

Supplementary Figure 1. A. Representative bright field image of MDA-MB-231 cells embedded in a 6mg/mL collagen gel but in contact with the coverslip. Scale bar 100 μ m **B.** Representative trajectories of cells cells embedded in a 6mg/mL collagen gel but in close contact with the coverslip before and after cell division. The trajectories show no appreciable differences between the cell movement before or after division. C. Mean Squared Displacement (MSD) and persistent time of HT-1080 cells before and after cell division for cells in low density and high density collagen. MSDs shown are 12 representative cell trajectories. D. Total invasion distance of single cells and their progeny for HFF-1 fibroblasts cells in 6 mg/mL (left) and 2.5mg/mL (right) collagen gels in units of cell length (see methods) after 48 h of cell encapsulation. E. Representative confocal reflection image showing collagen fibers around a chain structure formed by MDA-MB-231 cells cultured in high density collagen gel for 7 days, dotted lines show the outline of the chain structure. Scale bar 100um. F. Representative bright field images of HT-1080 cells after 7 days of culture in 2.5 mg/mL (left) and 6 mg/mL (right) collagen I matrix. Scale bar 250 μ m. G. Representative bright field images of HFF-1 fibroblast cells after 7 days of culture in 2.5 mg/mL (left) and 6 mg/mL (right) collagen I matrix. Scale bar 250 µm. H. Mean structure length formed by MDA-MB-231 cells cultured in high density 3D collagen after 7 days under normoxia (21% O₂) or hypoxia (1% O₂). Comparison was performed using Mann-Whitney U test. I. Representative confocal reflection image showing a 2.5mg/mL collagen gel polymerized at 20°C Scale bar 100 µm. Representative images of N=3 biological replicates for all experiments unless otherwise noted. Statistical significance is indicated as *. **, *** for p≤0.05, p≤0.01, p≤0001 respectively.

Supplementary Figure 2. A. Bar plot showing mean of n=3 expression values of the 70 genes upregulated by both cancer cell lines. MDA-MB-231 (top), genes sorted by low to high level of expression. HT1080 (bottom) gene order from top panel. **B.** Bar plot showing mean of n=3 expression values of the 35 genes upregulated by cancer cells and HFF-1 fibroblasts. MDA-MB-231 (top), genes sorted by low to high level of expression. HT1080 (middle) and HFF-1 (bottom) gene order from top panel .**C.** Mean of n=3 expression levels of genes previously reported as being involved in vasculogenic mimicry and upregulated by cancer cells in high density collagen. For this panel TPM>5 was not required for analysis. **D.** Sensitivity analysis of Gene Ontology Analysis presented in Figure 2. Left Panel: Plot showing number of genes included in the analysis as a function of fold change threshold (yellow) and fold enrichment of 2 key terms (blood vessel development and regulation of cell migration, blue and green respectively) for the two gene sets cancer specific (70 Genes) and common to all cell lines analyzed (35 genes). Right panel shows the full sensitivity analysis when the

fold change threshold is varied from 1.3 to 1.9. Details of the analysis can be found in the Methods section.

Supplementary Figure 3. A. ITGB1 sorted MDA-MB-231 cells at day 1 of embedding in high density and low density collagen matrices and plated on tissue culture plastic (2D). Scale bar 200 μ m. **B**. RT-qPCR validation of shRNA mediated knock down of LAMC2 and COL4A1 **C**. Representative images of MDA-MB-231 cells expressing shRNA constructs against a scramble sequence, COL4A1, or LAMC2 after 7 days of culture in high density collagen Scale bar 200 μ m. N=3 biological replicates for all experiments unless otherwise noted. Statistical significance was determined by Wilcoxon rank sum test and is indicated as *, **, *** for p≤0.05, p≤0.01, p≤0001 respectively.

Supplementary Figure 4. A. Loadings of the first principal component (PC1) in stage I breast cancer patients of the 70 CINP associated genes identified in this study (Figure 2). **B.** Loadings of the first principal component (PC1) in stage II breast cancer patients of the 70 CINP associated genes identified in this study (Figure 2). **C.** Kaplan Meier survival analysis of stage II breast cancer patients in TCGA (left) and Metabric (right) databases when the PC1 loadings were used as an expression metagene. **D.** Kaplan Meier plots showing survival prediction by the CINP gene signature in Stage III and Stage IV breast cancer from TCGA data and stage III from metabric.

Supplementary Figure 5. Uncropped Western blots from Figure 4A. A. Integrin B1 Western blot. B. Alpha tubulin western blot.

