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1 Simplification of the three-stage model

Based on the central dogma of molecular biology, the stochastic kinetics of gene expression in a
single cell can be described by the three-stage model illustrated in Fig. 1(a). The biochemical state
of the gene of interest can be described by three variables (i,m, n): the activity i of its promoter,
the number m of the mRNA, and the number n of the protein. Here i = 1 and i = 0 correspond to
the active and inactive forms of the promoter, respectively. Let pimn(t) denote the probability of
having m mRNAs and n proteins at time t when the promoter is in state i. Then the dynamics of
the three-stage model is governed by the chemical master equation

ṗ1m,n = sp1m−1,n + (m+ 1)vp1m+1,n +mup1m,n−1 + (n+ 1)dp1m,n+1 + anp
0
m,n

− (s+mv +mu+ nd+ bn)p
1
m,n,

ṗ0m,n = rp0m−1,n + (m+ 1)vp0m+1,n +mup0m,n−1 + (n+ 1)dp0m,n+1 + bnp
1
m,n

− (r +mv +mu+ nd+ an)p
0
m,n.

Here s and r are respectively the transcription rates when the promoter is active and inactive, u is
the translation rate, and v and d are respectively the degradation rates of the mRNA and protein. In



addition, an and bn are the switching rates of the promoter between the active and inactive forms,
which depend on the protein number n. From the viewpoint of stochastic processes, the chemical
master equation is equivalent to a continuous-time Markov chain, whose transition diagram is
illustrated in Fig. 1(b).
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Figure 1. Three-stage model of stochastic gene expression and its simplification. (a) The three-stage model of
stochastic gene expression in a single cell, where the promoter can switch between the active and inactive forms. (b)
The transition diagram of the chemical master equation. (b) The transition diagram of the reduced model.

Experimentally, it has been consistently observed that the mRNA decays substantially faster
than the protein [1, 2]. Let λ = v/d denote the ratio of the mRNA and protein degradation
rates. Under this assumption of λ � 1, the Markov model has two separate times scales. Let
q(i,m,n),(i′,m′,n′) denote the transition rate of the system from state (i,m, n) to (i′,m′, n′) and let

q(i,m,n) =
∑

(i′,m′,n′) 6=(i,m,n)

q(i,m,n),(i′,m′,n′)

denote the rate at which the system leaves state (i,m, n). Since λ� 1, we say that (i,m, n) is a
fast state if q(i,m,n) → ∞ as λ → ∞. Otherwise, (i,m, n) is called a slow state. If (i,m, n) is a
fast state, then the leaving rate of this state will be very large and the time that the system stays in
this state will be very short. Intuitively, we may expect that the original model could be simplified
to a reduced model by removal of those fast states. Specifically, it is easy to check that

q(0,m,n) = mu+mdλ+ s+ nd+ an, q(1,m,n) = mu+mdλ+ s+ nd+ bn.

This shows that all the states (i,m, n) with m ≥ 1 are fast states and can be removed. Equivalently,
all the states (i, 0, n) are slow states and are retained.
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Let A denote the set of all the slow states and let B denote the set of all the fast states. By
relabelling the states, the transition rate matrix Q of the original model can be represented as the
block matrix

Q =

(
QAA QAB

QBA QBB

)
.

According to a recently developed simplification method of two-time-scale Markov chains [3, 4],
the original model can be simplified to an reduced model by removal of the fast states. The state
space of the reduced model is the slow state space A and the transition rate matrix Q̃ of the reduced
model is given by

Q̃ = QAA −QABQ
−1
BBQBA.

