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Data acquisition

MRI data was acquired on a 1.5 T (Philips Intera) whole-body scanner. Resting-state fMRI
data included 178 volumes with 33 axial slices covering the whole brain, acquired via a T2
BOLD-sensitive multi-slice echo planar imaging (EPI) sequence (TR/TE = 2.5s/32 ms; field
of view= 22 cm; image matrix = 64 × 64; voxel size = 3.44.44 × 3.8 mm3; flip angle = 75◦).
Structural imaging was performed using a whole brain T1-weighted Fast Field Echo 1 mm3

sequence (TR/TE = 30/4.6 ms, field of view = 250 mm, matrix 256 × 256, flip angle = 30◦,
slice number = 150). T2-weighted Fluid Attenuated Inverse Recovery Images (FLAIR) were
also acquired to assess participants white matter integrity. Participants were provided with
earplugs. Particular care was taken to minimize head motion via vacuum cushions and custom
made padding. Both structural and fMRI data have been carefully checked for data quality.

fMRI data preprocessing

Functional image preprocessing and statistical analyses were carried out using SPM8 software
(Statistical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/) and MATLAB 7.5 (Math-
Works, MA, USA). The first five volumes of functional images were discarded for each subject to
allow for steady-state magnetization. EPI images were slice-time corrected using the interleaved
descending acquisition criteria, and realigned and re-sliced to correct for head motion using a
mean functional volume derived from the overall fMRI scans. Subject whose head motion ex-
ceeded 1.0mm or rotation exceeded 1.0◦ during scanning were excluded. In order to obtain
the better estimation of brain tissues maps, we implemented an optimized segmentation and
normalization process using DARTEL (Diffeomorphic Anatomical Registration using Exponen-
tiated Lie Algebra) [1] module for SPM8. Briefly, this approach is based on the creation of a
customized anatomical template built directly from participants T1-weighted images instead of
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the canonical one provided with SPM (MNI template, ICBM 152, Montreal Neurological In-
stitute). This allows a finer normalization into standard space and consequently avoids under
- or overestimation of brain regions volume possibly induced by the adoption of an external
template. Hidden Markov Random Field model was applied in all segmentation processes in
order to remove isolated voxels [2]. Customized tissue prior images and T1-weighted template
were smoothed using an 8mm full-width at half-maximum (FWHM) isotropic Gaussian kernel.
Functional images were consequently non-linearly normalized to standard space and a voxel re-
sampling to (isotropic) 3 × 3 × 3 mm were applied. Linear trends were removed to reduce the
influence of the rising temperature of the MRI scanner and all functional volumes were band pass
filtered at (0.01Hz < f < 0.08Hz) to reduce low-frequency drift. Finally, a CompCor algorithm
has been applied in order to control physiological high-frequency respiratory and cardiac noise
[3].

EGN-B Model

The model proposed in this paper assumes that each agent is an aggregated (brain area) of
interacting elementary components (neurons). Each area is assumed to be able to make decisions,
and it is characterized by its activity level or state. The state, belonging to the set [0, 1], quantifies
the activity level of the area at a particular time. Dynamically, each area compares its activity
level with others and it changes its state accordingly, in order to maximize a certain payoff
function based on activation and inactivation strategy mechanisms defined below.
The above mechanism is naturally embedded into the replicator equation on graphs [4], describing
the EGN-B model as follows:

ẋv = xv(1− xv)
N∑
w=1

av,w∆pv,w (1)

where:
∆pv,w = pAv,w − pIv,w,

pAv,w = αv,wxw,

pIv,w = ιv,w(1− xw).

pAv,w and pIv,w represent the payoff of activation and inactivation, respectively. Moreover,
αv,w and ιv,w are the activation and inactivation propensities of payer v with respect to player
w. Finally, xv ∈ [0, 1] is the level of activation of the brain area v.

