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Methods 
 

Maximum Entropy Genomic Annotations from Biomarkers Associated to Structural 
Ensembles (MEGABASE)   
 
Discretization of ChIP-Seq Data Tracks 
 
Chromatin Immunoprecipitatin (ChIP-seq) data was downloaded from ENCODE (1) for the 
GM12878 cell line. This data is comprised of 95 different broad and narrow peak tracks, each of 
which probes the enhanced presence of an epigenetic mark or nuclear binding protein at a 
particular locus. A full list of the targets whose ChIP-Seq tracks were used in MEGABASE can 
be found in Table S1. The subset of experimental tracks that probe histone modifications, used in 
the reduced model can be found in Table S2. 
 
For each chromosome, the ChIP-Seq signal is re-casted into the data tracks at 50 kb resolution, 
i.e., loci of 50 kb in size. This is performed by integrating (summing) the ChIP-Seq signal 
contained within each 50 kb locus for each experiment. 
  
Subsequently, the integrated ChIP-seq signal for each 50 kb locus is assigned a discrete state 
ranging from 1 (low signal) to 20 (high signal). This is performed by creating a histogram for 
each experiment of the integrated signal for all of the 50 kb loci in the chromosomes of 
GM12878. All loci belonging to the top 5% of the distribution with the highest signal are 
assigned the highest signal state, i.e. 20. The remaining 19 signal states are defined by 
partitioning the remainder of the distribution linearly with respect to the signal strength; loci are 
assigned to those states according to their integrated signal. 

 
MEGABASE database: structural annotations and biochemical assays 
 
For each 50 kb locus of human lymphoblastoid cells (cell line GM12878) sub-compartment 
annotations from Rao et al (2) were aligned with the ChIP-Seq tracks discretized as previously 
described. In the cited reference, these sub-compartment annotations were obtained by clustering 
high resolution contact maps from Hi-C as to obtain 5 main patterns of interactions – A1, A2, 
B1, B2, and B3. A sixth compartment, B4 was identified by Rao and coworkers exclusively in 
chromosome 19. Due to its limited presence, B4 is treated as B3 in MEGABASE. 
 
This allowed for the structural and biochemical state of each chromatin locus to be described 
using a state vector: 
 

    
!σ (l) = (C(l),  Exp1(l),Exp2 (l),  ... ,ExpL (l))  

 
where l denotes the locus, C refers to the sub-compartment annotation at that locus (A1, A2, B1, 
B2, or B3), and the components labeled by Exp with subscripts ranging from 1 to L denote the 
discrete signals for each ChIP-Seq experiment at the same locus, which are assigned 1-20 
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discrete signal states. The compartment annotation can be viewed as a proxy for the chromatin 
structural types (CST), so that the state vector can also be interpreted as:  

    
!σ (l) = (CST (l),  Exp1(l),Exp2 (l),  ... ,ExpL (l))  

The probability of observing a specific CST at a locus is correlated with adjacent segments, 
while noise is uncorrelated. Consequently, the inclusion of non-local information could reduce 
error in predicting chromatin types. 

To build a richer database and to improve the quality of our results, we include in the state vector 
of locus l the biochemical state of the adjacent loci (i.e., l-2, l-1, l+1, l+2). Our database is 
therefore consisting of the set of state vectors: 

 
 

!σ (l) = (CST (l),  Exp1(l − 2),...,ExpL (l − 2),Exp1(l −1),...,ExpL (l −1),Exp1(l),...,  
ExpL (l),Exp1(l +1),...,ExpL (l +1),Exp1(l + 2),...,ExpL (l + 2))

 

 
for each 50 kb locus of cell line GM12878. The total length of a state vector  

!σ  is N = 476  
 

Construction of a probabilistic model: MEGABASE  

 
To quantify the correlations between the structural annotations and the epigenetic marking 
patterns, we construct a probabilistic model for the collection of M state vectors,  {

!σ (s )}s=1...M , that 
comprise a database described in the previous section. The probability distribution resulting from 
our model,  P(

!σ ) , must reproduce the single-site and pairwise frequencies of the dataset, i.e., it 
must satisfy the marginalization conditions

 

P( !σ )
σ k
k≠i

∑ = fi (σ i )  and 
 

P( !σ )
σ k
k≠i, j

∑ = fij (σ i ,σ j ) , where fi (σ i )  and 

fij (σ i ,σ j )  denote the single-site and pairwise frequency, respectively, and i and j are indices of the 
state vector. 
 
The most general solution to the problem outlined above, i.e. the least biased model satisfying 
the constraints, is obtained using the Maximum Entropy Principle (3). Such a model has the form 
of the Boltzmann distribution, 
 

    
 
P(
!σ ) = 1

Z
exp(−H (

!σ ))
 

 
where 
     

    
 
H ( !σ ) = − Jij (σ i ,σ j )

j=i+1

N

∑
i=1

N−1

∑ − hi σ i( )
i=1

N

∑ . 

 
 P(
!σ )  indicates the probability of observing the state vector  

!σ  at any given locus l . The Jij  
interactions capture local pairwise correlations between epigenetic markers or between markers 
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and chromatin types, while the hi  parameters are related to the individual frequencies of 
chromatin types and markers. Here, the pairwise parameters are taken to be symmetric, i.e., 
Jij σ i ,σ j( ) = J ji σ j ,σ i( )  similarly to a Hopfield neural network (4).  
 
 
 
Training MEGABASE  
 
The M state vectors for the odd numbered autosomes (i.e., 1, 3, 5, 7, etc.),  {

!σ (s )}s=1...M , were used 
to train MEGABASE.  We adopted the iterative approach of Ekeberg et al (5), which uses the 
pseudo-likelihood approximation of Besag (6) to construct a probabilistic model of sequences 
composed of discrete labels (i.e., chromatin types or amino acid sequences). Rather than 
maximize the likelihood of observing data,  {

!σ (s )}s=1...M , which can be computationally 
intractable, one can maximize an approximate form of the likelihood of observing  

!σ (s ) called a 
pseudo-likelihood: 
 

 
P(
!σ =
!σ (s ) ) ≈ P(

i=1

N

∏ σ i =σ i
(s ) |σ j =σ j

(s )  for all j ≠ i) . 