By using this formula, the effective transition rates of the reduced model can be calculated, as
illustrated in Fig. 1(c). In the reduced model, the effect of transcription is coarse-grained and the
biochemical state of the gene is only described by the variables i and n. Let pi,n(t) denote the
probability of having n proteins at time t when the promoter is in state i. Then the evolution of the
reduced model is governed by the chemical master equation

ṗ1,n =
n−1∑
k=1

spn−kqp1,k + (n+ 1)dp1,n+1 + anp0,n − (sp+ nd+ bn)p1,n,

ṗ0,n =
n−1∑
k=1

rpn−kqp0,k + (n+ 1)dp0,n+1 + bnp1,n − (rp+ nd+ an)p0,n,

where p = u/(u+ v) and q = v/(u+ v).
It should be pointed out that the reduced model includes long-range interactions of protein

numbers, which means that protein synthesis occurs in random bursts. The rate at which k proteins
are synthesized by an mRNA is spkq when the promoter is active and is rpkq when the promoter is
inactive. This fact can be understood intuitively. When the promoter is active, the transcription rate
is s. Once an mRNA is synthesized, it can either synthesize protein with probability p = u/(u+ v)

or degrade with probability q = v/(u + v). Since the mRNA dynamics is fast, the probability
that the mRNA can produce k proteins before it finally degrades will be pkq, which follows the
geometric distribution. Overall, the effective rate at which k proteins are synthesized when the
promoter is active will be the product of the transcription rate s and the geometric probability pkq.

2 Calculation of the steady-state protein distribution

In most applications, the switching rates of the promoter are fast [1]. Since an, bn � 1, the two
states (0, n) and (1, n) of the reduced model can be aggregated into a single state. In this way, the
reduced model can be further simplified to the Markov model illustrated in Fig. 2, in which the
biochemical state of the gene is only described by the protein number n.

The remaining question is to calculate the effective transition rates of the simplified model.
Since an, bn � 1, the two states (0, n) and (1, n) of the reduced model will reach a quasi-steady
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Figure 2. Simplified model when an, bn � 1.

state with quasi-steady-state distribution

pqss(1,n) =
an

an + bn
, pqss(0,n) =

bn
an + bn

.

For convenience, set

cn =
ans+ bnr

an + bn
,

Then the effective transition rate from state n to n+ k is given by

q̂n,n+k = pqss(1,n)q̃(1,n),(1,n+k) + pqss(0,n)q̃(0,n),(0,n+k) = cnp
kq

and the effective transition rate from state n to n− 1 is given by

q̂n,n−1 = pqss(1,n)q̃(1,n),(1,n−1) + pqss(0,n)q̃(0,n),(0,n−1) = nd.

Let pn(t) denote the probability of having n proteins at time t and let pssn denote the corresponding
steady-state probability. Then the evolution of the simplified model is governed by the chemical
master equation

ṗn =
n−1∑
k=1

ckp
n−kqpk + (n+ 1)dpn + 1− (cnp+ nd)pn. (1)

Recall that the steady-state probability pssn must satisfy

(q̂n,n−1 +
∞∑
k=1

q̂n,n+k)p
ss
n =

n−1∑
k=0

q̂k,np
ss
k , (2)

where q̂kl is the transition rate from state k to l. By solving Eq. (4), the steady-state distribution of
the protein copy number is given by

pssn = A
pn

n!

c0
d

(c1
d
+ 1
)
· · ·
(cn−1

d
+ n− 1

)
, (3)

where A is a normalization constant.
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3 Noise decomposition

From Eq. (1), it is easy to check that the mean 〈n〉 and variance σ2 of the protein copy number
satisfy the following set of ordinary differential equations

d〈n〉
dt

= −d〈n〉+ p

q
〈cn〉,

dσ2

dt
= −2dσ2 +

2p

q
Cov(n, cn) + d〈n〉+

(
2p

q2
− p

q

)
〈cn〉,

where Cov(n, cn) = 〈ncn〉 − 〈n〉〈cn〉 is the covariance between n and cn. We stress here that given
Eq. (1), the above two moments equations hold accurately without any approximation, even when
the nonlinearity of feedback regulation is very high. At the steady state, it is easy to check that

〈n〉 = p

dq
〈cn〉, σ2 =

1

q
〈n〉+ p

dq
Cov(n, cn). (4)

From these two equations, the steady-state noise η in the protein number is given by

η =
σ2

〈n〉2
=

1

q〈n〉
+ ηf , (5)

where
ηf =

Cov(n, cn)
〈n〉〈cn〉

=
1

〈n〉〈cn〉
∑
n

(n− 〈n〉)cnpn.