Estimation method

In order to characterize the system (1), we must estimate 3N2 parameters, namely av,w, αv,w
and ιv,w, using the available observed data (the fMRI recordings correspond to the behavior of
particular brain areas). The estimation procedure is constrained: in fact, the entries of adjacency
matrix av,w must be non-negative, while the propensities αv,w and ιv,w must have the same sign
for each ordered couple (v, w). In this work we relax these constraints in order to tackle with an
unconstrained optimization problem. To this aim, we set αv,w = ιv,w; in this way, the threshold
dv is set to 0.5. Moreover, since the parameters av,w quantify the strength of connections, then
we assume that αv,w and ιv,w belong to the set {−1,+1}. Moreover, parameters αv,w and ιv,w in
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(1) are always multiplied by the non-negative parameters av,w, thus affecting the identifiability
of the model. For these reasons, we can instead estimate the following N2 parameters:

a′v,w = av,wαv,w = av,wιv,w.

Since αv,w = ιv,w ∈ {−1, 1}, the parameters reads as:

a′v,w = av,wsign(αv,w) = av,wsign(ιv,w).

The result of the estimation method is represented by the matrix A′ = {a′v,w} ∈ RN×N which
simultaneously contains two important informations:

• since A = |A′|, it encapsulates the network structure;

• since sign(a′v,w) = sign(αv,w) = sign(ιv,w), it describes all the possible game interactions,
such as emulative (αv,w = ιv,w > 0) and non-emulative game (αv,w = ιv,w < 0).

Notice that, if a′v,w = 0, then w does not influence v. On the contrary, if a′v,w 6= 0, then |a′v,w|
denotes the strength of their interaction, while sign(a′v,w) denotes if both activation and inhibi-
tion propensities are positive or negative.

Starting from these premises, we can rewrite the EGN-B in (1) as follows:

ẋv = xv(1− xv)fv(x,A′) (2)

where

fv(x,A
′) =

N∑
w=1

av,w[αv,wxw − ιv,w(1− xw)] =

=

N∑
w=1

[a′v,wxw − a′v,w(1− xw)] =

=

N∑
w=1

a′v,w(2xw − 1).

Last equation shows that the system (2) linearly depends on the parameters of the signed EGN-B
connectivity matrix A′, and it can be rewritten in an alternative form:

ẋv = uv(x)>θv, (3)

where uv(x) = xv(1 − xv)[2x1 − 1, 2x2 − 1, . . . , 2xN − 1]>, θv = [a′v,1, a
′
v,2, . . . , a

′
v,N ]> and

x = [x1, x2, . . . , xN ]>.

Moreover, the model (3) can be discretized using the Euler method with time step τS :

yv(tk+1) = uv(x(tk))>θv, (4)

where xv(tk) is the state variable at time tk = kτS , yv(tk+1) = τ−1S (xv(tk+1)− xv(tk)) is the
approximation of the time derivative ẋv, and τS is the sampling time.

According to (4), the parameters of the model (i.e. the entries of the signed EGN-B connec-
tivity matrix A′) can be estimated using a least square optimization approach. In particular, we
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indicate with zv(tk) the observed fMRI data collected with sampling time τS for T time instants.
By substituting xv(tk) with zv(tk) for each k ∈ {0, 1, . . . , T − 1}, we can introduce the vector:

Y (z) =



y1(t1)
y2(t1)

...
yN (t1)
y1(t2)
y2(t2)

...
yN (t2)

...
y1(tT )
y2(tT )

...
yN (tT )


and the matrix

U(z) =



u1(z(t0))> 0 . . . 0 . . . 0 . . . 0
0 . . . 0 u2(z(t0))> . . . 0 . . . 0

...
...

. . .
...

0 . . . 0 0 . . . 0 . . . uN (z(t0))>

u1(z(t1))> 0 . . . 0 . . . 0 . . . 0
0 . . . 0 u2(z(t1))> . . . 0 . . . 0

...
...

. . .
...

