PCA) of A-/B-compartment values results in a tight
cluster of differentiated cardiac myocytes and distant pluripotent ES and multipotent progenitor
cells (left graph). Performing PCA analysis of base-pair resolution CpG methylation data results
in a trajectory of CM differentiation and maturation with the smallest distance between postnatal
stages (right graph). Data shown are results from independent biological replicates.
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Supplementary Figure 7 | Histograms of mCpG, scatter plots and Pearson correlation
coefficients of developmental DMRs.

a, b, Differentially methylated regions in adult cardiac myocytes as compared to cardiac progenitor
cells (a, hypermethylated and b, hypomethylated regions). Pairwise comparisons of CpG
methylation values are displayed as scatter plots and histograms. Values indicate Pearson
correlation coefficients. Data was obtained from cardiac progenitor cells and fetal (E14), newborn
(P1) and adult cardiac myocytes as well as from adult cardiac myocytes with a cardiac myocytes-
specific ablation of DNMT3A and B (CM-DKO, Dnmt3a”/Dnmt3b”-). Data shown are merged from
n=2-3 replicates (see Supplementary Table 1 and 2).



human ESC

Chr2 [Mb] 110

PC1 # ' w - ' - " " YRR “‘
25
: WMMM_J_U “
DNMT3B 05 il bl A

DMRs mmm (I (LT 1T LTI T ] (N1 1 [ |
DNMT3A-KO - WT ‘ Ll

DMRs [ 11 | | |
DNMT3B-KO - WT

DMRs 1
DNMT3A/B-DKO - WT

Supplementary Figure 8 | Differential CpG methylation in huma ESC with ablation of
DNMT3 enzymes

Original traces of PC1 values corresponding to A/B compartments (A, PC1 >0; B PC1 < 0),
enrichment of DNMT3B and differential CpG methylation (A >40%) in human ES cells with ablation
of single or both DNMT3 enzymes. Data shown are merged data from n=1-2 replicates (see
Supplementary Table 1 and 2).



PC1 Progenitor

PC1 Fetal CM

PC1 Newborn CM

PC1 Adult CM

PC1 Adult CM-DKO

PC1 mESC

PC1 mESC-TKO
Supplementary Figure 9 | Correlation of PC1 values

Shown are scatter plots of PC1 values measured in different developmental stages of cardiac
myocytes (fetal, E14; newborn, P1; adult) and ESC as well as after ablation of DNMT3A/B in
cardiac myocytes (CM-DKO, Dnmt3a“/Dnmt3b”-) and DNMT1 and DNMT3A/B in ESC (ESC-TKO,
Dnmt1//Dnmt3a’/Dnmt3b”). Numbers represent Pearson correlation coefficients. Low
correlation coefficients were observed between undifferentiated (ES and progenitor cells) and
different stages of differentiated CM. Data shown are merged data from n=2-3 replicates (see
Supplementary Table 1 and 2).



Chr 6 [Mb] 40 100

_o E3
N RG]
0o o c 2
- £ -8
S = e
P
2e
PC1 -
1.8
2.1
PC1
= ~ 1.8
o N
oL
= 8%
== T o
1 @ -
we| =g

b PC1 ESC-TKO cell line 2 C TADscore ESC-TKO cell line 2

< 2 o - L
o~ = g
= L = - 15
= S
D =
e =
= -0 &
9 o
5 - g °
o o

g
T T -2

T
-2 0 2

Supplementary Figure 10 | Analysis of chromatin organization in ES-TKO cell line and
corresponding wild type cells generated by Tsumura et al. 2006

a, Chromatin interaction maps of mouse embryonic stem cells (ES cell line 2 , upper panel) and
ES cells with a complete loss of DNA methylation (ES-TKO cell line 2, Dnmt1//Dnmt3a’/Dnmt3b
) are indistinguishable. b,c, Genome wide correlation show that ablation of DNMT-isoenzymes
has no effect of A-/B-pattern (b, scatter plot and Pearson correlation of PC1-values) and insulation
of topologically associated domains (¢, scatter plot and Pearson correlation of TADscore). Data
shown represent a replicate of Fig. 4 using independent ES and ES-TKO cell lines (see
Supplementary Table 1 and 2).
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Supplementary Table 2

External data analyzed in this study
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