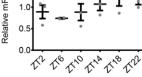
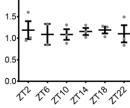

Current Biology, Volume 27


Supplemental Information

A Peptidergic Circuit Links the Circadian


Clock to Locomotor Activity

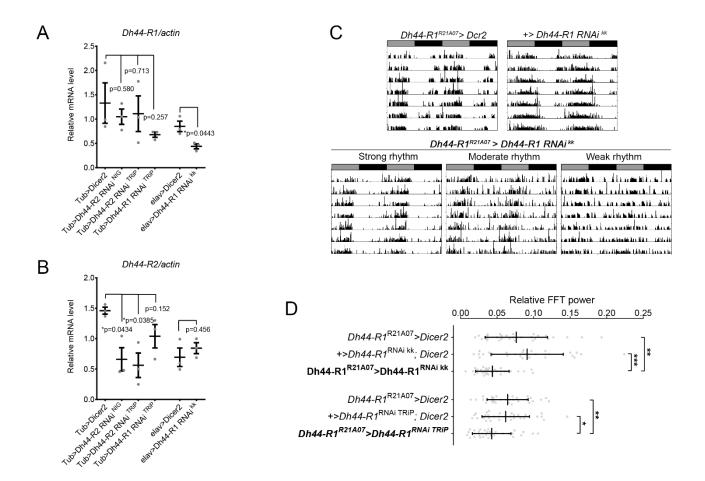
Anna N. King, Annika F. Barber, Amelia E. Smith, Austin P. Dreyer, Divya Sitaraman, Michael N. Nitabach, Daniel J. Cavanaugh, and Amita Sehgal

B

Figure S1. Characterization of Dh44-R1 and Dh44-R2 mutants. Related to Figure 1.

(A) mRNA levels for *Dh44-R1*, *Dh44-R2*, and *Dh44* in whole fly tissue from *Dh44-R1*^{DsRed} and *Dh44-R2*¹⁷⁴ mutants. mRNA levels were normalized to *actin* and compared to their heterozygous controls. *P < 0.05 by two-tailed Welch's t-test. qPCR data expressed as mean±SEM from n = 3.

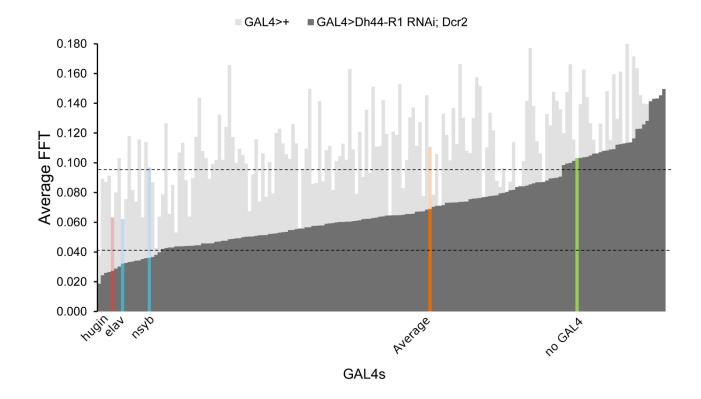
(B) Predicted protein sequences for Dh44-R2 wild type and Dh44- $R2^{174}$ mutant alleles. Dh44- $R2^{174}$ is a frameshift mutation that changes the protein sequence (indicated with bold text) and results in premature stop codons (indicated with *). Hormone binding domain (blue) and 7-transmembrane domain (orange) are annotated from NCBI's Conserved Domain Database [S1].


(C-E) Representative locomotor activity records from individual flies in constant darkness (DD). Records are double-plotted with gray and black bars indicating subjective day and night, respectively.

(C) Locomotor activity of $Dh44-R1^{DsRed}$ + and $Dh44-R1^{DsRed}$ mutant flies in DD. Representative activity records show examples of $Dh44-R1^{DsRed}$ homozygous mutants with strong, moderate, weak rhythms or arrhythmic behavior. (D) Locomotor activity of $Dh44-R2^{174}$ + and $Dh44-R2^{174}$ mutant flies in DD.

(E) Locomotor activity of $Dh44-R2^{174}$, $Dh44-R1^{DsRed}$ + and $Dh44-R2^{174}$, $Dh44-R1^{DsRed}$ double mutant flies in DD.

