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Supplementary Figure 1 | Nanostructures and properties of the as-grown hydrogen-rich a-C:H (ACF-1) 

and a-C:H:Si (ACF-6) films on Si wafers. A hydrogen-deficient and hard a-C:H:Si interlayer was employed 

to act as a bonding layer for the both films. (a,b) Low-magnification TEM images (left side) showing the 

bilayer structure of the as-grown films. (Insets) Electron diffraction pattern images demonstrating the typical 

amorphous characters of the as-grown a-C:H (ACF-1) and a-C:H:Si (ACF-6) films. AFM three-dimensional 

morphological images (right side, 10 μm × 10 μm) indicating the atomically smooth surfaces of the both films. 

The detailed growth procedure and parameters can be found elsewhere (refs 1, 2). (c) Compositional and 

mechanical properties of the as-grown individual layers. ACF denotes ‘amorphous carbon film’. The elemental 

composition was measured by ERDA and XPS. The hardness and elastic modulus was determined by 

nanoindentation. The surface roughness was recorded by AFM. 
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Supplementary Figure 2 | Superlubricity behaviors and basic characterizations of the contact areas for 

the self-mated a-C:H (ACF-1) surfaces sliding at various normal loads. (a) Friction coefficients μ quickly 

evolving to steady-state values of 0.008, 0.0055 and 0.001 at normal loads of 2, 5 and 10 N, respectively, at the 

onset of sliding contact in dry N2 atmosphere. The initial peak (average) Hertz contact pressures at loads of 2, 

5 and 10 N were calculated to be 0.68 (0.46), 0.93 (0.62) and 1.17 (0.78) GPa, respectively. The sliding speed 

was 15 cm·s-1. The inset shows the zoomed first 100 sliding cycles, in which a shorter running-in stage and a 

lower initial μ are observed at a higher contact pressure. (b) Optical images showing the wear scars and the 

wear tracks (barely visible to naked eyes) produced on the ball and wafer surfaces. The diameters of the wear 

scars were measured to be 97.7, 118.5 and 143.6 μm at normal loads of 2, 5 and 10 N, respectively. The 

corresponding steady-state apparent average contact pressures were calculated to be 0.27, 0.45 and 0.62 GPa, 
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respectively. It seems that the self-mated hydrocarbon surfaces under a higher normal load (i.e., 10 N) were 

still rubbing at a higher contact pressure in the steady state even though the contact area is substantially 

enlarged as compared with the cases of lower normal loads (i.e., 2 and 5 N). According to the equation μ=S0/P 

(ref. 3) for solid lubricants, we can roughly estimate the interfacial shear strength S0 in the steady state. The 

calculated values were 2.16, 2.47 and 0.62 MPa, respectively, for normal loads of 2, 5 and 10 N. There was a 

noticeable reduction of S0 for the load of 10 N, implying a pressure-induced change of the bonding structure of 

the sliding interface (see Fig. 2e,h). (c,d) Interference images showing the sectional profiles across the wafer 

wear tracks generated at loads of 5 and 10 N, as marked in b. Wear depths of ~0 and ~11 nm were recorded for 

the both a-C:H wear tracks, respectively. (e) Comparison of Raman spectra (left side) measured from the 

as-grown a-C:H film, the ball wear scar center at 2 N, the ball wear scar center at 5 N, the ball wear scar edge 

and the scar center at 10 N, as marked in b. The fitting results corresponding to each curve are presented 

simultaneously (right side). Based on Raman theory for amorphous carbon (refs 4, 5), the almost invariable 

G-peak position PG (~1545 cm-1) and peak area ratio AD/AG (~1.5) illustrate the nearly unaffected bonding 

structures of a-C:H layers in the contact areas. Note that Raman signal could probe the subsurface deep to 

several hundred nanometers, therefore the detected information mainly reflected the properties of the bulk. 