The noise decomposition formula (5) can be rewritten into a more illuminating form. On one
hand, the average number of proteins synthesized per unit time is 〈m〉u. On the other hand, the
average number of proteins degraded per unit time is 〈n〉d. At the steady state, these two quantities
should cancel out, which means that 〈m〉u = 〈n〉d. This indicates that d/v〈m〉 = u/v〈n〉 = p/q〈n〉.
Therefore, Eq. (5) can be rewritten as

η =
1

〈n〉
+

d

v〈m〉
+ ηf .

If the network has no feedback, cn is a constant and thus ηf = 0. If the network has a positive-
feedback loop, cn is an increasing function of n. This shows that cn ≥ c〈n〉 when n ≥ 〈n〉, while
cn < c〈n〉 when n < 〈n〉. This further suggests that

Cov(n, cn) =
∑
n

(n− 〈n〉)cnpn =
∑
n≥〈n〉

(n− 〈n〉)cnpn +
∑
n<〈n〉

(n− 〈n〉)cnpn,

> c〈n〉
∑
n≥〈n〉

(n− 〈n〉)pn + c〈n〉
∑
n<〈n〉

(n− 〈n〉)pn = 0,

and thus ηf > 0. Similarly, if the network has a negative-feedback loop, cn is a decreasing function
of n and thus ηf < 0.
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4 Upper and lower bounds for the noise in negative-feedback networks

In this section, we shall provide the bounds for the noise in the negative-feedback case. By the
Cauchy-Schwarz inequality, we obtain that

ηf =
Cov(n, cn)
〈n〉〈cn〉

≥ −
√

Var(n)
〈n〉

√
Var(cn)
〈cn〉

= −√η√ηcn ,

where ηcn = Var(cn)/〈cn〉2 is the steady-state noise of the effective transcription rate cn. This
inequality, together with Eq. (5), shows that

η ≥ 1

q〈n〉
− √η√ηcn , (6)

which gives a lower bound for the protein noise. It is written in a different form but is essentially
equivalent to the lower bound obtained in [5]. It is indispensable to notice that this lower bound
includes the information of η itself and may be even negative in the regime of strong noise
suppression. In the following, we shall give a better lower bound for the noise η which is always
positive and only requires the knowledge on original model parameters.

To this end, we introduction some notations. Let c(x) be the function obtained from cn by
replacing n with a positive real number x. Let c′(x) be the derivative of c(x) and let

α = sup
x≥0
|c′(x)|

be the supremum norm of the function c′(x). Let X and Y be two independent random variables
such that P (X = n) = P (Y = n) = pssn for all n ≥ 0. In other words, X and Y are independent
and have the same distribution as the steady-state protein number n. According to Lagrange’s mean
value theorem, we have

(c(X)− c(Y ))2 = c′(ξ)2(X − Y )2 ≤ α2(X − Y )2.

where ξ is some value between X and Y . Taking expectation on both sides of this equality and
noting that X and Y are independent and identically distributed, gives rise to

〈c(X)2〉 − 〈c(X)〉2 ≤ α2[〈X2〉 − 〈X〉2].

Since X has the same distribution as the steady-state protein number n, we have

Var(cn) ≤ α2Var(n).

From Eq. (4), it is easy to see that

〈cn〉 =
dq

p
〈n〉.

This indicates that

ηcn =
Var(cn)
〈cn〉2

≤
(
αp

dq

)2 Var(n)
〈n〉2

=

(
αp

dq

)2

η.
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Inserting this inequality into Eq. (6) gives rise to

η ≥ 1

q〈n〉
− αp

dq
η.

Therefore, the noise η has a lower bound which is given by

η ≥ 1

q〈n〉
1

1 + αp/dq
.