(F) *Dh44-R1* or *Dh44-R2* mRNA levels in fly head tissue at time points across the day. One-way ANOVA detects no difference between time points (*Dh44-R1*: $F_{5, 11} = 1.27$, P = 0.343; and *Dh44-R2*: $F_{5, 11} = 0.09308$, P = 0.992).


JTK_Cycle [S2] does not detect cycling (*Dh44-R1*: P = 0.272; and *Dh44-R2*: P = 1). mRNA levels were normalized to *actin* levels. qPCR data expressed as mean±SEM from n = 2-3 biological replicates.

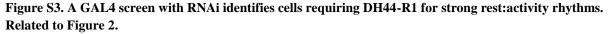
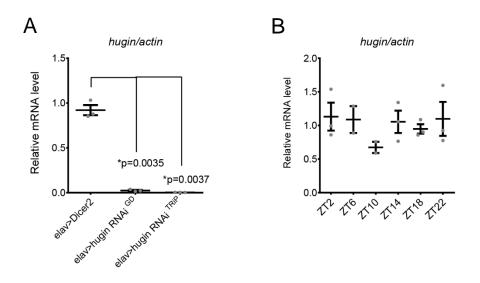


Figure S2. Analysis of RNAi-mediated knockdown of Dh44-R1. Related to Figure 1.


(A-B) *Dh44-R1* (A) and *Dh44-R2* (B) mRNA levels in whole fly tissue after knockdown of *Dh44-R1* or *Dh44-R2* using *tubulin*-GAL4 (*Tub*) or *elav*-GAL4. mRNA levels were normalized to *actin* and compared relative to GAL4>Dicer2 control. *Dh44-R1* ^{*RNAi kk*} knockdown with *Tub*-GAL4 was lethal. *P<0.05 by two-tailed Welch's t-test. qPCR data expressed as mean \pm SEM from n = 3.

(C) Representative activity records show knockdown flies ($Dh44-R1^{R21A07} > Dh44-R1 RNAi^{kk}$) can have strong, moderate, or weak rhythms. Control flies ($Dh44-R1^{R21A07} > Dcr2$ or $+>UAS-Dh44-R1 RNAi^{kk}$) have strong rest:activity rhythms. (D) DD amplitude of rest:activity rhythms represented by FFT analysis in the circadian range. RNAi-mediated knockdown of Dh44-R1 in Dh44-R1-expressing cells lowered the amplitude of rest:activity rhythms in flies (*P < 0.05, **P < 0.01, ***P < 0.001 by One-way ANOVA with Sidak's multiple comparison test).

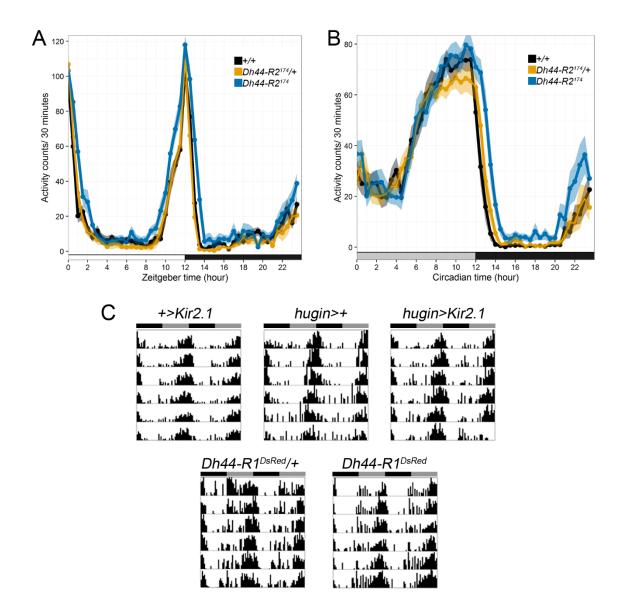

The mean FFT values for activity rhythms from flies carrying different GAL4 drivers along with *UAS-Dicer2; UAS-Dh44-R1^{RNAi kk}* to knock down DH44-R1 (knockdown, dark gray) or the GAL4 alone (negative control, light gray). The average FFT values from all 168 GAL4 tested (orange), no GAL4 control (*UAS-Dicer2, UAS-Dh44-R1^{RNAi kk}*; green), and pan-neuronal GAL4s (blue) are shown. Dashed lines denote 1 standard deviation below and above the average FFT from all 168 GAL4 tested. n = 8-16 flies/GAL4, except n = 190 flies for no GAL4 control.