However, the decreased photoluminescence background m/IG at 10 N, a measure index for hydrogen content in 

the film (ref. 4), implies the reduction of the detected signal volume of hydrogen atoms. This is expected to 

probably originate from the bulk lateral extending of the film layers (Supplementary Fig. 3) and possible 

hydrogen release from the film surface upon sliding contact.   
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Supplementary Figure 3 | TEM characterization of the contact areas for the self-mated a-C:H (ACF-1) 

surfaces after the superlubricity tests shown in Supplementary Fig. 2. (a–f) Low-magnification TEM 

images showing the cross-sectional structures of the contact areas at various loads: (a) the as-grown a-C:H film 

on SUJ2 steel ball, (b) ball wear scar center at 2 N, (c) ball wear scar center at 5 N, (d) ball wear scar edge at 

10 N, (e) ball wear scar center at 10 N and (f) wafer wear track center at 10 N. The thicknesses of the a-C:H:Si 

interlayer and the a-C:H top layer gradually decreased with the increase in load. 
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Supplementary Figure 4 | Superlubricity behavior and basic characterization of the contact areas for the 

friction pair of bare SUJ2 steel ball and a-C:H (ACF-1) surface. (a) Friction coefficient μ reaching a 

steady-state value of 0.004 after a running-in period (μ~0.025) in dry N2 atmosphere. Tribotesting condition: 

normal load of 2 N (initial peak Hertz contact pressure of 0.68 GPa) and sliding speed of 15 cm·s-1. (b) Optical 

images showing the wear scar and the wear track (barely visible to naked eyes) produced on the ball and wafer 

surfaces. (c) Interference images presenting the sectional profile across the wafer wear track as marked in b. A 

wear depth of ~7 nm was detected in the a-C:H wear track. (d) Comparison of Raman spectra measured from 

the as-grown a-C:H film and the ball scar center as marked in b. The split and sharpening of D-peak along with 

the up-shift of the G-peak position implying the remarkable increase and local clustering of sp2-C phase (ref. 5) 

in the tribolayer produced on the ball wear scar surface.  
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Supplementary Figure 5 | TEM, STEM and EELS characterization of the contact areas for the friction 

pair of bare SUJ2 steel ball and a-C:H (ACF-1) surface after the superlubricity test shown in 

Supplementary Fig. 4. (a) Low-magnification TEM image showing the formation of a nanometer-thick 
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carbonaceous tribolayer on the SUJ2 ball scar surface. (b) BF-STEM image presenting the enlarged details of 

the tribolayer as marked in a. (c) False-color displayed HAADF image corresponding to b. (d) A typical EDS 

spectrum and the evolution of elemental composition across the tribolayer as marked in b. Error bars represent 

s.d. of the measured atomic composition. (e) Evolution of low-loss spectrum across the tribolayer as marked in 

b. (f) Examples of peak resolving to the C K-edges measured from the as-grown a-C:H film and the EELS 

point 4 in the tribolayer as marked in b. Two Gaussian peaks are fitted to π*(C=C) and σ*(C-H) bonds, 

respectively. The residual bond fraction for C-hybridization is then assigned to σ*(C-C), neglecting the 

contribution from C-O and C=O bonds. (g) Evolution of the calculated EELS C-bonds fractions across the 

tribolayer as marked in b. Error bars denote s.d. of calculated bond fractions. (h) Low-magnification TEM 

image showing the cross-sectional structure at the center of the wafer wear track. (i) HRTEM image showing 

the atomic structure of the sliding interface as marked in h. The bonding structure of the a-C:H top layer along 

the sliding interface is nearly intact as compared to the as-grown a-C:H film (see Supplementary Fig. 1a). 
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Supplementary Figure 6 | Superlubricity behavior and basic characterization of the contact areas for the 

friction pair of bare Si3N4 ball and a-C:H (ACF-1) surface. (a) Friction coefficient μ quickly reaching a 

steady-state value of 0.004 at the onset of sliding contact in dry N2 atmosphere. Tribotesting condition: normal 

load of 2 N (initial peak Hertz contact pressure of 0.75 GPa) and sliding speed of 15 cm·s-1. (b) Optical images 

showing the wear scar and the wear track (barely visible to naked eyes) produced on the ball and wafer 

surfaces, respectively. (c) Interference images showing the sectional profile across the wafer wear track as 

marked in b. A wear depth of ~7 nm was detected in the a-C:H wear track. (d) Comparison of Raman spectra 

measured from the as-grown a-C:H film, the ball wear scar edge and the ball wear scar center as marked in b. 

The split and sharpening of D-peak along with the up-shift of the G-peak position suggesting the remarkable 

increase and local clustering of sp2-C phase (ref. 5) in the tribolayer generated on the ball wear scar surface. 