 
For a pairwise Markov random field,  
 

P(σ i =σ i
(s ) |σ j =σ j

(s )  for all j ≠ i) =

exp hi (σ i
(s ) )+ Jij (σ i

(s ),σ j
(s ) )

j=1
j≠i

N

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

exp hi (a)+ Jij (a,σ j
(s ) )

j=1
j≠i

N

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟a=1

25

∑
 

 
where the normalization in the denominator is summed over the collection of 5 labels A1, A2, 
B1, B2, B3 as well as the 20 signal states assigned to ChIP-Seq data.  
 
Maximizing the pseudo-likelihood of observing the collection of M training state vectors, 

 {
!σ (s )}s=1...M , is equivalent to minimizing the negative of the log of the pseudo-likelihoods with 

respect to the parameters J  and h : 
 
   

 
ℓPL = − 1

M
log

i=1

N

∑
s=1

M

∑ P(σ i =σ i
(s ) |σ j =σ j

(s )  for all j ≠ i)
 

 
In practice, an L2 regularization term is added to  ℓPL : 
 

   R = λJ Jij (a,b)
2

b

25

∑
a

25

∑
j=i+1

N

∑
i=1

N−1

∑ + λh hi (a)
2

a

25

∑
i=1

N

∑
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where the parameters λJ = λh = 0.01M were used. The model remained robust for a wide range of 
parameter values ranging from 0.0001-0.1. Hence, we minimize the object function, i.e.,  ℓPL + R , 
with respect to the parameters J  and h  to find the model that best represents the training set of 
data: 
 
   

 
{J,h} = argmin

{J,h}
(ℓPL (J,h)+ RL2 (J,h))  

 
This procedure is equivalent to training a recurrent neural network to encode information 
contained in a data set (4).  
 
 
 
 
Prediction of chromatin structural types from ChIP-Seq data using MEGABASE 
 
The inferred probabilistic model can be marginalized to predict the chromatin type for a given 
locus l  when given the experimental ChIP-Seq measurements of loci (l − 2,  l −1,  l,  l +1,  l + 2) :  
 

   CST (l) = argmaxP(CST |  Exp1,...,L (l − 2,  l −1,  l,  l +1,  l + 2))   
 
This is equivalent to finding the chromatin type that minimizes the inferred energy function 
(Potts Model) for a given set of experimental measurements. For a given new input sequence of 
epigenetic marks one can then find the most probable sequence of corresponding compartment 
annotations. 
 
The boundaries of compartments observed in Hi-C experiments are sometimes associated to 
visible boundaries in ChIP-Seq tracks; in other cases, however, no noticeable change is observed 
in biochemical assays when transitioning from one compartment to another. As illustrated by the 
example in Figure S1A, MEGABASE captures the transitions between compartments even in 
cases for which the ChIP-Seq tracks contain no obvious boundaries. One cannot simply attribute 
chromatin compartmentalization to the presence or absence of any single biomarker; it is 
necessary to employ a multivariate classifier such as MEGABASE in order to capture 
compartmentalization. 
  
A comparison of the chromatin types predicted by MEGABASE and the sub-compartment 
annotations from ref. (2) is shown in the confusion matrices of Figure S1B, which are calculated 
for the state vectors of the test set.  Additional measures of performance are shown in Figure 
S30. A comparison of the compartment prediction (A/B) between MEGABASE and the ref. (2) 
annotation is shown in the confusion matrix of Figure S1C for the test set. There is high 
quantitative agreement between the A/B compartment classifications, while a large number of 
mismatches exist between the predictions and the sub-compartment annotations. While we 
expect most chromatin belonging to a compartment to be of similar biochemical nature, it is 
possible—and even expected—that mismatches should exist because of the constraints 
introduced by connectivity along the DNA polymer. These mismatches do not affect the quality 
of the final 3D structural prediction, indicating that such mismatches may, indeed, not be errors 
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of the algorithm but instead loci where compartment annotation and chromatin type actually 
differ.   
 
 
 
Network Analysis: Markers Strongly Associated With Compartmentalization 
 
The success achieved in reliably predicting chromosome architecture indicates that our 
probabilistic model captures the essential features of epigenetic marks that are associated with 
compartmentalization. It is therefore useful to interrogate our model to gain insight into which of 
the biochemical markers are most strongly associated with each of the chromatin structural types.   
In order to disentangle the complex network of correlations between the 95 experiments 
contained in our database we use the concept of mutual information. It is important to point out 
that statistical models like MEGABASE cannot establish causality. Strictly speaking, in our 
analysis we cannot establish the direction of the causality link between chromatin structural 
types and epigenetic markers: the marking may occur before the phase separation and drive it or 
equally well, once compartments form through some other mechanism they become 
epigenetically marked. Nevertheless, histone modifications carry much of the information 
necessary to predict genome architecture. Previously reported theoretical (7) and experimental 
studies (8-10) have shown that epigenetic modifications do indeed lead to changes in chromatin 
organization, suggesting that the causality link is oriented from epigenetics to structure in the 
same way as the information flow of our computational pipeline.  
 