Figure S4. mRNA levels of hugin do not cycle across the day. Related to Figures 4 and 5.

(A) *hugin* mRNA levels in whole fly tissue after knockdown of hugin using *elav*-GAL4 coupled with Dicer2 to drive RNAi expression. mRNA levels were normalized to *actin* and compared relative to *elav*-GAL4>*Dicer2* control. *P<0.01, two-tailed Welch's t-test.

(B) Expression profiling of *hugin* mRNA levels across the day in fly head tissue. One-way ANOVA detects no difference between time points ($F_{5, 10} = 0.6927$, P = 0.641). JTK_Cycle does not detect significant cycling (P = 1). mRNA levels normalized to *actin*. All qPCR data expressed as mean±SEM from n = 2-3 biological replicates.

Figure S5. Analysis of locomotor activity and feeding rhythms. Related to Figure 6.

(A-B) Locomotor activity profile of Dh44- $R2^{174}$ mutants averaged over 3 d in LD (A) or 3 d in DD (B). n=15 flies/genotype. Mean \pm SEM

(C) Representative plots of feeding activity for +>Kir2.1, hugin>+, and hugin>Kir2.1 flies (top) and $Dh44-R1^{DsRed}/+$ and $Dh44-R1^{DsRed}$ flies (bottom) in DD. Behavior is double plotted with 6 days of data. Gray and black bars represent subjective day and night, respectively.

Table S1. Analysis of locomotor activity rhythms in flies under DD conditions. Related to Figures 1, 2, and 4.

Table shows number of flies analyzed (n), percentages of rhythmic flies (% R), and length of circadian period in hours as mean \pm SEM. Bold text indicates experimental genotype.

Genotype	n	% R	Period (h) + SEM
$Dh44$ - $R1^{DsRed}/+$	44	97.7	23.63 <u>+</u> 0.04
Dh44-R1 ^{DsRed}	47	80.9	23.51 <u>+</u> 0.12
Dh44-R2 ¹⁷⁴ /+	47	100	23.75 <u>+</u> 0.03
Dh44-R2 ¹⁷⁴	48	95.8	23.91 <u>+</u> 0.03
Dh44-R2 ¹⁷⁴ , Dh44-R1 ^{DsRed} /+	48	100	23.61 <u>+</u> 0.03
$Dh44$ - $R2^{174}$, $Dh44$ - $R1^{DsRed}$	46	93.5	23.39 ± 0.28
Df(2R)BSC700/+	48	100	23.63 ± 0.03
Dh44-R1 ^{DsRed} /Df(2R)BSC700	47	100	23.53 ± 0.05
Df(2R)BSC305/+	44	100	23.78 <u>+</u> 0.02
