
1 
 

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

positive congruent

negative incongruent

positive incongruent

negative congruent

positive valence
negative valence
null

positive congruent

negative incongruent

positive incongruent

negative congruent

positive valence
negative valence
null

Δ 
Be

lie
f

RP
E

Bayesian model RL modela b

-0.2

0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Re
gr

es
sio

n 
w

ei
gh

ts
 (a

.u
.)

Re
gr

es
sio

n 
w

ei
gh

ts
 (a

.u
.)

-3

-3

information direction: p = 0.4391
congruency: p < 10
outcome valence: p = 0.8622
edge: p < 10
prior belief: p = 0.0334
belief excentricity: p = 0.0774

c

d

information direction: p = 0.5549
congruency: p = 0.6043
outcome valence: p = 0.3437
edge: p = 0.0699
prior belief: p = 0.7108
belief excentricity: p = 0.2653

Absolute Δ Belief

Reaction Time

-3

-2

-1

0

1

2

3

-6

-4

-2

0

2

4



2 

Supplementary Figure 1 | Modelled human behaviour, belief updating and reaction times at belief prompt.  

Given the exact sequence of trials that each human participant chose in the task, model predictions were slightly 

different due to the effect of imbalanced choices between good and bad urns. The Bayesian model (a) updated slightly 

more on negative congruent and positive incongruent events. This is likely caused by participants choosing good urns 

more often than bad urns, which leads to higher degrees of certainty for those events that occur more often in good urns, 

resulting in less update. The (normalized) prediction error (b) closely follows outcome magnitudes. Note that given the 

larger absolute prediction errors on congruent outcomes, the RL model over time converges to the correct value. The 

very narrow error-bars here are the result of re-scaling outcomes to the respective highest possible outcome to account 

for range adaptation effects1,2. The slightly negative RPE for null events is explained by the expected value being above 

0 an average.  

Results of a regression analysis of relevant task factors against absolute belief updating (c) and reaction times (RT) until 

the belief prompt was confirmed after each trial (d). There was a significant (t23 = 4.06, p = 0.00049) positive effect of 

factor congruency on belief updating, yet not RT (t23 = -0.52, p = 0.60), confirming that participants updated their 

beliefs less when model-free experience and model-based inference were incongruent with each other. Neither the 

direction of the belief update (increase or decrease), nor the valence (positive or negative) itself had an effect on belief 

updating or RTs. Factor edge accounts for possible edge effects, in that participants update less (t23 = -3.82, 

p = 0.00087) when they are certain about the property of an urn, which is seen on-top of a trend (t23 = -1.87, p = 0.0774) 

of belief excentricity (the absolute deviation from a flat prior), which both suggest Bayesian belief updating. The prior 

belief in an urn to be good is also associated with reduced updating (t23 = -2.26, p = 0.0334). This effect is likely caused 

by more choices of good compared to bad urns, which thus are updated less, or, vice versa, higher updating on possibly 

more exploratory choices of bad urns. 

The absence of effects on RTs is likely explained by the delay between feedback presentation and onset of the belief 

prompt, which appears to have provided sufficient time to process both congruent and incongruent information. Note 

that inclusion of a separate regressor coding the delay between feedback and belief prompt did neither show a main 

effect (p > 0.78) or interaction with congruency (p > 0.71), nor alter any of the other non-significant findings.  

Error-bars reflect SE and statistical values are results of separate t-tests of standardized regression weights of within-

participants effects against zero. In the whisker plots, red horizontal line = median, box = quartile range, whiskers = 

range.
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Supplementary Figure 2 | Relationship between beliefs and choices.  

To investigate the relationship between participants’ beliefs and their choices, we conducted a logistic-regression onto 

participants’ choices of urns when one was good and the other bad. We defined choices of good urns as 1 and of bad 

urns as 0. As regressors we included the valence of the previous outcome (-1 = loss of points, 0 = no change, 1 = gain of 

points), and the current trial number in the block (trial no) to account for general learning over time. Additionally, we 

included the relative expected value (EV) of the good or bad urn as if participants had knowledge of this, as well as the 

interaction expected value x trial no, to test if the participants might have counted events that had not been drawn. The 

relative EV depends on how many incongruent compared to congruent events are left. For example, had a participant 

counted all received events, and in the last trial only an incongruent marble was left, the better choice would be to select 

a bad and not a good urn. We first test the influence these factors have on participants’ choices in a logistic regression 

model, and then compare this model to another one that includes the belief of the chosen and the belief of the unchosen 

urn to be good. Furthermore, we plot raw quantile splits of the data, which show the effect of the included factors 

separately, that is, when variance by other factors is unaccounted for (b-e).  