The detection of Raman signal from the underlying Si3N4 (850-1050 cm-1) at the ball scar center implies that 

the thickness of the tribolayer is in nanometer scale.   
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Supplementary Figure 7 | TEM, STEM and EELS characterization of the contact areas for the friction 

pair of bare Si3N4 ball and a-C:H (ACF-1) surface after the superlubricity test shown in Supplementary 

Fig. 6. (a) Low-magnification TEM image showing the cross-sectional morphology of the Si3N4 ball wear scar. 

(b) STEM-BF image presenting the enlarged details of the tribolayer formed on the Si3N4 surface as marked in 

a. (c) Evolution of the elemental composition across the tribolayer as marked in b. Error bars represent s.d. of 

the measured atomic composition. (d) Deconvoluted low-loss spectrum from the EELS point 2 in the 

tribolayer as marked in b. The measured plasmon energy Ep of 22.3 eV yielding a mass density of about 1.66 

g·cm-3. (e) Evolution of C K-edge across the tribolayer as marked in b. (f) Peak resolving to the C K-edge 

measured from the EELS point 2 in the tribolayer as marked in b. Two Gaussian peaks were fitted to π*(C=C) 

and σ*(C-H) bonds, respectively. The residual fraction for C-hybridization is the total amount of C-C, C-O, 

C=O and other possible bonds. (g) Evolution of the calculated EELS C-bonds fractions across the tribolayer as 

marked in b. Error bars define s.d. of calculated bond fractions. (h) Low-magnification TEM image showing 

the cross-sectional structure at the center of the wafer wear track. (i) HRTEM image showing the atomic 

structure of the sliding interface as marked in h. The bonding structure of the a-C:H top layer along the sliding 

interface is nearly intact as compared to the as-grown a-C:H film (see Supplementary Fig. 1a). 
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Supplementary Figure 8 | Superlubricity behavior and basic characterization of the contact areas for the 

self-mated a-C:H:Si (9.3 at.% Si, ACF-6) surfaces. (a) Friction coefficient μ quickly reaching a steady-state 

value of 0.001 at the onset of sliding contact in dry N2 atmosphere. Tribotesting condition: normal load of 2 N 

(initial Hertz contact pressure of 0.68 GPa) and sliding speed of 20 cm·s-1. (b) Optical images showing the 

wear scar and the wear track produced on the ball and wafer surfaces. A thick tribolayer was generated in situ 

covering the wafer wear track due to the material transfer from the ball surface to the wafer side. a and b 

reproduced with permission from ref. 2. Copyright 2014 American Chemical Society. (c) AFM-3D (10 μm × 

10 μm) image showing the smooth wear scar surface with roughness Ra=18.7 nm, as marked in b. (d) 

AFM-3D (90 μm × 90 μm) and sectional profile images indicating the rough morphology of the tribolayer in 

the wear track, as marked in b. The average thickness was in the range of 50-100 nm. (e) Load-dependent 

nanoindentation measurements revealing the flexibility and softness of the formed tribolayer. The intrinsic 

hardness is about 0.25 GPa measured at the small load of 0.3 mN (avoiding the effect from the underlying 

layer and substrate), quite lower than the as-grown a-C:H:Si film (16.2 GPa). Error bars represent s.d. of the 

measured values. (f) Comparison of Raman spectra measured from the as-grown a-C:H:Si film and the contact 

areas. The increase in AD/AG ratio and the up-shift of G-peak position demonstrating the enhancement of 
sp2-phase present in the contact areas. 
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Supplementary Figure 9 | TEM, STEM and EELS characterization of the contact areas for the 

self-mated a-C:H:Si (9.3 at.% Si, ACF-6) surfaces after the superlubricity test shown in Supplementary 

Fig. 8. (a) Low-magnification TEM image showing the cross-sectional morphology of the ball wear scar center, 
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as marked in Supplementary Fig. 8b. (b) HAADF-STEM image showing the enlarged detail of the tribolayer 

(~5 nm) formed on the scar center surface, as marked in a. This figure corresponds to the BF-STEM image in 

Fig. 5a. (c) Low-magnification TEM image showing the cross-sectional morphology of the ball wear scar edge, 

as marked in Supplementary Fig. 8b. (d) BF-STEM image showing the enlarged detail of the tribolayer (~20 

nm) formed on the scar edge surface, as marked in c. (e) HAADF-STEM image corresponding to d. (f) 

Evolution of the EDS-measured elemental composition across the tribolayer as marked in d. Error bars 
represent s.d. of the measured atomic composition. (g) Low-magnification TEM image showing the 

cross-sectional morphology of the wafer wear track, as marked in Supplementary Fig. 8b. Wavy profiles were 

observed along the sliding interface, confirming the rough morphology of the formed tribolayer as indicated in 

Supplementary Fig. 8d. (h) BF-STEM image showing the enlarged detail of the tribolayer formed in the wear 

track, as marked in g. Note that almost no obvious phase contrast can be distinguished between the tribolayer 

and the underlying a-C:H:Si layer, mainly due to the same compositional elements and close contents in them. 