Dh44-R2 ¹⁷⁴ /Df(2R)BSC305	45	97.8	23.56 ± 0.09
pdf ⁰¹	46	54.3	22.96 + 1.05
pdfr ^{han5304} /Y	47	68.1	22.96 + 0.62
per^{0l}/Y	46	0	N/A
wild type (w^{1118}/Y)	46	100	23.73 <u>+</u> 0.04
elav>UAS-Dicer2	47	97.9	23.41 <u>+</u> 0.26
+>UAS-Dh44-R1 ^{RNAi kk}	39	100	23.67 + 0.07
elav>UAS-Dicer2, UAS-Dh44-R1 ^{RNAi kk}	30	80	23.46 + 0.12
+>UAS-Dh44-R1 ^{RNAi TRiP} /+	45	97.8	23.45 ± 0.08
elav>UAS-Dicer2, UAS-Dh44-R1 ^{RNAi TRiP}	45	88.9	23.44 + 0.13
+>UAS-Dh44-R2 ^{RNAi TRiP}	46	95.7	23.51 + 0.07
elav>UAS-Dicer2, UAS-Dh44-R2 ^{RNAi TRiP}	47	74.5	23.42 + 0.13
+>UAS-Dh44-R2 ^{RNAi NIG}	48	100	23.91 + 0.04
elav>UAS-Dicer2, UAS-Dh44-R2 ^{RNAi NIG}	47	93.6	23.93 <u>+</u> 0.14
+>UAS-Dh44-R1 ^{RNAi kk} , UAS-Dh44-R2 ^{RNAi NIG}	40	97.5	23.82 ± 0.05
elav>Dicer2, Dh44-R1 ^{RNAi kk} , Dh44-R2 ^{RNAi NIG}	39	84.6	23.63 ± 0.09
Dh44-R1 ^{R21A07} >UAS-Dicer2	31	100	23.87 <u>+</u> 0.06
+>UAS-Dh44-R1 ^{RNAi kk}	32	100	23.40 <u>+</u> 0.04
Dh44-R1 ^{R21A07} >UAS-Dicer2,UAS-Dh44-R1 ^{RNAi kk}	31	96.8	23.25 <u>+</u> 0.07
Dh44-R1 ^{R21A07} >UAS-Dicer2	31	100	23.87 <u>+</u> 0.04
+>UAS-Dh44-R1 ^{RNAi TRiP}	31	100	23.37 <u>+</u> 0.06
Dh44-R1 ^{R21A07} >UAS-Dicer2, UAS-Dh44-R1 ^{RNAi TRiP}	31	96.9	23.81 <u>+</u> 0.06
+>UAS- <i>TrpA1</i> /+ (21°C)	31	100	23.64 <u>+</u> 0.09
+>UAS- <i>TrpA1</i> /+ (28°C)	31	100	23.68 <u>+</u> 0.15
$Dh44-R1^{R21A07}$ -GAL4>+ (21°C)	32	96.9	23.91 <u>+</u> 0.33
$Dh44-R1^{R21A07}$ -GAL4>+ (28°C)	32	100	23.70 <u>+</u> 0.23
Dh44-R1 ^{R21A07} >UAS-TrpA1 (21°C)	31	93.5	23.70 <u>+</u> 0.18
Dh44-R1 ^{R21A07} >UAS-TrpA1 (28°C)	31	31	23.39 <u>+</u> 0.08
Dh44-R1 ^{DsRed} /+; hugin>UAS-Dicer2	30	100	23.53 <u>+</u> 0.04
Dh44-R1 ^{DsRed} /+; +>UAS-Dh44-R1 ^{RNAi kk}	32	100	23.24 <u>+</u> 0.33
Dh44-R1 ^{DsRed} /+; hug>UAS-Dicer2,UAS-Dh44-R1 ^{RNAi kk}	29	96.6	23.80 <u>+</u> 0.45
Dh44-R1 ^{DsRed} /+; +>UAS-Dh44-R1 ^{RNAi TRiP} /+	24	95.8	23.78 ± 0.05
Dh44-R1 ^{DsRed} /+; hug>UAS-Dicer2,UAS-Dh44-R1 ^{RNAi TRiP}			