The content of mutual information shared between compartment annotations and epigenetic 
markings can be quantified using the Kullback-Liebler divergence between the two probabilities 
P(C,Expε (s))  and P(C)P(Expε (s)) . P(C,Expε (s))  is the joint probability that a certain locus 
belongs to chromatin type C and exhibits a biochemical marker ε with a signal of s and 
P(C)P(Expε (s))  is the same probability calculated from a null model in which the probability for 
that locus to belong to chromatin type C and the probability of observing there a biochemical 
marker ε with signal s are independent. The Kullback-Liebler divergence can be calculated using 
the trained neural network to calculate the probabilities above: 

   
ICε = P(C,Expε

s
∑ (s))log P(C,Expε (s))

P(C)P(Expε (s))
⎛
⎝⎜

⎞
⎠⎟

 

 
The resulting correlated information content between chromatin types and ChIP-Seq experiments 
is shown in Figure S28A. It is immediately evident that certain biochemical markers share a high 
content of mutual information with chromatin structural types while others do not. According to 
our model, histone methylations HK36me3, H3K27me3, H3K4me1, and H4K20me1 and nuclear 
proteins EED, ZBED1, TRIM22, and HCFC1 carry most of the information associated with 
identifying the chromatin types. In contrast, we see that although compartment A for example 
has a very high content of acethylation H3K27ac that marker is a poor predictor owing to its 
modest mutual information value (Figure S28A).  
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We further quantify the relationship between chromatin types and experiments by calculating the 
joint probability P(C,  High Expε )  that a locus belongs to chromatin type C and has enhanced 
presence of biomarker ε. To do so, we marginalize over the high signal strengths, i.e.,   
 

   
P(C,High Expε ) = P(C,Expε (s))

s  ∈ High Signal States 
∑ . 

  
The five highest discrete signal states are designated as high signal states, although we observed 
that the results are fairly insensitive to the details of this definition. Likewise, we can similarly 
marginalize the null model over the high signal states, i.e.,  
 

   
PHigh Signal (C,ε ) = P(C) ⋅ P(Expε (s))

s  ∈ High Signal States
∑ .  

 
Finally, we calculate the log ratio, 
 

    
S = log P(C,  High Expε )

PHigh Signal (C,ε )
⎛
⎝⎜

⎞
⎠⎟ ,

 

  
which links the chromatin types to the enhancement of specific signals in the ChIP-Seq tracks. 
P(C,  High Expε ) > PHigh Signal (C,ε )  denotes an increased probability of observing chromatin type C 
when the biochemical marker is strongly present ( S > 0 ). Likewise, 
P(C,High Expε ) < PHigh Signal (C,ε )  denotes that is unlikely to observe C when marker ε is present  (
S < 0 ).  The S = 0  condition describes the case where C and ε are independent. 
 
In general, loci in the A type sub-compartments, A1 and A2, exhibit a much higher degree of 
marking over all, by most biomarkers. While exhibiting less marking, the B compartments do 
display characteristic signals. B1 is characterized by enhanced probability of finding methylation 
H3K27me3, and to a weaker extent, enhanced probability for the nuclear protein REST and the 
methylation H4K20me1. B2 is generally characterized by suppression of all biochemical 
markers, with the notable exception of the strongly enhanced probability of displaying 
methylation H3K9me3. Finally, B3 appears to exhibit suppression for all markers, and a 
particularly strong suppression of markers H3K36me3, H3K79me2, H3K4me1, and H3K9ac, 
which are associated with the A compartment. These results are shown for all chromatin types 
and experimental markers in Figure S28B.  
 
A representative sample of the probability density functions representing the experimental 
signals for the biochemical markers is shown in Figure S28C. Compartments and sub-
compartments are often characterized by vastly different average content of the biochemical 
markers. However, the variances of the distributions are large and, consequently, the 
distributions are always broadly overlapping. As already stressed, these overlaps show one 
cannot attribute chromatin compartmentalization to the presence or absence of any single 
biomarker and indicate the necessity of employing a multivariate probabilistic classifier such as 
MEGABASE.  
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Full and Reduced Model 
 
From the analysis of the MEGABASE network, it is evident that histone modifications alone 
carry a great amount of information about chromatin structural types. As already mentioned, 
previously reported theoretical (7) and experimental studies (8-10) have shown that epigenetic 
modifications lead to changes in chromatin organization, suggesting that histone modifications 
alone may carry enough information to predict the global organization of the genome. 
 
To investigate this question, we created a reduced model by training MEGABASE using only the 
patterns of histone modifications. We used all the experimental ChIP-Seq tracks available for the 
cell line GM12878; a list of the 11 tracks used to build the database for the reduced model is 
reported in Table S2. 
 
As for the full MEGABASE model, we first trained the neural network on the training set 
composed of odd numbered chromosomes and then made chromatin types predictions for the test 
set composed of the even numbered chromosomes. 
 
The sequences of chromatin types predicted by this reduced model turn out to be only marginally 
different from those obtained by the full data set of ChIP-Seq tracks (Figure S29). A comparison 
of the results in Figure S29 (reduced MEGABASE model) with the results in Figure S1 (full 
MEGABASE model) indicates a large overlap between the two annotations. The results obtained 
from the reduced MEGABASE network indicate that it is indeed possible to predict the global 
organization of chromosomes using exclusively information about histone modifications. 
 
 
Alternative Models: MEGABASE A/B model and K-means Clustering 
 
In 2009, analyzing the intra-chromosomal contact probability maps of the cell line GM06990, 
Lieberman et al (11) reported two compartments, A and B. Subsequently, analyzing the inter-
chromosomal maps of the cell line GM12878, Rao et al (2) reported five sub-compartments (A1, 
A2, B1, B2, B3), plus a sixth very small one (B4). In designing MiChroM, in (12) we postulated 
for GM12878 the existence of a similar number of chromatin types. It possible and likely that 
other cell lines may exhibit a different number of compartments; it is also possible that a smaller 
number of discrete chromatin types may be able to generate a richer variety of long-range 
interaction patterns. To explore this latter possibility, we tested whether a model comprising only 
two types of chromatin (A and B) could reproduce the intra-chromosomal maps of GM12878. 
We aggregated the annotations from MEGABASE to produce an A/B classification and we 
simulated the conformational ensembles for the chromosomes using a simplified version of 
MiChroM (See the dedicated section for details about the full and simplified versions of 
MiChroM). We found the simulated Hi-C maps for the MEGABASE AB+MiChroM model to be 
slightly less accurate than the ones generated by the original five-type MEGABASE+MiChroM. 
This result indicates that at current resolution (50 kb) and on a single chromosome level, a 
simplified A/B model does indeed produce reasonable structures. On the other hand, it is clear 
that a model with five chromatin types generates more accurate 3D structures (See Figure S31). 
It is also likely that the advantage of using a 5-type model will increase when, by simulating the 
full nucleus of a cell, we will be able to examine the inter-chromosomal maps and compare those 
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to the experimental inter-chromosomal maps that were originally used to infer the existence of 6 
sub-compartments. 
 