(i) Evolution of the EDS-measured elemental composition of the tribolayer from the sliding interface towards 

the underlying intact a-C:H:Si film, as marked in h. Note that a small number of Au and Ga nanoparticles were 

inevitably implanted into the outer-most region (~10 nm) due to the rough and porous morphology of the 

formed tribolayer. Error bars represent s.d. of the measured atomic composition. (j) Evolution of Si-L, C-K 

and O-K EELS edges recorded across the tribolayer point by point as marked in h. All the spectra are 

displayed after the background subtraction and the followed deconvolution with a corresponding low loss 

spectrum. (k) Evolution of the calculated EELS C-bonds fractions across the tribolayer from the EELS C-K 

edges presented in j. Error bars denote s.d. of calculated bond fractions. 
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Supplementary Figure 10 | Composition and properties of the as-grown hydrogen-rich a-C:H:Si films 

with different Si contents and their anti-friction behaviors. (a) Atomic composition and mechanical 

properties of the as-grown hydrogen-rich a-C:H:Si films. The silicon content gradually increases from ~0 at.% 

to 9.3 at.% in the films of ACF-1 to ACF-6. (b) Superlubricity behaviors in dry N2 atmosphere. Tribotesting 

condition: normal load of 2 N and sliding speed of 20 cm·s-1. (c) Zoom of the first 200 sliding cycles to 

highlight the running-in stages. (d) Optical images showing the evolution of morphologies of the wear scars 

and the wear tracks produced on the ball and wafer surfaces. Close relationship could be found between the 
tribolayer coverage and the Si content, namely, from the absence of tribolayer (~0 at.% Si) to the development 

of an incomplete tribolayer (4.2-8.5 at.% Si), then to the formation of a fully complete tribolayer (9.3 at.% Si). 
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Supplementary Figure 11 | STEM and EELS characterization of the contact area produced on 

film-coated SUJ2 steel ball surface for self-mated a-C:H:Si (5.7 at.% Si, ACF-4) surfaces after the 

friction test (Supplementary Fig. 10b). (a) Low-magnification TEM image showing the cross-sectional 

morphology of FIB lamella sliced from the ball wear scar, as marked in Supplementary Fig. 10d. It could be 

seen that there still remained a part of ACF-4 layer after the material transfer to the wafer side for growth of an 

anti-friction tribolayer (Supplementary Fig. 10d). (b) EDS-elemental distribution across the ball wear scar as 

marked in a. An outermost area in the remaining ACF-4 layer was found to be affected after the friction test 

when in view of the carbon and oxygen content. The increase of oxygen content was due to the oxygen 

adsorption from the ambient atmosphere by the nanoporous tribolayer. (c) BF-STEM image showing the local 

morphology of the tribolayer formed in the outermost area of the remaining ACF-4 layer. (d) Evolution of Si-L, 

C-K and O-K EELS core-edge spectra recorded across the tribolayer-covered area point by point as marked in 

c. (e) Evolution of the calculated EELS C-bonds fractions from the EELS C-K edges presented in d. Error 

bars denote s.d. of calculated bond fractions. 
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Supplementary Note 1 | The strategy for EELS measurement at 200 kV 

In some cases, carbon-based materials are very sensitive to high-energy electron 

irradiation-induced damage. The degree of damage is highly dependent on the material structure 

and the incident electron beam6. For instance, carbon nanotubes and graphene are usually 

suffered from knock-on damage7, namely displacing carbon atoms in the graphene structure. 

