

Supplementary Figure 1. Shell organic cover autofluorescence images. (a) Confocal projection of unstained 27hpf larva imaged at high laser intensity and using a long – pass filter (LP 505 nm) instead of the band – pass filter (BP 505-530 nm) used for calcein imaging. Autofluorescence of shell organic cover and of numerous vesicles is visible; (b) confocal section illustrating autofluorescence of organic portion of hinge. The hinge is not calcified at this point of time (see Fig. 1) (c) same larva, merged transmission and fluorescence images (d) same larva, different optical plane to illustrate organic shell cover; (e) same larva, merged transmission and fluorescence (f), merged fluorescence and transmission images (g) and transmission light

image (**h**). Organic shell cover and organic shell matrix are fluorescent and illustrate the ca. 3-5 μ m gap between growing edges of organic vs. biomineral phases. Scale bars: 20 μ m (b,c,d,e), 5 μ m (f,g,h).

Supplementary Table 1. Seawater carbonate chemistry parameters calculated from $C_{\rm T}$ and pH_{NBS} using CO2SYS. Carbonate chemistry measurements were obtained once for each fertilization / experimental run. The last three columns indicate, which measurements were conducted with the respective experimental runs (a: for Fig. 3 and 4 (microsensors), b: for Fig. 5 (shell length), c: for Fig. 5 (shell dissolution)).

Exp	Sal.	Temp.	Treat	C_{T}	pH_{NBS}	pCO ₂	A_{T}	CO3 ²⁻	Ω_{arag}	а	b	c
	(psu)	(°C)	ment	(µmol/		(µatm)	(µmol/kg	(µmol/kg				
Euro	15 1	165	1	<u>kg SW)</u>	0.10	115	<u>SW)</u>	<u>SW)</u>	1.52	v		
Exp 2 1	15.1	16.5	1	1913.83	8.19 8.07	443	2018.91	94.00	1.32			
5_1	15.1	16.5	2	1933.03	8.07 7.96	1020	2020.11	/4.44	1.19			
	15.1	16.5	3	1994.27	/.80 7.72	1020	2013.09	40./1	0.75			
	15.1	10.5	4	2042.31	7.75	1398	2032.33	20.00	0.37			
Eng	15.1	10.5	3	2045.25	/.04	524	2014.06	28.89	0.40	$\frac{\Lambda}{V}$	v	
Exp	15.0	10.5	1	2008.59	8.14	534	2098.89	88.09	1.41			
3_2	15.0	16.5	2	2033.09	8.04	68/	2096.73	/1.59	1.15	X V	X	
	15.0	16.5	3	2055.64	/.86	1054	2074.63	47.85	0.//	X	X	
	15.0	16.5	4	2083.09	/.61	18/9	2043.21	27.24	0.44	X	X	
	15.0	16.5	5	2088.97	7.40	3004	1990.86	16.56	0.27	X	<u>X</u>	
Exp	14.8	16.5	l	1903.7	8.12	528	1984.40	79.58	1.27	X	X	
3_3	14.8	16.5	2	1938.99	8.01	693	1992.87	63.74	1.02	X	X	
	14.8	16.5	3	1986.04	7.77	1229	1985.66	37.96	0.61	X	X	
	14.8	16.5	4	2010.55	7.66	1602	1984.70	29.68	0.48	Х	X	
	14.8	16.5	5	2018.39	7.60	1842	1978.15	25.88	0.41	X	X	
Exp	13.8	16.5	1	1917.55	8.16	474	2004.39	84.45	1.35	Х	Х	
3_4	13.8	16.5	2	1956.65	8.09	572	2025.49	73.53	1.18	Х	Х	
	13.8	16.5	3	1982.23	7.81	1112	1986.16	39.46	0.63	Х	Х	
	13.8	16.5	4	2040.05	7.66	1616	2009.33	28.57	0.46	Х	Х	
	13.8	16.5	5	2038.88	7.59	1892	1991.36	24.22	0.39	Х	Х	
Exp	15.4	16.8	1	1903.70	8.14	500	1995.87	87.01	1.40		Х	
3_5	15.4	16.8	2	1938.99	8.00	701	1995.66	65.44	1.05		Х	
	15.4	16.8	3	1986.05	7.76	1250	1986.99	38.77	0.62		Х	
	15.4	16.8	4	2010.55	7.65	1634	1985.46	30.23	0.49		Х	
	15.4	16.8	5	2018.39	7.55	2064	1968.32	23.87	0.38		Х	
Exp	15.2	16.8	1	1899.53	8.16	476	1996.34	90.14	1.45		Х	
3_6	15.2	16.8	2	1953.97	8.03	666	2016.56	69.35	1.11		Х	
	15.2	16.8	3	2001.23	7.78	1220	2004.86	40.15	0.64		Х	
	15.2	16.8	4	2030.44	7.68	1555	2010.82	32.29	0.52		Х	
	15.2	16.8	5	2056.19	7.58	1974	2011.90	25.86	0.42		Х	
Exp	14.6	16.8	1	1909.79	8.14	507	1997.65	84.70	1.36			Х
4 1	14.6	16.8	2	1945.37	7.99	735	1994.95	61.61	0.99			Х
—	14.6	16.8	3	2009.76	7.77	1264	2008.99	38.46	0.62			Х
	14.6	16.8	4	2030.36	7.69	1533	2011.12	32.26	0.52			Х
	14.6	16.8	5	2059.10	7.57	2038	2010.33	24.68	0.40			Х
	14.6	16.8	6	2084.12	7.47	2577	2007.78	19.69	0.32			Х