In this manuscript, we used MEGABASE to cluster chromatin according to compartments; i.e., 
we used both structural and biochemical information to train a classifier for chromatin types. The 
existence of purely biochemical chromatin types has been previously reported (13). A final 
question we investigated is whether the purely biochemical clustering of chromatin produces 
feasible chromatin structural types. As previously discussed, higher levels of methylation and 
acetylation characterize type A chromatin, while type B chromatin is depleted in both. According 
to this observation, we clustered the ChIP-Seq tracks for GM12878 into two types using the K-
means algorithm1 and we used the simplified two-types version of MiChroM to generate 
conformational ensembles and contact maps for the resulting A/B annotation. We found that this 
clustering procedure correctly labels type B chromatin but frequently mislabels chromatin of 
type A (Figure S32E). As a result, the simulated contact maps are significantly deteriorated with 
respect to the ones obtained by the previously described A/B model (Figures S32A-D). 
 
Interestingly, even using this purely biochemical clustering, remnants of compartmentalization 
are still present in the simulated chromosomes. Patterns in contact probabilities persist albeit 
exhibiting a significantly decreased level of segregation and much smoother transitions between 
compartments (See Figure S32A and S32B). This last result shows that chromosome architecture 
is very robust with respect to errors in the sequences of chromatin type and that the phase 
separation leading to compartmentalization can be induced by small differences in the 
biochemical nature along the DNA polymer. 
 
 
 

 
 

Minimal Chromatin Model (MiChroM) 

 
All molecular simulations methods in this manuscript are the same as in reference (12).  For the 
derivations of all formulas and the tuning of all parameters please consult the cited reference. 
 
 
Minimal Chromatin Model Energy Function 
 
The reduced MiChroM energy function used in this manuscript is: 
 

 

UMiChroM
!r( ) =UHP

!r( ) + α kl f rij( )
i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑ + γ d( ) f ri, i+d( )
i
∑

d=3

500

∑
k≥l

k ,l  ∈ Types

∑  

                                                             
1 Using Euclidian distance as a metric 
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 The full energy function of MiChroM is: 
 

 

UMiChroM
!r( ) =UHP

!r( ) + α kl f rij( )
i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑ + χ ⋅ f rij( )
 i, j( )∈ Loops Sites{ }

∑ + γ d( ) f ri, i+d( )
i
∑

d=3

500

∑
k≥l

k ,l  ∈ Types

∑  

  
This last version of the energy function is only used in simulation marked “with Loops” and for 
comparison purposes. 
 
 
Homopolymer Model 
 
The homo-polymer potential models a generic polymer. Each bead of in the polymer represents a 
genomic segment spanning 50 Kb of DNA.  
The homo-polymer potential  UHP

!r( )  consists of the following five terms, UFENE , UAngle , Uhc , 
Usc  and Uc  (14).   
 

 

UHP
!r( ) = UFENE ri,i+1( )

i∈ Loci{ }
∑ + Uhc ri,i+1( ) + UAngle θi( )

i∈ Angles{ }
∑

i∈ Loci{ }
∑

+ Usc ri, j( )
i, j∈ Loci{ }
j>i+2

∑ + Uc
!ri( )

i∈ Loci{ }
∑  

 
UFENE  (Finite Extensible Nonlinear Elastic potential) is the bonding potential applied between 
two consecutive monomers: 

 UFENE ri, j( ) = − 1
2
kbR 0

2 ln 1−
ri, j
R0

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

for  ri, j ≤ R0

0 for  ri, j > R0

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 
A hard-core repulsive potential 

 

Uhc ri, j( ) =
4ε σ

ri, j

⎛

⎝⎜
⎞

⎠⎟

12

− σ
ri, j

⎛

⎝⎜
⎞

⎠⎟

6

+ 1
4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

for  ri, j ≤σ 2
1
6

0 for  ri, j >σ 2
1
6

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

 
is added between bonded monomers to avoid overlap.  
A three-body term is applied to three consecutive monomers in the following form 
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 UAngle θi( ) = ka 1− cos θi −θ0( )⎡⎣ ⎤⎦  
 

where θi  is the angle defined by the two vectors  
!ri,i+1  and  

!ri,i−1 . 
 All non-bonded pairs interacts through a soft-core repulsive interaction (15) 

 
 

 Usc ri, j( ) =

1
2
Ecut 1+ tanh

2ULJ ri, j( )
Ecut

−1
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ri, j < r0

ULJ ri, j( ) r0 ≤ ri, j ≤σ 2
1
6

0 ri, j >σ 2
1
6

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

 
 

The Lennard-Jones potentialULJ ri, j( ) = 4ε σ
ri, j

⎛

⎝⎜
⎞

⎠⎟

12

− σ
ri, j

⎛

⎝⎜
⎞

⎠⎟

6

+ 1
4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 is capped off at a finite 

distance, allowing for chain crossing at finite energetic cost. r0  is chosen as the distance at which 

ULJ ri, j( ) = 12 Ecut .  