First, we find that inclusion of participants’ beliefs dramatically increases model fit (r2 = 0.177 without and r2 = 0.704 

with beliefs). Despite anticorrelation between the beliefs of chosen and unchosen urn (mean r = -0.49 ± 0.06), we found 

that the strongest factor driving participants’ choices in the task, is the belief of an urn to be good (t23 = 9.25, p = 

1.96x10-8) over and above the effect of believing the other urn to be bad (t23 = -6.31, p = 0.000016). This confirms the 

relevance of beliefs for choice behaviour. Furthermore, because shared variance in regression analysis is attributed to 

the error term, this indicates that participants employed information about the alternative urn, and chose a good urn 

more often when the alternative was estimated to be poor, as is also confirmed by the raw data splits (b,c).  

In the regression without beliefs, in accordance with the raw data plots (d,e), we found a significant positive effect of 

trial number on the proportion of good urn choices (t23 = 5.97, p = 1.71x10-5) and a negative effect of the valence of the 

previous outcome (t23 = -4.36, p = 0.0009). Both effects were fully explained by beliefs and no longer significant in the 

regression including participants’ beliefs (both p > 0.06). This indicates that beliefs in the current task mediate effects 

of learning over blocks and previous trial outcome effects onto choices, further confirming the behavioural relevance of 

beliefs and inference in the current task.  

There was a significant effect of the expected value left on choices of the better urn (t23 = 3.35, p = 0.017). This is most 

likely because the expected value depends on how many congruent events have been observed, and more congruent 

events lead to more choices of good urns as these are unaffected by bias. However, there seems to be an additional 

effect of this on choices that is over and above the effect on belief, possibly indicating that choices are even more biased 

then inference. However, there is no interaction between expected value and trial number (t23 = -0.38, p = 0.71 

uncorrected), indicating that participants did not count task events.   
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In (a) red horizontal line = median, box = quartile range, whiskers = range, error-bars in (b-e) = SE, p-values were 

corrected for the number of factors in the respective models by applying Bonferroni correction.   
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Supplementary Figure 3 | Conjunction effects and contrasts of DKL and RPE, and signal characteristics in peak 

voxels of main effects.  

(a) BOLD signals in middle striatum as well as lateral frontopolar and posteromedial cortex were jointly and 

significantly modulated by model-based (DKL) and model-free learning (RPE). 

(b) Contrasts for DKL > RPE (blue) and DKL < RPE (red) confirmed that effects in IPS (peak -13, -71, 54 mm, z = 5.04), 

left dlPFC (-45, 6, 34 mm, z = 5.24), pMFC (-4, 36, 40 mm, z = 4.41), and left dorsal striatum (-8, -15, 5 mm, z = 4.34) 

for DKL were seen over the effect of RPE. Vice versa, bilateral ventral striatum (right 13, 12, -10 mm, z = 4.07; left -10, 

12, -11 mm, z = 3.21) and vmPFC (-4, 54, -6 mm, z = 5.30) showed significantly larger covariation with RPE compared 

to DKL. The contrasts for DKL > RPE in right dorsal striatum (8, 12, 10 mm, z = 3.96) did not survive cluster based FWE 

correction and the contrast in the left frontal pole, were a main effect was seen for DKL, was not significant.  

(a) displays minimum z-statistics of the conjunction null hypothesis of either factor showing no effect thresholded as in 

main Fig. 3a, and (b) displays z-statistics of both contrasts uncorrected for display purpose. Colourbars indicate z-

scores. 