+>UAS-t-Dh44	62	100	23.56 <u>+</u> 0.05
hugin-GAL4>+	61	100	23.58 <u>+</u> 0.03
hugin>UAS-t-Dh44	60	96.8	23.50 <u>+</u> 0.07
hugin-GAL4>+	32	100	23.64 + 0.04
+>UAS- <i>Kir2.1</i>	32	100	23.47 + 0.05
hugin>UAS-Kir2.1	31	96.8	23.39 <u>+</u> 0.07
+>UAS-reaper	32	100	23.83 + 0.03
hugin>UAS-reaper	31	90.3	23.81 <u>+</u> 0.06
hugin>UAS-Dicer2	47	100	24.02 <u>+</u> 0.04
+>UAS-hugin ^{RNAI TRiP}	47	100	23.45 <u>+</u> 0.04
hugin>UAS-Dicer2, UAS-hugin ^{RNAI TRiP}	48	91.7	23.53 <u>+</u> 0.05
+>UAS-hugin ^{RNAI GD}	48	100	23.89 <u>+</u> 0.03
hugin>UAS-Dicer2, UAS-hugin ^{RNAI GD}	47	100	23.89 <u>+</u> 0.02

Figure	Genotype
Figure 1B	w/Y; Dh44-R1 ^{DsRed} /+
riguie ib	w/Y ; $Dh44-R1^{DsRed}/Dh44-R1^{DsRed}$
	w/Y; Df(2R)BSC700/+
	w/Y ; $Dh44-R1^{DsRed}/Df(2R)BSC700$
Figure 1C	w/Y; Dh44-R2 ¹⁷⁴ /+
rigure re	$w/1; Dh44-R2^{174}/Dh44-R2^{174}$
	w/Y; Df(2R)BSC305/+
	$w/Y; Dh44-R2^{174}/Df(2R)BSC305$
Figure 1D	w/Y; Dh44-R2 ¹⁷⁴ , Dh44-R1 ^{DsRed} /+
Figure 1D	$w/1$, $Dh44-R2^{174}$, $Dh44-R1^{DsRed}$ / $Dh44-R2^{174}$, $Dh44-R1^{DsRed}$
Figure 1E	$w/Y; Dh44-R1^{DsRed}$
Figure IE	w/T, D/44-KT $w, per^{0/}/Y$
	$w;pdf^{0}$
	w,, paj w,pdfr ^{han5304} /Y
	w,paji /1 w/Y iso31
Figure 1F	w, <i>elav-GAL4/Y</i> ; UAS-Dicer2/+; +/+
rigule Ir	w,etav-GAL4/1, GAS-Dice12/+, +/+ w/Y; UAS-Dh44-R1 RNAi kk/+; +/+
	w, elav-GAL4/Y; UAS-Dicer2/UAS-Dh44-R1 RNAi kk; +/+
	w,etav-GAL4/1, GAS-Dicer2/GAS-Dil44-KI KINAT KK, +/+ w/Y; +/+; UAS-Dh44-R1 RNAi TRiP/+
Eigung 1C	w,elav-GAL4/Y; UAS-Dicer2/+; UAS-Dh44-R1 RNAi TRiP/+
Figure 1G	w, $elav$ - $GAL4/Y$; UAS - $Dicer2/+$; $+/+$
	w/Y; +/+; UAS-Dh44-R2 RNAi NIG/+
	w,elav-GAL4/Y; UAS-Dicer2/+; UAS-Dh44-R2 RNAi NIG/+
	w/Y; +/+; UAS-Dh44-R2 RNAi TRiP/+
Element 111	w,elav-GAL4/Y; UAS-Dicer2/+; UAS-Dh44-R2 RNAi TRiP/+
Figure 1H	elav-GAL4/Y; UAS-Dicer2/+; +/+
	w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dh44-R2 RNAi NIG/+
Element 1	elav-GAL4/Y; UAS-Dicer2/UAS-Dh44-R1 RNAi kk; UAS-Dh44-R2 RNAi NIG/+ w/Y; UAS-GFP.nls/+; Dh44-R1 ^{R21A07} -GAL4/+
Figure 1I	
Figure 1J-K.	$w/Y; +/+; Dh44-R1^{R21A07}-GAL4/+$
	w/Y; UAS-dTrpA1/+; +/+
T : 2 A	w/Y; UAS-dTrpA1/+; Dh44-R1 ^{R21A07} -GAL4/+
Figure 2A	w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/+
	w/Y; +/+; $GAL4/+$ or w/Y ; $GAL4/+$; +/+
	w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/GAL4 or w/Y; UAS-Dh44-R1 RNAi kk/GAL4; UAS-
E: 0D	Dicer2/+
Figure 2B	w/Y; UAS-GFP.nls/+; GAL4/+
Figure 2C	w/Y; Dh44-R1 ^{DsRed} /+; hug-GAL4/UAS-Dicer2
	w/Y; Dh44-R1 ^{DsRed} /+, UAS-Dh44-R1 RNAi kk; UAS-Dicer2/+
	w/Y; Dh44-R1 ^{DsRed} /+, UAS-Dh44-R1 RNAi kk; hug-GAL4/UAS-Dicer2
	w/Y; Dh44-R1 ^{DsRed} /+, UAS-Dicer2; UAS-Dh44-R1 RNAi TRiP/+
	w/Y; Dh44-R1DsRed/+,UAS-Dicer2; hug-GAL4/UAS-Dh44-R1 RNAi TRiP
Figure 2D	w/Y; UAS-t-Dh44/+
	w/Y; +/+; hug-GAL4/+
	w/Y; UAS-t-Dh44/+; hug-GAL4/+
Figure 3B	w/Y; UAS-Denmark, UAS-syt-GFP/+; hug-GAL4/+
Figure 3C	w/Y; UAS-Denmark, UAS-syt-GFP/+; Dh44-GAL4/+

Table S2. Detailed fly genotypes used in experiments. Related to Figures 1-6 and S1-5.