The potential Uc  restricts the chromosome in a spherical region, whose size is chosen to enforce 
a volume fraction of 0.1— corresponding to the experimentally determined density of chromatin2 
(0.012 bp/nm3) (16). The spherical wall is included to mimic a similar confinement experienced 
by chromosomes inside the cell. Each monomer i  of the chromosome interacts with its nearest 
point on the wall  

!rnp  through the potential Uhc ri,np( ) . 
 
 
Probability of Crosslinking 

 
 

The probability of crosslinking is modeled as the function: 
                                                             
2 After completion of all the simulation, we found that it was useful to recalibrate the length scale of our simulations 
by using available FISH data. This data being specific to human lymphoblastoid cells have greater precision than do 
the original data used for the set up.  Using this recalibration we found that one unit of length σ in our model 
corresponds to 0.165µm, meaning that one bead has a radius of about 825Å. With this calibration we also found the 
chromatin density in our simulations to be 0.002 bp/nm3. This density is only about 6 times smaller than the 
chromatin density reported in Ref: 16. Rosa A & Everaers R (2008) Structure and Dynamics of Interphase 
Chromosomes. Plos Comput Biol 4(8)., which in this case is excellent agreement considering the variability in size 
between cell types and even within a homogeneous cell population. Using this calibration we observe that 
chromosome territories are about 2-3 µm across, once again consistent with what is found in literature: 17. Cremer 
T & Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat 
Rev Genet 2(4):292-301.  
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f rij( ) = 12 1+ tanh µ rc − rij( )⎡⎣ ⎤⎦( )
 

 
 
The parameters adjusted for the contact maps of GM12878 B-lymphoblastoid cells in dataset 
GSE63525 (2) areµ = 3.22  and rc = 1.78 . 
 
 
MiChroM Parameter Set 

 
We consider 5 chromatin types A1, A2, B1, B2, B3 plus a non-specific type NA. Chromatin 
compartment B4 was detected only in chromosome 19 by Rao et al (2). MiChroM treats B4 as 
B3.  

 
The parameters α ’s governing the type-to-type interactions are:  

 
 A1 A2 B1 B2 B3 NA 

A1 -0.268028 -0.274604 -0.262513 -0.258880 -0.266760 -0.225646 

A2 -0.274604 -0.299261 -0.286952 -0.281154 -0.301320 -0.245080 

B1 -0.262513 -0.286952 -0.342020 -0.321726 -0.336630 -0.209919 

B2 -0.258880 -0.281154 -0.321726 -0.330443 -0.329350 -0.282536 

B3 -0.266760 -0.301320 -0.336630 -0.329350 -0.341230 -0.349490 

NA -0.225646 -0.245080 -0.209919 -0.282536 -0.349490 -0.255994 

 
 

The parameter χ  governing the loop interactions is equal to -1.612990. 
 

The parameters α ’s governing the type-to-type interactions for the reduced MiChroM A/B 
model are found collapsing the matrix above, resulting in:  

 
 

 A 
 

B NA 

A 
 

-0.280631 -0.276263 -0.235363 

B 
 

-0.276263 -0.333566 -0.280648 

NA 
 

-0.235363 -0.280648 -0.255994 
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Ideal Chromosome Term 
 

The Ideal Chromosome Potential is: 
 

γ d( ) = γ 1
log d( ) +

γ 2
d
+ γ 3
d 2

 

 
with parameters γ 1 = −0.030 , γ 2 = −0.351 , γ 3 = −3.727 . 

 
 
 
 
Molecular Dynamics Simulations 
 
 
First, we condense the polymer from an extended configuration initialized as a straight line. To 
condense the polymer, we perform 2x104 step MD simulation under the potential energy function  

 

 

UEq
!r( ) = UFENE ri,i+1( )

i∈ Loci{ }
∑ + Uhc ri,i+1( ) + UAngle θi( )

i∈ Angles{ }
∑

i∈ Loci{ }
∑

+ Usc ri, j( )
i, j∈ Loci{ }
j>i+2

∑ + 1
2
KEq Rg − R

0
g( )2  

 
 

 which is the homopolymer potential with an additional harmonic bias on the radius of gyration 
Rg . We set KEq = 200ε /σ

2  and R0g = 1 . The spherical confinement is not present in this phase. 
Then, from this condensed polymer configuration, we perform 20 million steps equilibration 
with the potential energy function  UHP

!r( ) , which also includes the confinement potential. In 
each chromosome, the radius of the confinement potential was set to reproduce the 
experimentally determined density of chromatin (16) corresponding to a volume ratio of 0.1.  
All chromosome simulations were performed using the molecular dynamics package LAMMPS 
(18).  Reduced units were used during the simulation, with 
 

ka = 2ε kb =
30ε
σ 2 Ecut = 4ε ε = KBT

R0 = 1.5σ σ = 1 θ0 = π
 

 
Simulations were maintained at a constant temperature T = 1.0 via Langevin dynamics with a 
damping coefficient of 10.0τ , where τ  is the time unit. A time stepΔt = 0.01τ  was used for all 
the simulations.  All MD simulations were run until convergence as tested by verifying that 
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different replicas reported similar results. Given the different sizes of different chromosomes, 
this resulted in different total simulation lengths for the chromosomes (always in the order of 108 
steps for all chromosomes). A short equilibration (106 time steps) at high temperature (T=10) was 
performed in each simulation before starting sampling chromosome conformations.  
 
 
 
 
 

Experimental Data Sets  
 
Contact Probabilities, Loop Locations, and Chromatin Compartment Annotations 

 
Hi-C contact maps, chromatin compartment annotations and loops locations for GM12878 

B-lymphoblastoid cells were obtained from Rao et al. (2).  The Gene Expression Omnibus 
(GEO) accession number for the data sets is GSE63525 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525).   

 
Hi-C maps were balanced using the Knight and Ruiz (KR) vectors reported by the authors. 

Then, we extract a contact probability matrix Pexp  from the stochastic matrix C by dividing each 
row i by its maximum entry, typically Ci,i+1 . 
 