Since ηf < 0, it follows from Eq. (5) that

1

q〈n〉
1

1 + αp/dq
≤ η <

1

q〈n〉
. (7)

In the literature, the promoter switching rates are often chosen as an = µ and bn = νnh with
h ≥ 1. In this case, the regulatory function c(x) is the generalized Hill function

c(x) =
sa+ rxh

a+ xh
,

where a = µ/ν and h is the Hill coefficient. It is easy to check that

c′(x) = −(s− r)ah xh−1

(a+ xh)2
.

Recall that the maximum point x0 of the function c′(x) must satisfy c′′(x0) = 0. Direct calculation
shows that

c′′(x) = (s− r)ahxh−2 (h+ 1)xh − (h− 1)a

(a+ xh)3
.

By solving c′′(x0) = 0, we obtain that

xh0 =
h− 1

h+ 1
a.

This shows that

α = −c′(x0) = (s− r)ah xh−10

(a+ xh0)
2
=

(h− 1)1−1/h(h+ 1)1+1/h

4h

s− r
a1/h

.

In Eq. (7), the term αp/dq is of crucial importance. If c(x) is the generalized Hill function,
then

αp

dq
=

(h− 1)1−1/h(h+ 1)1+1/h

4h
a−1/h

(s− r)
d

p

q
.

Here the term (s− r)/d can be understood as the typical number of mRNAs in a single cell. Recall
that the probability that an mRNA can produce k proteins before it finally degrades follows the
geometric distribution pkq. Therefore, the mean burst size of the protein is

∞∑
k=0

kpkq =
p

q
.
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Therefore, the term (s− r)p/dq is the typical number of proteins in a single cell. Recall that the
promoter switching rates are given by an = µ and bn = νnh. In most applications, these two
quantities should have the same order of magnitude, that is,

µ ∼ ν

(
(s− r)p
dq

)h

.

Since a = µ/ν, we have

a1/h ∼ (s− r)p
dq

.

This indicates that the term αp/dq is of the order of 1 for a wide range of biologically relevant
parameters.

5 Upper and lower bounds for the noise in positive-feedback networks

In this section, we shall provide the bounds for the noise in the positive-feedback case. By the
Cauchy-Schwarz inequality, it is easy to check that

η ≤ 1

q〈n〉
+
√
η
√
ηcn . (8)

Similarly, we can also prove that

ηcn ≤
(
αp

dq

)2

η.

Inserting this inequality into Eq. (8) gives rise to

η ≤ 1

q〈n〉
+
αp

dq
η.

If αp < dq, then the noise η has an upper bound which is given by

η ≤ 1

q〈n〉
1

1− αp/dq
.

Since ηf > 0, it follows from Eq. (5) that

1

q〈n〉
< η ≤ 1

q〈n〉
1

1− αp/dq
.

In the literature, the promoter switching rates are often chosen as an = µnh with h ≥ 1 and
bn = ν. In this case, the regulatory function c(x) is the generalized Hill function

c(x) =
ra+ sxh

a+ xh
.

where a = ν/µ. Let x0 be the maximum point of the function c′(x). By solving c′′(x0) = 0, we
obtain that

xh0 =
h− 1

h+ 1
a.

This shows that

α = c′(x0) = (s− r)ah xh−10

(a+ xh0)
2
=

(h− 1)1−1/h(h+ 1)1+1/h

4h

s− r
a1/h

.
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6 Estimation of the decaying rate

Assume that n� 1 is a fixed protein copy number. In the main text, we have shown that

pssn+k ≈ pkpssn = ek log ppssn . (9)

Since the mean burst size p/q of the protein is relatively large in living cells, we have q � p.
Therefore, Eq. (9) shows that − log p = − log(1− q) ≈ q is the decaying rate for the steady-state
distribution of the protein copy number.