0 . . . 0 0 . . . 0 . . . uN (z(t1))>

...
...

...
...

u1(z(tT−1))> 0 . . . 0 . . . 0 . . . 0
0 . . . 0 u2(z(tT−1))> . . . 0 . . . 0

...
...

. . .
...

0 . . . 0 0 . . . 0 . . . uN (z(tT−1))>



,

thus obtaining the following matricial form:

Y (z) = U(z)θ, (5)

where θ = [θ>1 , θ
>
2 , . . . , θ

>
N ]>. Finally, we can estimate the parameters θ by solving the following

problem:

θ̂ = arg min
θ∈RN2

‖Y (z)−U(z)θ‖, (6)

Functional in equation (6) is convex and, under certain hypotheses (see Technical issue and
remarks paragraph at the end of this section), it has only one solution:

θ̂ = (U(z)>U(z))−1U(z)>Y (z), (7)
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where θ̂ are the estimated parameters based on the observation z.

Notice that the state variables of the dynamical model involved in this work are bounded in
the set [0, 1]. For this reason, data before interpolation have been normalized in the set [0.3, 0.7].

Technical issue and remarks Notice that Y (z) ∈ RNT and U(z) ∈ RNT×N2

. Then
(U(z)>U(z))−1 is well-defined if rank(U(z)) = N2. For this reason, it is a good practice to
set T > N , thus allowing U(z) to have more rows than columns; this increases the probability to
deal with a well-posed problem. Unfortunately, the number of available measurements is often
small; fMRI data scan makes sense if the subject remains in the identical position for the whole
duration of the experiment, that can persist in the interval [5, 10] minutes at a sampling time in
the range [2, 3] seconds. Anyway, the bandwidth of fMRI signals is B = 0.1 Hz and the mea-
surements in this work are sampled with a frequency 1

τS
= 1

[2,2.5] = fS ∈ [0.4, 0.5] Hz. Thanks

to the Nyquist-Shannon theorem, since the fS ≥ 2B all the frequency information of signals are
kept after the sampling process. Hence we can interpolate the available data in order to have a
finer time discretization, thus increasing the value of T up to the desired target. In this work,
we have interpolated the fMRI signals by using splines, adding 100 samples between each couple
of time consecutive real data.

We remark that the dimensionality of the problem can become a problem as long as the size of
the considered network increases [5]. In order to avoid identification problems when dealing with
huge networks, one can imagine a multiple steps identification where the weak connections are
removed in order to reduce the size of the problem using a priori information like the knowledge
of physical and anatomical connectivity.

However, a sufficiently large number of nodes is required to guarantee satisfactory model
performances. To show this, we considered several different size models, increasing from 2 to
77 nodes. This investigation has been performed for all the subjects involved in the study.
Thereafter, for each estimated model, we computed the average fitting error as a function of the
size of the network, as depicted in Figure S1-A. Notably, as long as network size increases, the
fitting error decreases, thus improving the model performances. Moreover, the cross correlation
between real and simulated data for each network size has been evaluated. In Figure S1-B, we
report the minimum (cyan) and the maximum (magenta) values of the cross-correlation curves.
We observe that the min/max cross-correlation range increases as the number of the network
nodes increases. Furthermore, when the network size is sufficiently large (> 65 nodes), both
minimum and maximum cross-correlation values are positive, thus combining the high fitting
model performances with a strong similarity between simulated and real data. Finally, for more
than 70 nodes, the cross-correlation raises to 1, making reasonable the extraction of the 77 nodes
network from the atlas performed in this study.

