Hyperpolarized [1-¹³C]-acetate Renal Metabolic

Clearance Rate Mapping

Emmeli F. R. Mikkelsen^{1,2,§}, Christian Østergaard Mariager^{1,§}, Thomas Nørlinger^{1,2}, Haiyun Qi¹,

Rolf F. Schulte³, Steen Jakobsen⁴, Jørgen Frøkiær⁴, Michael Pedersen², Hans Stødkilde-Jørgensen¹,

and Christoffer Laustsen¹

¹MR Research Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
²Comparative Medicine Lab, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
³GE healthcare, Freisinger Landstraße 50, 85748 Munich, Germany.
⁴Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark

[§]E.F.R.M and C.Ø.M contributed equally to this work

Corresponding author:

Christoffer Laustsen Palle Juul Jensens boulevard 99 8200 Aarhus N Denmark M +45 24439141 Tel: +45 784 56139 Fax: +45 784 56110 Email: cl@clin.au.dk

Financial support: The study was supported by Sundhed og Sygdom, Det Frie Forskningsråd and Aarhus University research fund.

Short running title: Hyperpolarized ¹³C-acetate MRI

SUPPLEMENTAL FIGURES.

Supplemental figure 1.

In order to verify the existence of a metabolic component in the mean transit time, 4 female rats receiving a similar furosemide treatment was processed with the proposed method. A global T_1 relaxation time of 24 sec, was used to correct the ¹³C-urea perfusion data.

SUPPLEMENTAL FIGURE 1. The ¹³C-urea RBF did not differ statistically between pre (450 ± 88 ml/100 ml/min) and post administration of furosemide ($477 \pm 96 (\pm SD)$ ml/100 ml/min; paired *t*-test: P = 0.7). Furthermore, no difference in the ¹³C-urea MTT of $18 \pm 5 (\pm SD)$ sec at baseline compared with $16 \pm 4 (\pm SD)$ sec post furosemide administration (paired *t*-test: P = 0.6) was found.

Supplemental figure 2.

Whole blood was extracted from two healthy rats into sodium heparin vacuum tubes. The blood was stored at 5° C. Prior to the experiment the blood was heated and maintained at 37° C. A volume of 4.5 ml blood was mixed with hyperpolarized ¹³C-acetate (0.5 ml) prior to placement in the scanner. The MR experiment was acquired over 120 s (120 acquisitions), with a constant flip angle of 10°. The single exponential decay was fitted in MATLAB and corrected for RF depletion.

$$\frac{1}{T_1} = \frac{1}{T_{1_{eff}}} - \frac{\ln \cos \theta}{TR}$$
(supplement eq. 1)

Where θ is the RF flip angle and TR is the repetition time. Using the *ex vivo* T_{1eff} for correction, results in an underestimated absolute perfusion, lower MTT and thus larger K_{MTT}.

SUPPLEMENTAL FIGURE 2. ¹³C-acetate *in vivo* hemodynamic parameters (using whole blood T₁ correction). Acetate perfusion (min/100 ml/mL), mean transit time (MTT) (sec), and acetate mean transit time metabolic clearance rate K_{MTT} (min⁻¹) before and after administration of furosemide. The mean is plotted with standard errors.