ChIP-Seq Data 
 
Chromatin Immunoprecipitatin (ChIP-seq) data was downloaded from ENCODE (1) for the 
GM12878 cell line. This data is comprised of 95 different broad and narrow peak tracks, each of 
which probes the enhanced presence of an epigenetic mark or nuclear binding protein at a 
particular locus. A full list of the targets whose ChIP-Seq tracks were used in MEGABASE can 
be found in Table S1. The subset of experimental tracks that probe histone modifications, used in 
the reduced model can be found in Table S2. 
 
FISH Data 
 
We compared the predictions of MEGABASE+MiChroM with two published sets of 
Fluorescence In Situ Hybridization (FISH) experiments. The first study published by Lieberman-
Aiden et al (11) was performed on the GM06990 cell line using the hg18 assembly—Gene 
Expression Omnibus (GEO) accession number GSE18199. The genomic locations of the FISH 
probes used were mapped to the positions of GM12878 (hg19 assembly) using the Liftover 
software (19). The second FISH study was published by Rao et al (2) for the GM12878 cell line 
(GEO accession number GSE63525).  
 
 
 
 
 



 15 

 
 
 
 
 
 
 

 
 
Figure S1 
 
(A) For two representative regions of chromosome 2, we compare the sequence of chromatin 
types obtained from MEGABASE and the Hi-C compartment annotations. As illustrated by the 
region highlighted in gray on the left, MEGABASE captures the sharp changes in epigenetic 
markings sometimes present at the boundaries of contiguous regions of chromatin types (left 
boundary) while also correctly predicting less obvious transitions from one chromatin type to 
another (right boundary). On the right, the highlighted region shows how MEGABASE can 
resolve very small (50-100 kb) segments of a specific chromatin types.   
 
(B and C) As shown by the confusion matrix3 in figure annotations from MEGABASE largely 
overlap the compartments annotations from Hi-C reported in ref. (2). While we expect most 
                                                             
3 For each of Hi-C compartment annotations, rows show how likely MEGABASE classifies it as 
each one of the 5 types. 
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chromatin belonging to a compartment to be of similar biochemical nature, it is possible—and 
even expected—that mismatches should exist because of the constraints introduced by sequence 
contiguity along the DNA polymer. 
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Figure S2 
Chromatin loops are created when two loci, typically at a genomic distance extending from 
hundreds of kilobases (kb) to a few megabases (Mb) of DNA, form a particularly strong contact. 
These strong contacts manifest themselves as local peaks in the contact probability maps 
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obtained by Hi-C (2). The majority of chromatin loops are associated with the presence of 
CCCTC-binding factor (CTCF) and cohesin. By binding to specific sequences, CTCF defines the 
contact points for cohesin-mediated looping interactions. It has been suggested that cohesin is 
loaded on DNA elsewhere and then recruited to the loop anchors by a process of extrusion of the 
10 nm fiber (20, 21). 
 
In order to highlight the relationship between chromatin types and compartmentalization, we use 
the MiChroM Hamiltonian omitting the term in that energy function that models the CTCF-
mediated looping interactions. These looping interactions seem to arise from a distinct process 
from compartmentalization and omitting such looping interactions does not affect the large-scale 
architecture of chromosomes (12, 22, 23).  For completeness, we also performed simulations 
using the full MiChroM Hamiltonian including looping interactions. While including the effect 
of looping interactions (i.e. using the full MiChroM Hamiltonian) clearly produces more accurate 
chromosome structural ensembles, using this model would come with the tradeoff of 
necessitating further experimental input beyond genome sequence and ChIP-Seq since it is not 
yet clear how to predict all the locations of interacting loop anchors. To obviate this issue, in the 
full simulations we used the loops anchors annotations from Hi-C already found in (2). When 
comparing the results from the two versions of MiChroM, it becomes evident that 
compartmentalization remains unaffected: the effect of looping interactions is limited to genomic 
distances up to only few megabases. 
 
(A) For chromosome 2 of GM12878 we show a comparison between the experimental contacts 
map in ref. (2) (lower diagonal region of the matrix) and the map generated by using MiChroM 
without CTCF-mediated looping interactions (upper diagonal region). 
 
(B) For chromosome 2 of GM12878 we show a comparison between the experimental contacts 
map in ref. (2) (lower diagonal region of the matrix) and the map generated by using the full 
MiChroM Hamiltonian, i.e. including CTCF-mediated looping interactions (upper diagonal 
region). In the magnified inset the local probability peaks generated by the CTCF-mediated 
looping interactions are clearly visible in both experimental and predicted maps.  
 
(C) For chromosome 2 of GM12878 we show a comparison between the experimental contacts 
map in ref. (2) (lower diagonal region of the matrix) and the map generated by using the Ideal 
Chromosome potential (upper diagonal region). The Ideal Chromosome potential models the 
local order in chromatin and is a translationally invariant energy term. The Ideal Chromosome 
reproduces the probability of observing a contact as a function of the genomic distance 
separating the two loci forming the contact. 
 
(D) Pearson’s correlation as a function of the genomic distance between experimental the 
contacts map of chromosome 2 of GM12878 in ref. (2) and the contact map generated by using 
MEGABASE. Contact maps generated using the full MiChroM Hamiltonian, MiChroM without 
CTCF-mediated looping interactions, and the Ideal Chromosome are shown in green, red, and 
blue respectively. The full MiChroM Hamiltonian generates better results up to distances of 
about 2 Mb. For all genomic distances exceeding 2 Mb the effect of omitted looping interactions 
is marginal and the maps produced by using MiChroM with and without CTCF-mediated 
looping interactions are very similar. Maps produced using the Ideal Chromosome potential are 
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shown as reference. While producing correct average contact probabilities, these maps never 
correlate with the experimental ones.  
 