Figure 3D, 3G	w/Y; hug-LexA/LexAop-CD4-spGFP11; Dh44-GAL4/UAS-Nrx-spGFP1-10
Figure 3E.	w/Y; Dh44-LexA/UAS-Denmark; hug-GAL4/LexAop-Rab3-GFP
Figure 3F, H	w/Y; hug-LexA/UAS-Denmark; Dh44-GAL4/LexAop-Rab3-GFP
Figure 3I-J	w/Y; hug-LexA/UAS-P2X2; Dh44-GAL4/LexAop-GCaMP6m-p10
118010010	w/Y; hug-LexA/UAS-P2X2; Dh44-GAL4/LexAop-GCaMP6m-p10
	w/Y; hug-LexA/UAS-P2X2; +/LexAop-GCaMP6m-p10
Figure 3K-M	w/Y; Dh44-R1 ^{DsRed} , UAS-P2X2/Dh44-R1 ^{DsRed} , hug-LexA; Dh44-GAL4/LexAop-GCaMP6m-p10
118010011111	w/Y; Dh44-R1 ^{DsRed} , UAS-P2X2/+, hug-LexA; Dh44-GAL4/LexAop-GCaMP6m-p10
	w/Y; Dh44-R1 ^{DsRed} , UAS-P2X2/+, hug-LexA; +/LexAop-GCaMP6m-p10
Figure 4A	<i>w/Y;</i> +/+ <i>; hug-GAL4/</i> +
C	w/Y; +/+; UAS-Kir2.1/+
	w/Y; +/+; hug-GAL4/UAS-Kir2.1
	<i>yw,UAS-reaper/Y;</i> +/+; +/+
	yw,UAS-reaper/Y; +/+; hug-GAL4/+
Figure 4B	w/Y; UAS-Dicer2/+; hug-GAL4/+
	w/Y; +/+; UAS-hugin RNAi TRiP/+
	w/Y; UAS-Dicer2/+; hug-GAL4/UAS-hugin RNAi TRiP
	w/Y; +/+; UAS-hugin RNAi GD/+
	w/Y; UAS-Dicer2/+; hug-GAL4/UAS-hugin RNAi GD
Figure 4C	w/Y; UAS-Denmark, UAS-syt-GFP/+; hug-GAL4/+
Figure 4D	w/Y; hug-LexA,vglut-GAL4/UAS-Denmark; LexAop-Rab3-GFP/+
Figure 4E	w/Y; hug-LexA,vglut-GAL4/LexAop-CD4-spGFP11; UAS-CD4-spGFP1-10/+
Figure 5	w/Y; UAS-ANF-GFP, UAS-myr-RFP/+; hug-GAL4/+
-	w, per ⁰¹ /Y; UAS-ANF-GFP, UAS-myr-RFP/+; hug-GAL4/+
Figure 6A-B.	w/Y; Df(2R)BSC700/+
-	$w/Y;Dh44-R1^{DsRed}/+$
	w/Y; Dh44-R1 ^{DsRed} /Df(2R)BSC700
Figure 6C, 6D,	<i>w/Y;</i> +/+ <i>; hug-GAL4/</i> +
6F.	w/Y; +/+; UAS-Kir2.1/+
	w/Y; +/+; hug-GAL4/UAS-Kir2.1
Figure 6E	$w/Y;Dh44-R1^{DsRed}/+$
	$w/Y;Dh44-R1^{DsRed}/Dh44-R1^{DsRed}$
Figure S1A	<i>w/Y; Dh44-R2</i> ¹⁷⁴ /+
	w/Y; Dh44-R2 ¹⁷⁴ /Dh44-R2 ¹⁷⁴
	w/Y; Dh44-RI ^{DsRed} /+
	w/Y; Dh44-R1 ^{DsRed} /Dh44-R1 ^{DsRed}
Figure S1C	$w/Y; Dh44-R1^{DsRed}/+$
	w/Y; Dh44-R1 ^{DsRed} /Dh44-R1 ^{DsRed}
Figure S1D	w/Y; Dh44-R2 ¹⁷⁴ /+
	w/Y; Dh44-R2 ¹⁷⁴ /Dh44-R2 ¹⁷⁴
Figure S1E	w/Y; Dh44-R2 ¹⁷⁴ , Dh44-R1 ^{DsRed} /+
	w/Y; Dh44-R2 ¹⁷⁴ , Dh44-R1 ^{DsRed} /Dh44-R2 ¹⁷⁴ , Dh44-R1 ^{DsRed}
Figure S1F	w/Y iso31
Figure S2A-B	w/Y; UAS-Dicer2/+; tubulin-GAL4/+
	w/Y; UAS-Dicer2/+; tubulin-GAL4/UAS-Dh44-R2 RNAi NIG
	w/Y; UAS-Dicer2/+; tubulin-GAL4/ UAS-Dh44-R2 RNAi TRiP
	w/Y; UAS-Dicer2/+; tubulin-GAL4/ UAS-Dh44-R1 RNAi TRiP
	w,elav-GAL4/Y; UAS-Dicer2/+; +/+
	w,elav-GAL4/Y; UAS-Dicer2/UAS-Dh44-R1 RNAi kk; +/+