(c-h) We further explored the results of the whole brain analysis by conducting several control analyses at the 

respective peak voxel of each main effect (striatum: DKL left caudate -9, 16 , 1 mm, right caudate 9, 16, 6; RPEt left 
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nucleus accumbens -13, 10, -9 mm, right nucleus accumbens 13, 10, -8 mm). A current discussion centres around the 

question whether some neural signals thought to reflect valenced outcome evaluation, such as reward prediction errors 

enabling learning, can actually be better explained by unsigned outcomes or surprise, for which signals in the pMFC 

and also the midbrain’s dopaminergic system have been found3-5. Formally, surprise can be defined according to 

information theory as the Shannon Information of an event (ISH(E)) as: 

𝐼"#(𝐸) 	= 	−𝑙𝑜𝑔[𝑝(𝐸|𝑝𝑟𝑖𝑜𝑟)] 
 
In our task, the prior belief is explicitly prompted which allows to directly compute ISH from the probability distribution 

of the events provided to all participants. Note that all non-informative events always had the lowest possible 

probability of occurrence (0.1), which thus was independent of the prior belief. This leads to an anti-correlation of 

surprise and DKL in our task (average r = -0.64 across participants, range: -0.938 to -0.37). Thus, an interpretation of the 

positive effect for DKL based on negative surprise signals appears unlikely. However, we also investigated the effects of 

surprise and DKL in multiple regression analyses within voxels of peak activities. Therefore, we included ISH into a 

regression model as a separate factor in order to see if the effect of DKL remained significant. (c-f) show regression time 

courses in peak voxels of main effects using a general linear model with the following predictors: DKL (blue), ISH 

(green), belief (that chosen urn is good, red), current and previous payout, onset of belief prompt, and block number (to 

account for different magnitudes in payout over blocks). In the dorsal striatum (c, d), we found a negative going effect 

of ISH (peak left p = 0.0003, right p = 0.016) and the effect of DKL remained significant despite the considerable amount 

of collinearity between both factors in some participants (peak left p = 0.0027, right p = 0.0003). Additionally, the DKL 

main effect remained significant in all other regions reported in the main effects analysis when ISH was included as a 

separate factor: (e) pMFC (-1, 28, 50 mm, p = 0.0003), (f) dlPFC (-45, 27, 27 mm, p = 0.0017), and IPS (-14, -70, 53 

mm, p = 5.05x10-7). This demonstrates that the neural correlates of long-term belief updating identified in the task 

cannot be reduced to surprise.  

(g, h) Furthermore, to dissociate the constituent components of the reward prediction-error (outcome and expectancy), 

we also included the outcome as well as its expectancy into the regression model (instead of RPEt). A true prediction 

error signal would require positive covariation with the outcome and negative covariation with its expectancy6, yet the 

source of the expectancy could be speculated to vary. Because in this task maximum likelihood estimates for the 

learning rate of the RL model in various participants showed very low values (reflecting the difficulty to learn the task 

for an RL algorithm and the need for integration of outcomes over very long times), we tested the following hypotheses: 

we included the outcome of the preceding trial (green) as a separate regressor, reflecting immediate reward expectancy 

(or expected value in an RL model with a ceiling learning rate), as well as the actual belief (blue) entered on the 

previous trial for that urn (that is, a participant’s expectancy of an urn to be good or bad). As demonstrated before, the 
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belief of the participants was strongly influenced by model-based learning (main Fig. 2) and, therefore, this analysis 

tests the hypothesis that model-based values can form the trial-by-trial prediction (expected value) for reward-prediction 

error correlates in the ventral striatum under some circumstances. We found strong positive covariation with the payout 

of the current trial (red) in the ventral striatum (c, d; peak left p = 1.55x10-5, right p = 5.45x10-7). However, the previous 

outcome did not systematically modulate the BOLD signal in the ventral striatum (and the same was found when we 

used two other, arbitrarily chosen learning rates of alpha = 0.06 (average of all participants), or 0.15, data not shown). 

However, we found significant (peak p = 0.0134 left and p = 0.001 right) covariation with the belief entered by the 

participant at the previous trial the same urn was chosen before. This indicates that even in the ventral striatum, value 

estimates do not merely reflect model-free evaluation, but include model-based inferences, similar to the finding of 

Daw et al.7. Note that this effect was observed over-and-above surprise, which was again also included in the model. 