Supplementary Table 1. Sensitivity analysis of GO enrichment

fcThresh	oldgenel is	Description	#	expectation	fold enrich
ic i ile sii	olugeneLis	libescription	rr genes in set	expectation	ioia_ennen
1.3	70	blood vessel			
	Genes	development	16	2.890	5.536
		regulation of cell			
		migration	13	2.356	5.518
	35	cell differentiation	28	13 647	2 052
	Genes	regulation of smooth		10.047	2.002
		muscle cell			
		migration	3	0.164	18.333
1.4	70	blood vessel			
	Genes	development	12	1.630	7.361
		regulation of cell	1		
		migration	12	1.329	9.030
	35	cell differentiation	19	7 696	2 469
	Genes	regulation of smooth	15	1.000	2.405
		muscle cell			
		migration	3	0.092	32.511
1.5	70	blood vessel			
	Genes	development	9	0.982	9.167
		regulation of cell			
		migration	10	0.800	12.496
	35	cell differentiation	12	3 265	3 676
	Genes	regulation of smooth	12	5.205	3.070
		muscle cell			
		migration	3	0.039	76.639
1.6	70	blood vessel	-		
	Genes	development	8	0.667	11.997
		regulation of cell			ľ
		migration	8	0.544	14.718
	35	cell differentiation	6	1 082	3 027
	Genes	regulation of smooth	Č.	1.502	5.027
		muscle cell			
		migration	1	0.024	42.076
1.7	70	blood vessel			
	Genes	development	7	0.482	14.534
		regulation of cell	i		ĺ
		migration	7	0.393	17.832
	35	cell differentiation	2	1 283	2 330
	Genes	regulation of smooth	ĩ	1.205	2.555
		muscle cell			
		migration	1	0.015	65.027
1.8	70	blood vessel			
	Genes	development	6	0.333	17.995
		regulation of cell	i		ĺ
		migration	4	0.272	14.718
	35	cell differentiation	2	0 033	3 216
	Genes	regulation of smooth	5	0.935	5.210
		muscle cell			
		migration	h	0.011	89.413
1.9	70	blood vessel	i –		
	Genes	development	6	0.278	21.594
		regulation of cell	-		
		migration	3	0.226	13.246
	35	cell differentiation	_	0.916	2 450
	Genes	rogulation of amost	۴	0.010	2.430
		muscle cell			
		migration	h	0.010	102.186
			-		

Supplementary Table 2. Gene ontology enrichment analysis for the genes in the 70 gene list

CO Torm	#0000	
do remi	s in	genes in set
	set	
regulation of cell migration	10	EDN1 JAG1 PODXL TPM1 HMOX1 FURIN LAMB1 RBPJ THBS1 SMAD7
regulation of developmental process	16	EDN1 JAG1 LTBP4 HPS4 THBS1 SMAD7 SIPA1L1 COL4A2 ID2 HMOX1 ITGAV HES1 VHL EPHB2 SKIL NKX3-1
regulation of cellular component movement	10	EDN1 JAG1 PODXL TPM1 HMOX1 FURIN LAMB1 RBPJ THBS1 SMAD7
regulation of locomotion	10	EDN1 JAG1 PODXL TPM1 HMOX1 FURIN LAMB1 RBPJ THBS1 SMAD7
anatomical structure development	27	TAGLN NLGN2 LAMC2 RBPJ THBS1 SYNE1 LFNG SIPA1L1 PODXL HMOX1 ITGAV HES1 IGF2BP3 VHL EPHB2 SKIL NKX3-1 EDN1 JAG1 TPM1 NAV1 LAMB1 SMAD7 COL5A1 COL4A1 ID2 KCTD11
regulation of multicellular organismal process	17	EDN1 NLGN2 JAG1 TPM1 FURIN THBS1 SMAD7 SIPA1L1 COL4A2 ID2 BHLHE40 HMOX1 HES1 IG F2BP3 EPHB2 SKIL NKX3-1
system development	25	TAGLNINLGN2 LAMC2 RBPJ THBS1 LFNG SIPA1L1 PODXL HMOX1 ITGAV HES1 VHL EPHB2 SKI L NKX3-1 EDN1 JAG1 TPM1 NAV1 LAMB1 SMAD7 COL5A1 COL4A1 ID2 KCTD11
developmental process	29	TAGLNINLGN2 LTBP4 LAMC2 FURIN RBPJ THBS1 SYNE1 LFNG SIPA1L1 PODXL HMOX1 ITGAV HES1 IGF2BP3 VHL EPHB2 SKIL NKX3- 1 EDN1 JAG1 TPM1 NAV1 LAMB1 SMAD7 COL5A1 COL4A1 ID2 KCTD11
blood vessel development	9	EDN1 JAG1 COL5A1 COL4A1 HMOX1 ITGAV VHL THBS1 SMAD7
vasculature development	9	EDN1 JAG1 COL5A1 COL4A1 HMOX1 ITGAV VHL THBS1 SMAD7
cellular component organization	25	NLGN2 LAMC2 RBPJ THBS1 SYNE1 MRC2 SIPA1L1 ABLIM3 HMOX1 ITGAV HES1 VHL EPHB2 SKI LITPM1 HPS4 NAV1 LAMB1 H2BFS SMAD7 DAAM1 COL4A2 COL5A1 LPCAT2 TGFBI
anatomical structure formation involved in morphogenesis	10	EDN1 JAG1 COL4A1 PODXL TPM1 HMOX1 VHL THBS1 SKIL NKX3-1
anatomical structure morphogenesis	17	EDN1 JAG1 TPM1 LAMB1 THBS1 SMAD7 LFNG COL5A1 COL4A1 PODXL HMOX1 HES1 IGF2BP3 VHL EPHB2 SKIL NKX3-1
regulation of transforming growth factor beta receptor signaling pathway	5	LTBP4 FURIN THBS1 SKIL SMAD7
organ development	20	EDN1 TAGLN JAG1 TPM1 LAMC2 LAMB1 THBS1 SMAD7 LFNG COL5A1 COL4A1 PODXL ID2 HMO X1 ITGAV HES1 VHL EPHB2 SKIL NKX3-1
multicellular organismal development	26	TAGLNINLGN2 LTBP4 LAMC2 RBPJ THBS1 LFNG SIPA1L1 PODXL HMOX1 ITGAV HES1 VHL EPH B2 SKIL NKX3-1 EDN1 JAG1 TPM1 NAV1 LAMB1 SMAD7 COL5A1 COL4A1 ID2 KCTD11
negative regulation of cellular process	20	EDN1 JAG1 TPM1 AMIGO2 FURIN RBPJ THBS1 SMAD7 PODXL ID2 BHLHE40 HMOX1 ITGAV HES 1 IGF2BP3 VHL TGFBI EPHB2 SKIL NKX3-1
negative regulation of biological process	21	EDN1 JAG1 TPM1 AMIGO2 FURIN RBPJ THBS1 SMAD7 COL4A2 PODXL ID2 BHLHE40 HMOX1 IT GAV HES1 IGF2BP3 VHL TGFBI EPHB2 SKIL NKX3-1
regulation of cell differentiation	11	EDN1 SIPA1L1 JAG1 ID2 LTBP4 ITGAV HES1 VHL EPHB2 SKIL SMAD7