Therefore, it would be best for the characterization of these atomic-scale thin carbon materials 

using electron microscopes conducted at low acceleration voltages, such as a threshold of about 

80 kV for SWNT. For amorphous carbon, the motivation that we still choose the beam voltage of 

200 kV for STEM and EELS acquisition is based on the following considerations. Firstly, the 

dual-aberration-corrected JEOL JEM-ARM200F STEM used in this work is designed to be a 200 

kV microscope, which is capable of delivering a STEM-HAADF spatial resolution of 0.08 nm 

and an EELS energy resolution of 0.34 eV at 200 kV. This powerful sub-angstrom imaging 

capability is the core requirement for this study, namely resolving the tribo-induced interfacial 

nanostructures at the atomic scale. Although this microscope can also be operated at 80 kV, the 

STEM imaging resolution as well as the energy resolution would be reduced to a remarkable 

extent at this low voltage. This weakened imaging capability thus cannot guarantee the quality of 

the received images as good as those obtained in this work, which may fail in capturing the 

atomic details of the tribolayer nanostructures. Secondly, amorphous carbon is more endurable to 

electron-beam irradiation due to its bulk-like characteristic as compared to the two-dimensional 

(very thin) structure of graphene. Therefore, EELS spectra can be acquired at higher beam 

voltage such as 200 kV, by optimizing acquisition time (0.05-0.1 s) to largely suppress structural 

transformation and irradiation damage in amorphous matrix. Moreover, as shown in 

Supplementary Fig. 12, the shape of core-loss C-K spectrum recorded at 200 kV was almost the 

same as that of 80 kV. This indicates that similar EELS results could be achieved for both 

voltages. However, the relatively short acquisition time (0.05-0.1 s) leaded to the reduced 

smoothness of the acquired EELS spectra or even noisiness in some cases (notably those in Fig. 

3f, Fig. 5j and Supplementary Fig. 11d) where carbon content in the tribolayer was not abundant. 

Under such circumstances, we had to sacrifice, to some extent, the precision of bond fractions 

obtained through peak fitting. In spite of this, qualitative or semi-quantitative analysis of the 

interfacial nanostructures based on EELS spectra is definitely possible and reliable when a 
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properly converged and stable fitting procedure (Supplementary Note 2) is consistently used for 

the whole set of data, even if the absolute values can be different in some degree.  

 

Supplementary Figure 12 | Comparison of EELS carbon K-edge spectra recorded at 80 and 200 kV 

under a relatively short acquisition time of 0.05 s. Note that, for the purpose of clarity, the two spectra are 

normalized to the same intensity by referring to the peak intensity of C-K edge. Obviously, the almost 

overlapped C-K edge curves indicate that similar EELS results could be achieved for both voltages. 

Supplementary Note 2 | Calculation technique for EELS C-K quantification and the 

accuracy of the derived π* and σ* bond fractions 

The high-energy electrons can cause the electrons to excite from 1s core level to unoccupied 

states, and the energy-loss near edge structure (ELNES) is capable of reflecting the bonding 

features in C-K EELS spectra, namely π* and σ* electronic states for carbon atoms. Therefore, the 

C-K edge spectra can be regarded as the superposition of integrated intensities from several 

core-exciton π* and σ* peaks. To determine the individual bond fraction, the key requirement is 

to distinguish and resolve the corresponding π* and σ* peaks from the C-K edge, based on the 

consideration that the number of recorded counts is proportional to the number of π-/σ-bonded 

electrons. The fractions of sp2-/sp3-bonded carbon atoms are derived by referencing the ratio (R) 

of individual integrated area in the specific energy window to that of standard samples. To 

extract the ratios of peaks from experimental EELS spectra, a number of Gaussian or Lorentzian 

functions8,9 as well as a particular energy window can be used during peak fitting. Various sets 

of fitting parameters are proposed in different methods10, and the choice of these parameters is 

ultimately a decisive factor in affecting the calculated bonds fractions. Numerous efforts in the 
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literatures are devoted in determining the optimum combinations of these fitting parameters to 

achieve the smallest fluctuations of the derived sp2 bond fractions, namely improving the 

precision of quantification. In this work, we follow a straightforward calculation method well 

established by Berger and co-workers11 and other researchers12,13. In detail, following L. 

Ponsonnet et al.14 and A. J. Papworth et al.9 (multiple-functional fitting approach), a few 

Gaussian peaks with specific energies, widths and heights are fitted to the π* and σ* features. 