Finally, the current belief otherwise was only found to exert a similar effect within the right caudate (d, p = 0.0038), yet 

not in other regions found in the DKL main analysis. 
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Supplementary Figure 4 | Increased RPE and not decreased DKL representation drives the across-participants 

effects.  
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(a) When we regressed the behavioural influence of Bayesian and RL model update onto the coefficient parameter 

estimates for DKL (blue) and RPE (red) separately, instead of using their contrast as in main Fig. 4, we found that the 

effect seen on the contrast of contrasts was driven mainly by stronger representation of RPEs in dorsal striatum as well 

as frontopolar cortex, instead of a reduction of Bayesian model information. Peak activity was found in right caudate (9, 

9, 4 mm, z = 4.16), left caudate (-11, 5, 9 mm, z = 4.05), right frontal pole / vmPFC (7, 57, -10 mm, z = 3.85), and left 

frontal pole (-27, 60, -1 mm, z = 3.98). No effect was found for decreased representation of Bayesian updating (blue).  

(b) reproduces the effect reported in main Fig. 5, showing overlapping effects for the contrast of contrasts (green) at the 

same coordinates as in (a). 

(c) We also investigated if the effect shown in (a) was rather a reduction of the influence of model-free mechanisms on 

behavioural belief updating or an increase of the influence of Bayesian updating. This was possible because individual 

participants’ regression weights from the behavioural analysis only shared a relatively small amount of variance 

(correlation of regression weights across participants r = -0.33, p = 0.11), indicating that the degree of Bayesian 

updating of a participant was only in part related to the degree of model-free influences across participants. This 

revealed that increased RPE over DKL representation in the dorsal striatum (depicted in red, right caudate 9, 1, 10 mm, z 

= 4.01; left caudate -13, 3, 11 mm, z = 3.80) as well as bilateral FPC (right 19, 66, 4 mm, z = 3.94; left -21, 64, 8 mm, z 

= 4.17) was related to decreased influence of model-free learning on belief updating. On the other hand, a dissociable 

and slightly more posteriorly located region in left FPC (depicted in blue, -27, 52, 7, z = 4.18) covaried with increased 

influence of Bayesian belief updating in relation to the integration of RPE into model-based regions on neural activity.  

Colourbars indicate z-scores, plots are cluster extent corrected at p < 0.05.
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Supplementary Figure 5 |Main effect of incongruence between reward experience and information and overlap 

with DKL. 

We repeated the fMRI analysis with the additional predictor incongruence contrasting incongruent and congruent 

events at outcome presentation. (a-c) incongruence (green) positively covaried with brain activity in (a) bilateral IPS 

(peak left -22, -69, 48 mm, z = 4.86, peak right 24, -64, 53 mm, z = 4.70), (b) left dlPFC (-42, 21, 26 mm, z = 4.07), and 

left frontal pole (-46, 44, -2 mm, z = 3.81), all overlapping with main effects seen for DKL (blue). Additionally, at a less 
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conservative cluster threshold, another cluster in (c) pMFC (-5, 30, 42 mm, z = 3.54) emerged, again overlapping with a 

DKL main effect. Note that inclusion of incongruence as a regressor in the main GLM did not change results for any of 

the main effects reported qualitatively.  

These results indicate that those brain areas identified in the main analysis as reflecting model-based inference, 

additionally also reflect mismatch between model-based and model-free updating. A possible explanation is an 

increased need for cognitive control caused by conflict, which is known to covary with BOLD activity in pMFC as well 

as dlPFC consistent with detection of the need of increased cognitive control and implementation thereof8,9. 

(d) We then also investigated whether individual differences in the degree to which Bayesian updating or model-free 

learning influenced belief formation covaried with the individual parameter estimates for the incongruence regressor in 

the GLM. The only region that displayed a main effect for incongruence as well as a significant covariation with the 

relative degree of Bayesian updating was the left lateral FPC (-48, 41, 4 mm, z = 2.37), additionally overlapping with a 

main effect for DKL. Thus, the more participants recruited the frontopolar cortex whenever a mismatch between short- 

and long-term model update occurred, the more participants were able to overcome model-free influences on belief 

updating.  

We also repeated the across-participants analysis from the main manuscript for the parameter estimates of the main 

effect of incongruence. No result survived whole brain FWER correction.  