Figure S2C-D	w/Y; +/+; Dh44-R1 ^{R21A07} -GAL4/UAS-Dicer2
	w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/+
	w/Y; UAS-Dh44-R1 RNAi kk/+; Dh44-R1 ^{R21A07} -GAL4/UAS-Dicer2
	w/Y; UAS-Dicer2/+; UAS-Dh44-R1 RNAi TRiP/+
	w/Y; UAS-Dicer2/+; Dh44-R1 ^{R21A07} -GAL4/UAS-Dh44-R1 RNAi TRiP
Figure S3	w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/+
	<i>w/Y;</i> +/+; <i>GAL4/</i> + or <i>w/Y; GAL4/</i> +; +/+
	w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/GAL4 or w/Y; UAS-Dh44-R1 RNAi kk/GAL4; UAS-
	Dicer2/+
Figure S4A	w,elav-GAL4/Y; UAS-Dicer2/+; +/+
	w,elav-GAL4/Y; UAS-Dicer2/+; UAS-hugin RNAi TRiP/+
	w,elav-GAL4/Y; UAS-Dicer2/+; UAS-hugin RNAi GD/+
Figure S4B	w/Y iso31
Figure S5A-B	w/Y iso31
	<i>w/Y; Dh44-R2¹⁷⁴/+; +/+</i>
	<i>w/Y; Dh44-R2¹⁷⁴/Dh44-R2¹⁷⁴;</i> +/+
Figure S5C-D	w/Y; +/+; hug-GAL4/+
	w/Y; +/+; UAS-Kir2.1/+
	w/Y; +/+; hug-GAL4/UAS-Kir2.1
	w/Y ; $Dh44$ - $R1^{DsRed}/+$ and w/Y ; $Dh44$ - $R1^{DsRed}/Dh44$ - $R1^{DsRed}$

Primer	Sequence $5' \rightarrow 3'$			
gRNA sequences and primers used to generate and screen Dh44-R1 and Dh44-R2 CRISPR mutations.				
gRNA to exon 6 of <i>Dh44-R2</i>	GATAACCACAGAGTCTAGTC AGG			
gRNA to 5' end of <i>Dh44-R1</i>	GTTGTCAATTCGTAGGGAAA TGG			
gRNA to 3' end of <i>Dh44-R1</i>	GGGCATTGTTGGAGCCCCGG TGG			
Cloning primers for HDR template I	Dh44-R1 ^{DsRed}			
5'HA-Dh44-R1 Forward	CATTGCATGCGTGGAGCACCCAAGCCTTG			
5'HA-Dh44-R1 Reverse	TACTGCGGCCGCCCTACGAATTGACAACGTTC			
3'HA-Dh44-R1 Forward	TATAACTAGTGGGCTCCAACAATGCCCTG			
3'HA-Dh44-R1 Reverse	AGTGGCGCGCCAAAGAGCCTTTATTACGAAGGAC			
Primers for PCR verification of Dh4	4-R2 CRISPR mutation			
Dh44-R2 Po Forward	TCAACGAAGTTTACCTTGCCAATC			
Dh44-R2 Pi Forward	GATAACCACAGAGTCTAGTCAGG			
Dh44-R2 P Reverse	ATGAGGGCGTAGATAATAAAGC			
Primers for PCR verification of Dh4	4-R1 CRISPR mutation			
5'HA Dh44-R1 far Forward	ACGAAGCCGAGCATACAGTG			
5'HA HDR Reverse	CGGTCGAGGGTTCGAAATCGATAAG			
3'HA HDR Forward	GTGGTTTGTCCAAACTCATC			
3'HA Dh44-R1 far Reverse	GAGCGTCGGACCCAATTAGC			

Table S3. Sequences used in generating *Dh44-R1* and *Dh44-R2* CRISPR mutants. Related to STAR Methods.

Supplemental References

- S1. Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., *et al.* (2015). CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, D222-6.
- S2. Hughes, M.E., Hogenesch, J.B., and Kornacker, K. (2010). JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets. J. Biol. Rhythms 25, 372–380.