Supplementary Table 2. Compiled information related to regressions reported in Fig. 4 with N=4 experimental fertilizations and 4-5 treatment levels per fertilization. Regressions were conducted on treatment mean values (all 4 replicate fertilizations). Test for heterogeneity of slopes were conducted using slopes of regressions for individual fertilizations. SW = sea water, CS = calcifying space, x = pCO_2 in µatm.

Parameter	Compartment	Regression	ANOVA	Р-	R ²	Heterogeneity	Intercepts
		Equation		value		of Slopes	
pH _{NBS}	SW	y = -	$F_{(1,17)}=303.2$	< 0.001	0.94	P=0.01, t=5.2,	P=0.001,
	CS	0.0004x+8.3191	$F_{(1,17)}=516.3$	< 0.001	0.96	df=3	t=15.8,
		y = -					df=3
		0.0006x+8.5765					
$\Delta p H_{\rm NBS}$	CS-SW	y = -	F _(1,17) =139.1	< 0.001	0.89		
		0.0001x+0.2574					
$\Delta[\text{H}^+]$	CS-SW	y =	$F_{(3,15)}=10.7$	< 0.001	0.68		
nmol kg ⁻¹		0.84+4/(1+exp(-					
		(x-1612)/-16.6))					
[CO ₃ ²⁻]	SW	y = -	$F_{(1,17)}=22.54$	< 0.001	0.89	P>0.05, t=0.3,	P>0.05,
µmol kg ⁻¹	CS	43.51ln(x)+350.01	$F_{(1,17)}=27.37$	< 0.001	0.86	df=3	t=2.1,
		y = -					df=3
		48.51ln(x)+395.23					
$\Delta[\mathrm{CO_3}^{2-}]$			F _(1,17) =2.546	>0.05	0.13		
µmol kg ⁻¹							
Log	SW	y = -	F _(1,16) =263.2	< 0.001	0.94	P<0.05, t=3.7,	P=0.004,
$\Omega_{ m aragonite}$	CS	0.001x+0.7236	F _(1,16) =468.3	< 0.001	0.96	df=3	t=8.0,
		y = -					df=3
		0.0013x+1.2994					
Δlog	CS-SW	y = -	F _(1,16) =155.5	< 0.001	0.90		
$\Omega_{aragonite}$		0.0004x+0.6595					
[Ca ²⁺]	SW		$F_{(1,17)}=0.82$	>0.05	0.04		
mmol kg ⁻¹	CS		$F_{(1,17)}=0.58$	>0.05	0.03		
Δ [Ca ²⁺]	CS-SW		$F_{(1,17)}=0.20$	>0.05	0.01		
mmol kg ⁻¹							