Colourbars indicate z-scores, incongruence is thresholded at p < 0.005 (uncorrected) (a-d), DKL is thresholded at p < 

0.001, covariation with behavioural influences of model-based and -free learning at p < 0.05 (uncorrected) for display 

purposes (d). See also Supplementary Table 1. 
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Supplementary Figure 6 | Effects during the decision phase of the experiment.  

We furthermore conducted an exploratory analysis of decision related activity in the task for completion. For this 

analysis, we ran a GLM for which we added a regressor coding the effects of the difference between the chosen and 

unchosen urns’ beliefs, the chosen urn's belief, and if the response was switched or repeated (if a participant chose the 

same urn as on the previous trial, or not).  

(a) We found negative effects for belief difference in pMFC (peak -2, 16, 43 mm, z = 3.58), bilateral dlPFC (left -23, 

10, 59 mm, z = 4.58; right 22, 13, 62 mm, z = 3.39), IPS (left -9, -62, 56 mm, z = 4.04; right 6, -61, 59 mm, z = 4.23), 

left FPC (-33, 49, 10 mm, z = 3.89), and PCC (-2, -43, 22 mm, z = 4.49), similar to an inverse value difference signal 

reported previously10. There were no positive believe-difference effects that survived FWER correction. (b) We 

furthermore found significant additional positive switch effects in similar cortical regions (pMFC 1, 10, 49 mm, z = 

4.03; dlPFC 26, 35, 47 mm, z = 4.75; left FPC -27, 58, 22 mm, z = 4.6), consistent with a cognitive control network. No 

negative switch effects were seen following cluster correction. 

Note that the timing of the task is not optimized to study decision-related activity, and we therefore urge caution in 

interpreting these findings. Specifically, because participants had unlimited time to enter their beliefs during the prompt, 
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they may have already formed decision about upcoming choices at this stage. 

Colourbars indicate z-scores, all effects displayed are cluster extent corrected.  
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Supplementary Table 1: List of clusters of activation found for main effects and control analyses.  

 n 
voxels 

peak 
z-score 

x y z 

DKL positive effects 
(mainly left) IPS,  

left visual cortex, cerebellum 
86475 6.02 -32 -47 43 

pMFC, bilateral dlPFC 51696 6.5 -26 -5 52 
bilateral caudate 19411 5.94 -9 16 2 

right visual cortex 5067 4.2 -29 -94 -11 
left FPC 4971 5.07 -35 60 6 

right insula 2426 5.59 33 24 -4 
brain stem / midbrain 2065 4.28 0 -26 -22 

right IPS 1264 3.94 29 -45 45 
PCC 863 4.09 0 -28 30 

DKL negative effects 
right TPJ 5122 4.85 54 -33 28 

left insula, frontal operculum 3432 4.73 -37 7 6 
vmPFC 3087 4.47 5 61 6 

right insula, frontal 
operculum 

2616 4.64 41 -2 -14 

right amygdala, 
parahippocampal cortex 

2347 4.69 22 -2 -18 

right OFC 1517 5.48 28 34 -12 
left TPJ 1230 4.29 -58 -34 18 

left OFC 1203 5.57 -29 34 -10 
left intracalcarine cortex 798 4.04 -17 -81 8 

left amygdala 672 3.93 -23 -2 -18 
RPE positive effects 

left visual cortex 17542 6.92 -12 -82 -16 
right ventral striatum 7095 5.57 19 11 -5 

left ventral striatum 5475 5.1 -18 8 -7 
vmPFC, FPC 5292 4.89 -4 61 3 

PCC 2129 4.03 -1 -34 35 
right precuneus 971 4.09 23 -46 17 

anterior cingulate gyrus 756 4 7 37 6 
  
 

     

 n 
voxels 

peak 
z-score 

x y z 

RPE negative effects 
right visual cortex (V1, V2, 

V3) 
26944 6.69 14 -95 3 

left visual cortex (V1) 2047 4.53 -14 -81 33 
ΔBt positive effects 

right occipital pole 5572 5.2 2 -89 8 
ΔBt negative effects 

right visual cortex (V2, V3) 5298 5.46 11 -75 -6 
Incongruence positive 
effects 

     

right IPS 9858 4.7 24 -64 53 
right visual cortex 

(intracalcarine cortex) 8599 4.82 6 -84 2 

left IPS 7108 4.86 -22 -69 48 
left dlPFC 1569 4.07 -42 21 26 

right inferior temporal gyrus 929 4.09 51 -57 -8 
left lateral frontal pole 863 3.81 -46 44 -2 