In single-cell experiments such as flow cytometry, data of protein concentrations, instead of
protein copy numbers, are usually measured. Let x = n/V be a continuous variable representing
the concentration of the protein, where V is a constant compatible with the macroscopic scale. In
flow cytometry, 1/V stands for the fluorescence per protein molecule. Since x is a continuous
variable, we need to choose an arbitrary step size h. If we plot the histogram of the steady-state
data of protein concentrations with step size h, then un = P (x ∈ [nh, (n+ 1)h]) is the height of
the nth bin. When n� 1, it follows from Eq. (9) that

un =
∑

m∈[nhV,(n+1)hV ]

pssm ≈ hV pnhV

hV∑
k=0

pm.

Similarly, we have

un+k ≈ hV p(n+k)hV

hV∑
k=0

pm.

Therefore, it follows from Eq. (9) that

un+k = unp
khV = une

khV log p.

This suggests that−V log p ≈ qV is the decaying rate for the steady-state distribution of the protein
concentration. Taking logarithm on both sides of this equation gives rise to

− log un+k ≈ − log un + khqV.

This is a linear equation with respect to k and can be used to estimate the decaying rate qV . We
only need to draw the histogram of the protein concentration, calculate the height un of each bin,
and then perform a linear regression analysis between n and − log un when n� 1. The slope of
the linear regression analysis is exactly hqV , from which we can obtain an robust estimation of the
decaying rate qV .

We performed the above data analysis on steady-state single-cell fluorescence data of the
zsGreen and rsRed proteins measured by flow cytometry. To filter out data from dead cells, we
excluded samples with extremely low fluorescence. We divided the fluorescence data into many
bins with the same step size h and appropriately chose an interval [x, 2x] with x large enough such
that the logarithmic height − log un of each bin in this interval arranges as an approximate linear
function of n. For the zsGreen protein, the step size h is chosen between 24 a.u. to 120 a.u. For the
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rsRed protein, the step size is chosen between 5 a.u. to 12 a.u. In the high Dox case, the logarithmic
heights − log un of the zsGreen protein versus the sequence numbers of bins under different IPTG
concentrations are depicted in Fig. 3. We calculated the slope hqV using Matlab and then estimated
the decaying rate qV . Similarly, we can also estimate the the decaying rate for the zsGreen and
rsRed proteins in the high and low Dox cases.

7 Differential expression analysis

Since feedback regulation significantly affects noise, it may give rise to bias in the noise-based
differential expression analysis. In recent years, the negative-binomial (NB) model has been widely
used as the null model to identify differentially expressed genes (DEGs). The NB model is a special
case of our model when the network has no feedback. The effect of noise amplification or reduction
caused by feedback regulation is not addressed under the NB assumption, which may result in
incorrect predictions.

To see this weakness of the NB model, we performed pairwise differential expression analysis
across the IPTG concentration. We merged fluorescence data of the zsGreen protein under two
different IPTG concentrations to form the sample of a bona-fide DEG. In the NB model, cn is a
constant and the feedback coefficient ηf vanishes. Therefore, the protein noise estimated by the
NB model is given by

η̂ =
1

q〈n〉
.

The observed noise η and the null-model noise η̂ of many DEGs were plotted in Fig. 4e of the main
text and Fig. 4. Since IPTG has significant effect on the synthetic gene circuit, each DEG should
result in larger observed noise than the null-model noise. The data points under the diagonal of Fig.
4e imply the weakness of the NB model in dealing with genes with feedback regulation.
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Figure 3. Estimation of the decaying rate for the steady-state distribution of the zsGreen fluorescence under different
IPTG concentration in the high Dox case. The x-axis represents the sequence number n of bins in the interval [x, 2x]
and the y-axis represents the logarithmic height − log un of these bins.
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Figure 4. The observed noise versus the noise estimated by the NB model for different DEGs in the negative-feedback
case. Each red circle represents a bona-fide DEG whose expression data are generated by merging the data of the
zsGreen protein under two different IPTG concentrations. The size of the red circle is proportional to the difference of
the two IPTG concentrations.
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