(E) The analysis in panel D is repeated here for chromosome 10. Results are consistent.   
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Figure S3 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 1 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S4 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 2 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S5 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 3 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S6 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 4 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S7 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 5 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S8 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 6 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S9 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 7 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S10 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 8 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S11 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 9 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. For this chromosome, the Pearson’s correlation is 
relatively lower due to imperfect coverage in the experimental Hi-C map, which is visible in 
figure. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S12 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 10 (belonging to the test set4) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
                                                             
4 The Hi-C map of Chromosome 10 (Ref: 2. Rao SSP, et al. (2014) A 3D Map of the Human 
Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 159(7):1665-
1680.) was used to train the parameters of the MiChroM Hamiltonian (Ref: 12. Di Pierro M, 
Zhang B, Aiden EL, Wolynes PG, & Onuchic JN (2016) Transferable model for chromosome 
architecture. Proceedings of the National Academy of Sciences of the United States of America 
113(43):12168-12173.). 



 30 

 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S13 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 11 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S14 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 12 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S15 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 13 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S16 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 14 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S17 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 15 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S18 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 16 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S19 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 17 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
 
 
  



 38 

 
Figure S20 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 18 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S21 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 19 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S22 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 20 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S23 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 21 (belonging to the training set) represented in log scale. 
Upper diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in 
silico from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality 
of the predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S24 
For all autosomal chromosomes MEGABASE+MiChroM generates conformational 
ensembles that accurately predict the results of DNA-DNA ligation assays. 
 
(A) Contact map of chromosomes 22 (belonging to the test set) represented in log scale. Upper 
diagonal region shows the predicted map; MEGABASE+MiChroM generated this map in silico 
from ChIP-Seq input. The lower diagonal region shows maps from Hi-C (2). The quality of the 
predicted contact map is high, as shown by the symmetry of the map. Pearson’s correlation 
between the two datasets is shown in Table S3. 
 
(B) Comparison between the compartment annotations obtained by Hi-C (2) and MEGABASE 
structural type annotations. 
 
(C) Pearson’s correlation between experimental and simulated contact maps as a function of the 
genomic distance.  MEGABASE+MiChroM generates contact maps that are well correlated with 
the experimental ones for distances exceeding the hundreds of Mb. As term of comparison, we 
show in blue the correlation between experimental maps and maps obtained using a homo-
polymeric model including the Ideal Chromosome Potential (i.e. MiChroM without Type-to-
Type interactions).  
 
(D) The probability of contacts as a function of genomic distance in both measured and predicted 
maps. 
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Figure S25 
 
Simulations and 3D Fluorescence In Situ Hybridization (FISH) experiments support the 
idea that compartmentalization observed in Hi-C maps emerges from the phase separation 
of chromatin structural types. MEGABASE+MiChroM simulations of chromosome 22 of 
human B-Lymphocyte cells (GM12878) are compared with results of FISH experiments (for 
closely related human B-Lymphocyte cell line GM06990). The average ratio between simulated 
distances and FISH-measured distances has been used to calibrate the length scale of simulation. 
For this cell line and this experimental set up, one unit of length in simulation corresponds to a 
length of 0.17µm , which also implies the size of a simulated chromosomal territory being 
approximately 2-3 µm across— consistent with what was previously reported in (17). 
 
(A and B)  The positions of the fluorescent probes along the chromosome are illustrated together 
with the annotations from MEGABASE and with the aligned compartment annotations from ref. 
(2). In 2009, the authors of ref. (11), assigned the four loci to alternating compartments— L5 and 
L7 in compartment A, and L6 and L8 in compartment B. Subsequently, in 2014 higher 
resolutions Hi-C experiments resulted in finer compartments annotations in partial agreement 
with the previously reported annotations. MEGABASE is also in partial agreement with both 
preexisting annotations.   
 
(C and D) The Cartesian distances between four loci (L5, L6, L7, and L8) in chromosome 22 
were measured in two distinct 3D FISH experiments reported in ref. (11). The same distances 
were measured using the MEGABASE+MiChroM pipeline. The cumulative distribution 
functions show that loci composed of chromatin belonging to the same type tend to be closer in 
space than otherwise, despite the interlaced order and despite lying at greater genomic distances. 
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This phenomenon is observed in FISH experiments and it is correctly predicted by our ChIP-Seq 
based modeling. The comparison between the predicted and the measured probability 
distributions shows excellent agreement for both the average distance and the distance 
fluctuations.   
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Figure S26 
The predicted distribution of distances between selected chromatin loci well reproduces those 
measured by fluorescence in situ hybridization (FISH) in cell line GM12878 and reported in ref. 
(2). The pair of loci from chromosome 11 is used to calibrate the unit of length in the 
simulations.   After calibration, the average distance between the pairs of loci in chromosomes 
14 and 17 is correctly predicted. For this cell line and this experimental set up, one unit of length 
in simulation corresponds to L = 0.24µm  measured at the microscope. This conversion implies 
the size of a simulated chromosomal territory being approximately 2-3 µm across— consistent 
with what was previously reported in (17) The simulated ensemble is also consistent with 
experimental data collected from chromosome 13, even though in this case the sparsity of the 
experimental data set does not allow strong conclusions. The fluctuations of the distances for all 
the four pairs are also correctly predicted in simulation.  
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Figure S27. 
Comparison of simulated FISH distances with a null model. 
The simulated probability distributions of distances between the probes shown in Figure 3 are 
compared with a null model. The null model (green) is the distribution of distances between all 
pairs of loci separated by a fixed genomic distance, chosen to match the ones between the probes 
(A) L1-L2, (B) L1-L3, (C) L2-L3, and (D) L2-L4. The simulated distances between the probes 
(red distributions) are the same as the ones in Figure 3. The distribution of distances resulting 
from our model is specific to the pair of loci according to the topology of the chromosome and 
the interactions in the energy function.  These loci-specific distributions deviate significantly 
from the ones characteristic of the null model. 
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Figure S28 
Insights on the relationship between compartmentalization and biochemical markers 
 
(A) A select number of biochemical markers are strongly associated with the compartment 
annotations. The information content between a compartment annotation and a biochemical 
marker is plotted for our probabilistic model. High information content indicates a strong 
statistical coupling between a compartment annotation and a biochemical marker.  
 