Bayesianness positive effects 
aMCC 6934 4.71 -9 37 27 

right striatum 4341 4.37 13 13 -9 
precentral gyrus 3488 4.25 -35 -25 46 

left striatum 2834 4.34 -15 12 9 
left insular cortex / OFC 2686 4.71 -36 17 -11 

PCC 2440 4.68 -1 -19 33 
right insular cortex / OFC 2320 4.39 41 17 -11 

angular gyrus, supramarginal 
gyrus 1515 3.94 -62 -49 29 

posterodorsal thalamus, 
superior colliculus 1295 4.31 -6 -27 -6 

left dorsolateral FPC 1283 4.29 -26 35 28 
midbrain (VTA, SN, raphe) 1164 4.05 -2 -19 -18 

cerebellum 1100 4.57 15 -53 -20 
IFG 788 4.21 -53 22 -2 

      

      
Please note that despite the conservative threshold (cluster p < 0.05 and activation p < 0.001) used here, cortical clusters 

sometimes revealed very large activation patterns, that spanned multiple areas. DKL: divergence Kullback-Leibler; RPE: 

reward prediction error; ΔBt: directed belief updating or signed divergence Kullback-Leibler; pMFC: posterior mesial 

frontal cortex; dlPFC: dorsolateral prefrontal cortex; FPC: frontopolar cortex; PCC: posterior cingulate cortex; IPS: 

intraparietal sulcus; vmPFC: ventro-medial prefrontal cortex; TPJ: temporoparietal junction; OFC: orbitofrontal cortex; 

PCC: posterior cingulate cortex; VTA: ventral tegmental area; SN: substantia nigra; IFG: inferior frontal gyrus. 
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Supplementary Note 1 

A potential confound of the task design is that the belief bar marker that participants moved to indicate their beliefs 

following each trial, remained in place. Thus, it would be possible to solve the task without forming actual beliefs about 

long-term valences of the urns, as it would be sufficient to decide in which direction to move the marker and remember 

its final position to solve the estimation of urns between blocks correctly. This appears especially important, because 

the dorsal striatum has repeatedly been implicated in decision formation processes, rather than learning11,12. Although 

follow-up surveys did not indicate that participants used the (spatial) position of the bar as the basis for their choices, 

we conducted a replication study to rule out this possibility and ensure that the neural correlates of belief updating are 

truly related to inferential learning.  

To this end, we introduced the following changes to the task. Firstly, participants were no longer prompted about their 

beliefs after every trial, yet only after every third trial. They could thus predict whether they would be asked to enter 

their beliefs, or not. This tests if prompting beliefs changed the neural effects we found. Secondly, the belief prompt 

was always set back to 0.5, the point of indifference. Thus, participants had to form and maintain beliefs about good and 

bad urns and could not rely on the spatial information provided by the prompt. This therefore excludes that the task 

could be solved without an internal representation of long-term valence of the urns. 

 

 

Supplementary Methods 

We measured an additional sample of 21 participants for fMRI analyses, out of which 18 (mean age 23, 13 female) 

finished the recording session (3 left after the task was completed, but before the structural image could be acquired due 

to tiredness or strangury). All participants were informed about possible risks of the measurements prior to 

participation, and all procedures were carried out in accordance with the declaration of Helsinki. The study protocol 

was approved by the ethics committee of the medical faculty of the Otto-von-Guericke University, Magdeburg 

(Germany). 

All data for the replication was collected on a 3T Siemens Skyra scanner and preprocessing was identical to the original 

study, with the exception that no field map correction was applied. We again used an isotropic resolution of 3 mm, 

TR = 2s, TE = 30 ms, and a flip angle of 80° for the functional recording. The mean number of acquired volumes was 

1590 (range 1388 to 1999), mean task duration 53 minutes, comparable to the original study. Settings for the T1 

MPRAGE were TR = 2320 ms, TE = 2.96 ms, TI = 1200 ms, otherwise identical to the original protocol.  