Supplementary Table 3. Gene ontology enrichment analysis for the genes in the 35 gene list

GO Term	#gene s in set	genes in set
regulation of smooth muscle cell migration	3	ITGA2 SERPINE1 TRIB1
cell differentiation	12	SEMA7A UHRF2 CHST11 GADD45B ITGA2 SPHK1 FN1 FZD8 ULK1 JARID2 FSTL3 IGF1R
cellular developmental process	12	SEMA7A UHRF2 CHST11 GADD45B ITGA2 SPHK1 FN1 FZD8 ULK1 JARID2 FSTL3 IGF1R
regulation of cell migration	5	ITGA2 SPHK1 SERPINE1 TRIB1 IGF1R
developmental growth	4	CHST11 SERPINE1 PLAUR ULK1
negative regulation of smooth muscle cell migration	2	SERPINE1 TRIB1
regulation of cellular component movement	5	ITGA2 SPHK1 SERPINE1 TRIB1 IGF1R
regulation of locomotion	5	ITGA2 SPHK1 SERPINE1 TRIB1 IGF1R
positive regulation of cell migration	4	ITGA2 SPHK1 SERPINE1 IGF1R
positive regulation of cellular component movement	4	ITGA2 SPHK1 SERPINE1 IGF1R
positive regulation of locomotion	4	ITGA2 SPHK1 SERPINE1 IGF1R
regulation of protein metabolic process	7	NDUFA13 ITGA2 SPHK1 SERPINE1 PLAUR JARID2 TRIB1
regulation of cellular component organization	6	ITGA2 SPHK1 SERPINE1 FN1 ULK1 JARID2
positive regulation of smooth muscle contraction	2	ITGA2 SPHK1
growth	4	CHST11 SERPINE1 PLAUR ULK1
positive regulation of cellular component organization	4	ITGA2 SPHK1 SERPINE1 JARID2
positive regulation of muscle contraction	2	ITGA2 SPHK1
regulation of cell proliferation	7	CHST11 ITGA2 SPHK1 SERPINE1 JARID2 TRIB1 IGF1R

Supplementary table 4. TCGA analysis not significant effect cox p >0.05

Cancer	Patient	Death	HR	Сох р
type	count	Observed		
BRCA	1131	104	1.1116	0.3268
UCEC	555	45	1.2440	0.1955
HNSC	518	167	1.1604	0.0748
PRAD	505	8	1.3992	0.4090
THCA	504	14	1.0754	0.8104
COAD	499	59	0.8250	0.1646
LUSC	489	154	1.0746	0.3913
LIHC	369	89	1.1355	0.2679
ov	337	185	1.0028	0.9721
KIRP	287	32	1.2456	0.2371
STAD	279	77	1.2858	0.0571
SARC	257	75	0.9090	0.4110
PCPG	179	6	0.8633	0.7016
READ	165	9	0.5978	0.3112
GBM	156	53	1.1312	0.2311
TGCT	133	3	0.9231	0.9001
ТНҮМ	120	6	1.0127	0.9496
ESCA	119	57	0.7878	0.6258
SKCM	93	10	1.6624	0.2016
UVM	80	13	1.4671	0.1305
UCS	57	25	0.8913	0.5450
DLBC	47	5	0.9887	0.9806
CHOL	36	16	1.0232	0.9343

Supplementary Table 4. Cancer types for which there is data available in TCGA but no significant differences between high and low CINP groups were detected. Table shows number of patients available, number of deaths reported, hazard ratio and cox model p value. See methods for analysis details.