(B) Sub-compartments A and B exhibit probabilistic enhancement and depletion, respectively, of 
almost all biochemical markers. The log ratio is plotted between the joint probability of 
observing a compartment type and the presence of the indicated biochemical marker with respect 
to a model for which the type and marker are independent (null model). Blue indicates the 
enhancement of the joint probability with respect to the null model, whereas Red indicates 
depletion.  
 
(C) The probability density function of the measured signal is plotted for each chromatin 
structural type (A1, A2, B1, B2, B3; colors defined in the legend) for selected ChIP-Seq assays. 
The PDFs are plotted on a log-linear scale. 
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Figure S29 
 
(A) A confusion matrix showing the chromatin type annotation of the reduced MEGABASE 
model (using only the 11 histone modifications) for each of the chromatin types classified in ref. 
(2). Likewise, (B) shows the same comparison for A/B compartments.  
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Figure S30. Selected performance measures for MEGABASE. 
To further assess the quality of MEGABASE, we recast it as 5 binary classifiers. Does the 
segment of chromatin belong to type X? Yes or No. (A) The 5 virtual binary classifiers are 
shown in the Receiver Operating Characteristic (ROC) Space. (B) The Recall, Precision, and F1-
Score are reported in a Table for all binary classifiers. 
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Figure S31.  
The intra-chromosomal contact maps produced by MEGABASE + MiChroM are more accurate 
then the ones produced by MEGABASE AB + MiChroM, even though the differences are subtle.  
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(A, B, and C) The error in the simulated contact maps with respect to the experimental Hi-C 
maps of ref. (2) is shown for representative chromosomes 4, 6 and 10, respectively. The 
differences with respect to experiment are larger for the MEGABASE AB + MiChroM compared 
to the simulated maps of MEGABASE + MiChroM, showing the advantage of a model with 5-
types compared to a model with 2-types. (D, E, and F) The Pearson’s coefficient between the 
experimental Hi-C data and simulated contact probabilities are plotted as a function of genomic 
distance.  
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Figure S32. Purely biochemical clustering is unable to correctly classify structural types.  
(A and B) For chromosome 2 and 4, a comparison between simulated Hi-C maps generated using 
MEGABASE AB + MiChroM (left) and K-Means clustering of ChIP-Seq data + MiChroM is 
shown. (C and D) Pearson’s correlation vs. genomic distance for the maps in A and B. (E) 
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Confusion matrix between the annotations obtained by MEGABASE AB and K-means of ChIP-
Seq for the test set. 
 
 
 
 
 
Table S1. List of ChIP-seq experiments obtained from ENCODE for GM12878 
1. SUZ12 
2. FOXM1 
3. PML 
4. ZEB1 
5. SP1 
6. CHD2 
7. CTCF 
8. MYC 
9. JUNB 
10. SMAD5 
11. CEBPZ 
12. PBX3 
13. POLR2AphosphoS5 
14. USF1 
15. SPI1 
16. TARDBP 
17. CEBPB 
18. EED 
19. TBX21 
20. ATF2 
21. MAX 
22. RAD21 
23. H3K36me3 
24. NFIC 
25. POU2F2 
26. TAF1 
27. E2F4 
28. EBF1 
29. BCL3 
30. CHD1 
31. ETV6 
32. H3K27me3 
33. CUX1 
34. MTA3 
35. EP300 
36. SMC3 
37. NFYB 
38. POLR2AphosphoS2 
39. SRF 
40. STAT1 
41. CREB1 
42. WRNIP1 
43. NFE2 
44. POLR2A 
45. RFX5 
46. RUNX3 
47. STAT5A 
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48. SUPT20H 
49. TBL1XR1 
50. ZNF143 
51. BCLAF1 
52. YY1 
53. USF2 
54. IRF3 
55. NFATC1 
56. PAX5 
57. EGR1 
58. NRF1 
59. SIN3A 
60. MXI1 
61. REST 
62. ZNF384 
63. MEF2C 
64. CREM 
65. ELK1 
66. BCL11A 
67. ZBED1 
68. NFYA 
69. TBP 
70. BRCA1 
71. MAZ 
72. RCOR1 
73. CBFB 
74. TRIM22 
75. H3K4me3 
76. HCFC1 
77. ELF1 
78. IRF4 
79. TCF7 
80. TCF3 
81. H3K4me2 
82. H3K27ac 
83. H3K79me2 
84. STAT3 
85. MEF2A 
86. TCF12 
87. H3K4me1 
88. H2AFZ 
89. H3K9ac 
90. BHLHE40 
91. IKZF1 
92. H4K20me1 
93. H3K9me3 
94. BATF 
95. EZH2 
 
 
Table S2. List of epigenetic marks obtained from ENCODE for GM12878. 
1. H2AFZ 
2. H3K27ac 
3. H3K27me3 
4. H3K36me3 
5. H3K4me1 
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6. H3K4me2 
7. H3K4me3 
8. H3K79me2 
9. H3K9ac 
10. H3K9me3 
11. H4K20me1 
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Table S3 Pearson correlation of between Hi-C map and simulated contact probabilities from 
MEGABASE+MiChroM 
Chromosome Pearson’s r 
1 0.941 
2 0.952 
3 0.962 
4 0.963 
5 0.956 
6 0.956 
7 0.954 
8 0.955 
9 0.879* 
10 0.944 
11 0.955 
12 0.959 
13 0.961 
14 0.960 
15 0.935 
16 0.946 
17 0.953 
18 0.963 
19 0.960 
20 0.956 
21 0.924 
22 0.942 

 
  

                                                             
* Experimental dataset for chromosome 9 has imperfect coverage 
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