As we could not fit the RL model to the participants’ sequences of beliefs, because these were not available on a 

trialwise basis, we used the best fitting learning rate from the original study (0.06) to derive the RPE regressor. We used 
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the same Bayesian model as in the original study, based on the belief participants entered on every third trial. The GLM 

was otherwise set up identically, but included an additional regressor that coded if a belief would be prompted after the 

feedback period, as well as the interaction between this regressor and DKL, RPEt, and ΔBt, respectively. Additionally, we 

ran an analysis in which we coded DKL separately for trials with prompts, and trials without prompts. With this we test 

the hypothesis that beliefs are only formed when participants know they should be entered afterwards. If the interaction 

is not significant and main effects for DKL remain significant even when only trials are analysed in which participants 

know they will not be prompted, this indicates that belief updates and their neural correlates were not confined to 

prompt trials. 

Participants earned on average 118 ± 9 (SE) points, and chose the good urn when one was good and the other one was 

bad (GB blocks) on 132 ± 3 and the bad one on 108 ± 3 trials (t17 = 3.65, p = 0.0002 for difference). Thus, they chose 

the better urn on slightly fewer trials compared to the original study (mean 21 trials, t40 = -3.3, p = 0.002), yet still 

successfully more often than the bad one.  

As in the original study, participants successfully formed beliefs about good and bad urns (Fig. 7a). At the last 

prompted trial of good urns in GB blocks, they entered a belief of 0.667 ± 0.021 (t-test against indifference (0.5) t17 = 

8.84, p < 10-6) and on bad ones 0.419 ± 0.019 (t17 = -4.36, p < 0.0005). In blocks where both urns were good, this was 

0.58 ± 0.028 (t17 = 3.11, p = 0.0064) and when both urns were bad this was 0.394 ± 0.027 (t17 = -4.04, p = 0.00086).  

Thus, participants established robust beliefs about good and bad urns even when they could not rely on the previous 

position of the belief marker. Given that participants were well able to identify the urns’ long-term valence between 

blocks (Fig. 7a), this indicates that while they were slower to establish beliefs (slightly less choices of the good urns), 

they still formed robust beliefs about the urns’ long-term valences. The difference to the original study is likely 

explained by the increased difficulty when the belief has to be remembered during trials. 

 

On a neural level, we replicated the striatal dissociation found in the original study (Fig. 7b). We also replicated all 

major main effects seen for DKL and these overlapped with the DKL effects in the original study even when a whole brain 

cluster correction and a p threshold < 0.001 was applied. We found significant effects in the left (peak -9, 10, 10 mm, z 

= 3.72) and right dorsal striatum (7, 15, 2 mm, z = 4.06), left (-35, -50, 43 mm, z = 4.07) IPS, left dlPFC (-35, 11, 33 

mm, z = 4.9), pMFC (-4, 25, 43 mm, z = 4.6), and left FPC (-31, 52, 17 mm, z = 3.61). All these effects remained 

significant when we analysed only trials without a following belief prompt (Fig. 7c).  

 

The effects for RPE were somewhat reduced, possibly because of the worse fit possibility of the RL model. We still 

found overlapping significant effects in the left (Fig. 7d, -14, 17, -6 mm, z = 2.50) and right ventral striatum (13, 19, -8 
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mm, z = 2.77). Furthermore, we found significant effects overlapping with the original cluster spanning vmPFC (20, 45, 

-3 mm, z = 2.26) and FPC (-2, 65, 6 mm, z = 2.67).  

The only significant interaction effect between belief prompting and DKL or RPE was seen in the left IPS (-42, -46, 42 

mm, z = 3.3), indicating that DKL was more strongly reflected here when participants knew that they would be prompted 

to enter their current belief estimate afterwards. Without cluster extent correction, interactions also emerged for the left 

dlPFC (-45, 21, 31 mm, z = 3.06), pMFC (3, 22, 53 mm, z = 2.9), but not the dorsal striatum or the FPC. In sum, these 

data indicate that participants updated beliefs mostly independent of whether they would be prompted to enter them in a 

trial, as is appropriate to solve the task. The replication furthermore suggests that in both tasks, participants formed 

internal representations of belief states which were updated via inference derived from the payouts and knowledge of 

the event distributions.  
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