Note that the π* and σ* peaks involved in the present work are as follows: π*(C=C) at 285.5 eV, 

σ*(C-H) at 287 eV, σ*(C-Si) at 291.5 eV and σ*(C-C) at 292.5 eV. The R-ratio for each individual 

peak such as π* peak was achieved by normalizing its integrated area to the total (π*+σ*) area 

integrated in the energy window of 280-310 eV. This ratio was then referenced to the standard 

value obtained for a 100% sp2-bonded sample such as HOPG, yielding the desired bonds 

fractions in the unknown carbon materials. To largely suppress the fluctuations in the fitting 

process, improvement could be obtained by constraining some fit parameters (e.g. the energy 

position of Gaussian peak)10. Therefore, during fitting in this work, the energies of each 

individual peak were fixed, while the widths and heights were variable parameters. However, it 

should be pointed out that, the peak energies were allowed to adjust manually in a small range 

around the nominal value by taking small chemical shift into account. Meanwhile, to reduce the 

complexity and instability during fitting, the deconvolution procedure was relatively simplified 

by reducing one Gaussian function, namely the σ*(C-C) peak. Correspondingly, the bond fraction 

of σ*(C-C) was achieved by calculating the balance from the total 100%. With fixed peak 

energies, the Gatan DigitalMicrograph software automatically optimized all these parameters 

until the deconvolution curve coincided with the experimental spectrum. For instance, during 

fitting of C-K edge of carbonaceous tribolayer formed from a-C:H film, two Gaussian peaks 

including π*(C=C) at 285.5 eV and σ*(C-H) at 287 eV were fitted to the experimental spectrum 

(Supplementary Fig. 5f). The two energies of 285.5 and 287 eV were adjusted slightly, i.e., 

within a range of ±0.3 eV, until a good agreement between the sum of fitting peaks and the 

experimental spectrum was realized. 

The calculation accuracy or fluctuation is the key concern in sp2/sp3 carbon fractions 

determination from EELS C-K edge. Multiple factors such as deconvolution procedure (mainly 

plural scattering effect)15, core-hole lifetime broadening effect16, variable parameters (energies, 

width and height) in functional fitting approach10 as well as the reference standard establishment 
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(see Supplementary Note 3) can affect the quantitative results for each individual carbon bond. 

Nevertheless, after suitable technical treatments and careful adjustments of fitting parameters, 

some researchers could achieve high accuracy by reducing the fluctuations in the EELS 

calculated bond fractions down to around 2%. In the present work, however, it should be pointed 

out that in addition to the above spectral issues, the less-than-ideal curve smoothness in some 

C-K edge curves (Fig. 3f, Fig. 5j and Supplementary Fig. 11d) due to the relatively short 

acquisition time (Supplementary Note 1) further impose an obstacle to obtain absolutely accurate 

quantitative characterization, even though we have carefully treated all these concerns by taking 

the well-documented fitting criterions into account. These varieties and instabilities deteriorate 

the precision of calculated bond fractions to a noticeable extent, namely with a fluctuation of 

around 10%. Therefore, based on this accuracy level, we prefer to sort the present EELS analysis 

results into semi-quantitative or a qualitative assessment. As mentioned above, a quantitative 

processing of the whole set of spectra consistently following a properly converged and stable 

fitting procedure at least allows a reliable qualitative analysis of the structural evolution in the 

targeted carbon materials.        

Supplementary Note 3 | Suppression of orientation effect on EELS core edges under ‘magic 

angle’ measurement condition 

As well recognized, ELNES measurements in crystalline materials are sensitive to 

orientation of the ordered local structure, namely the effect of anisotropy17. Even though the 

crystal orientation dependence is not the concern in amorphous carbon, the standard reference 

sample of HOPG used in this work would be affected by this anisotropic effect9. Theoretical 

studies have shown that there exist experimental conditions where the anisotropic effect can be 

cancelled when a particular collection semi-angle (β) is used18. This angle is the so-called magic 

angle. Values calculated from theoretical models for the magic angle could vary from 1.36 θE to 

4θE
19,20, where θE was the energy-dependent characteristic scattering semi-angle of electrons. 

However, in practical application, there was big discrepancy between the experimental value and 

the theoretical one, which was speculated to be due to various possibilities such as contribution 

from other Bragg spots, nondipole transitions or channeling effects21. Therefore, for each 

practical case, one need to find the exact collection semi-angle for the magic-angle condition in 

each specific STEM-EELS system. Consequently, for each convergence semi-angle (α) at the 
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objective aperture, there is a collection angle β, for which the core-edge shape becomes 

orientation independent. In our JEOL JEM-ARM200F setup (200 kV), the available and closest 

parameter setting to this ideal measurement condition is 7.3 mrad for β, under which a small 

variation of around 5% in the intensity of EELS C-K edge was achieved.  
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