Comparison with linear systems

In order to evaluate the performances of the proposed EGN-B model, we performed a comparison
with standard linear systems. Firstly, for each subject in the available dataset we estimated the
EGN-B adjacency matrix using a number of estimation samples NE lower than the number of
samples of the full recording of a single subject (240 samples). Thereafter, we simulated the
model using the estimated adjacency matrix for 240 time instants, and we calculated the mean
square error between real and simulated data. This error quantifies how much our model is
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Figure S1: Performance of the model for different network sizes. For all subjects involved
in the study, the adjacency matrix of the model has been estimated by using an increasing number
of nodes (from 2 to 77). In (A), the average fitting error between simulated and real data is
shown, while in (B), the minimum (cyan) and maximum (magenta) cross-correlation curves
between real and simulated data are reported.

able to predict the brain dynamics using a reduced number of samples NE . For each size of the
estimation set NE , we evaluated the mean, standard deviation, best and worst cases obtained
within the group of available subjects under investigation. Moreover, we counted the number of
outliers NO within this groups, as the number of subjects whose prediction error is bigger than
the mean plus 3 times the standard deviation.

Afterwards, we performed a similar procedure based on a linear system, defined as:

ẋ = Mx. (8)

This time, we estimated the dynamical matrix M using the same approach employed for the
signed EGN-B connectivity matrix A′.

The results obtained using the two models are reported in Table S1. Dark blue lines refer to
the results obtained with the EGN-B model, while light blue lines reports the results for the linear
model. The mean error is always lower when the EGN-B is used to predict the brain dynamics of
the subjects (except for the case with NE = 150). The mean obtained using the EGN-B model
does not present strong differences when NE varies - its order of magnitude is always 10−2 - as it
happens for the linear model. Moreover, the results obtained using the proposed model are more
robust than the linear case: indeed the latter shows highly variable performances compared to
the the EGN-B model (see the standard deviation and worst case columns of Table S1). Finally,
the number of outliers in the investigated groups is always null for the EGN-B case when the
estimation set is small (NE ≤ 140) compared with the linear case when there is always at least
one outlier.
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NE Mean Std WC BC NO
0.05 0.02 8.90e-2 14.00e-3 0

70
1.77 4.46 18.30 5.33e-3 2
0.05 0.02 8.03e-2 10.40e-3 0

80
3.49 11.27 61.20 6.94e-3 1
0.05 0.02 8.72e-2 6.00e-3 0

90
2.18 10.39 65.60 6.51e-3 1
0.04 0.02 7.60e-2 7.02e-3 0

100
2.26 13.47 85.30 5.23e-3 1
0.04 0.02 7.32e-2 6.17e-3 0

110
0.16 0.58 3.67 4.98e-3 1
0.04 0.02 7.68e-2 5.24e-3 0

120
0.82 4.94 31.30 4.14e-3 1
0.03 0.02 5.40e-2 5.34e-3 0

130
0.05 0.20 1.26 3.85e-3 1
0.03 0.02 8.43e-2 4.49e-3 0

140
0.94 5.57 35.30 4.24e-3 1
0.03 0.03 12.20e-2 3.61e-3 1

150
0.01 0.02 0.11 3.52e-3 1
0.03 0.02 11.20e-2 3.33e-3 1

160
16.01 100.86 638.00 2.96e-3 1
0.02 0.03 11.40e-2 2.44e-3 1

170
1.51 9.43 59.70 2.25e-3 1

Table S1: Comparison between EGN-B and linear model based on prediction error.
For each size of the estimation set NE , we report the mean, standard deviation (Std), the worst
case (WC), the best case (BC) and the number of outliers NO within the group of available
subjects under investigation. The results obtained using the EGN-B and the linear model are
reported in the dark blue lines and light blue lines, respectively.

Figure S2: Functional connectivity (correlation) simulation and temporal prediction.
Functional connectivity matrices built using an incremental amount of available data points are
shown (1/3, 2/3, 3/3), leading to a matrix almost identical to the original one when 100% of the
data are modeled (3/3). Interestingly, the application of EGN-B on the entire set of time points
also allows to simulate data beyond the available dataset, as in the case of the connectivity matrix
on the far right (4/3), showing changes in future network behavior by simulating an additional
33% of data points.
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