SUPPLEMENTARY MATERIAL

Intelligence is associated with the modular structure of intrinsic brain networks

Kirsten Hilger^{1,2,*}, Matthias Ekman³, Christian J. Fiebach^{1,2,3}, Ulrike Basten¹

¹ Goethe University Frankfurt, Frankfurt am Main, Germany

² IDeA Center for Individual Development and Adaptive Education, Frankfurt am Main, Germany

³ Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, The Netherlands

* Corresponding author:

Kirsten Hilger Goethe University Department of Psychology Theodor-W.-Adorno-Platz 6, PEG D-60323 Frankfurt am Main Phone: +49 (0)69 / 798 - 35345 hilger@psych.uni-frankfurt.de

	Thr	М	SD.	Min	Max
Global modularity O					
	10 %	.464	. 037	.258	.578
	15 %	.408	.034	.208	.532
	20 %	.365	.034	.207	.497
	25 %	.330	.035	.201	.462
	30 %	.300	.034	.212	.441
Number of modules	10.0/	4.00		2	
	10 %	4.20	.595	3	6
	15 %	3.74	.556	3	5
	20 %	3.41	.512	2	5
	25 %	3.21	.434	2	5
	30 %	3.14	.353	2	4
<i>Module size</i>					
	10 %	1314.41	192.82	897.67	1803.67
	15 %	1478.55	229.27	1075.00	1803.67
	20 %	1620.88	232.83	1077.29	2704.00
	25 %	1709.22	204.54	1078.60	2704.00
	30 %	1742.16	165.25	1332.00	2672.50
Variability in module size					
	10 %	376.96	183.08	34.00	932.69
	15 %	368.27	183.06	27.64	1031.39
	20 %	368.27	182.86	15.06	1138.56
	25 %	360.02	223.71	13.82	1222.94
	30 %	397.72	276.54	11.05	1300.46

Supplementary Table S1. Descriptive statistics for global graph metrics at different graph thresholds.

Thr, proportional threshold applied on the binarised adjacency matrix; *M*, mean, *SD*, standard deviation; *Min*, minimum; *Max*, maximum.

	Thr	F part.	p _{part.}	BF ₀₁ -Reg.
Global Modularity Q				
	10 %	.042	.470	2.884
	15 %	.004	.952	3.665
	20 %	.025	.669	3.369
	25 %	.057	.327	2.369
	30 %	.046	.432	2.772
Number of modules				
	10 %	.085	.144	1.384
	15 %	.095	.099	1.060
	20 %	045	.441	2.803
	25 %	.041	.480	2.914
	30 %	099	.088	0.970
Module size				
	10 %	089	.122	1.226
	15 %	088	.127	1.311
	20 %	.029	.610	3.251
	25 %	063	.277	2.113
	30 %	.099	.088	0.971
Variability in module size				
	10 %	.035	.550	3.128
	15 %	.098	.091	0.985
	20 %	014	.813	3.592
	25 %	.005	.926	3.635
	30 %	033	.569	3.130

Supplementary Table S2. Associations between intelligence (WASI FSIQ) and whole-brain aspects of modular organization across thresholds.

Thr, proportional threshold applied on the binarised adjacency matrix; $r_{part.}$, Pearson's correlation coefficient for the partial correlation controlling for effects of age, sex, and handedness; $p_{part.}$, *p*-value of significance for the partial-correlation; BF₀₁-Reg., Bayes Factor in favour of the null hypothesis (i.e., absence of correlation) for Bayes linear regression models predicting FSIQ values by the respective whole-brain measure of modular network organization while controlling for effects of age, sex, and handedness.

	Thr	r _{part.}	p _{part.}	BF01-Reg.
Ultra-peripheral nodes				
	10 %	.030	.610	3.238
	15 %	.015	.801	3.557
	20 %	057	.327	2.379
	25 %	028	.632	3.275
	30 %	.021	.723	3.499
Peripheral nodes				
	10 %	.062	.287	2.184
	15 %	.070	.226	1.883
	20 %	050	.390	2.621
	25 %	.062	.284	2.177
	30 %	.102	.078	0.890
Non-hub connector nodes				
	10 %	020	.728	3.491
	15 %	045	.439	2.805
	20 %	013	.819	3.613
	25 %	031	.594	3.241
	30 %	027	.642	3.342
Non-hub kinless nodes				
	10 %	.023	.694	3.438
	15 %	.062	.280	2.161
	20 %	.104	.071	0.832
	25 %	.009	.882	3.647
	30 %	135	.020*	0.305
Provincial hubs				
	10 %	.010	.860	3.637
	15 %	.024	.675	3.369

Supplementary Table S3. Associations between intelligence (WASI FSIQ) and whole-brain node type proportions at different graph thresholds.

	20 %	046	.421	2.745
	25 %	.045	.433	2.783
	30 %	.027	.640	3.028
Connector hubs				
	10 %	.011	.852	3.631
	15 %	031	.596	3.244
	20 %	040	.489	2.963
	25 %	040	.493	2.977
	30 %	015	.796	3.578
Kinless hubs				
	10 %	.001	.991	3.672
	15 %	.058	.322	2.342
	20 %	.068	.239	1.956
	25 %	.032	.578	3.186
	30 %	033	.568	3.380

Thr, proportional threshold applied on the binarised adjacency matrix; $r_{part.}$, Pearson's correlation coefficient for the partial correlation controlling for effects of age, sex, and handedness; $p_{part.}$, *p*-value of significance for the partial-correlation; BF₀₁-Reg., Bayes Factor in favour of the null hypothesis (i.e., absence of correlation) for Bayes linear regression models predicting FSIQ values by the respective node-type proportion while controlling for effects of age, sex, and handedness.

	r _{part.}	P _{part} .	BF ₀₁ -Reg.
Whole-brain measures			
global modularity	.03	.632	3.31
number of modules	.10	.094	1.02
average module size	10	.094	1.19
variability in module size	.08	.170	1.55
Whole-brain proportions of node types			
ultra-peripheral nodes	.09	.145	1.34
peripheral nodes	.05	.420	2.74
non-hub connector nodes	03	.616	3.29
non-hub kinless nodes	.04	.521	3.06
provincial hubs	.04	.518	3.05
connector hubs	03	.616	3.29
kinless hubs	.03	.672	3.40

Supplementary Table S4. Associations between intelligence (WASI FSIQ) and whole-brain aspects of modular organization based on weighted graphs.

 $r_{part.}$ Pearson's correlation coefficient for the partial correlation controlling for effects of age, sex, and handedness; $p_{part.}$, *p*-value of significance for the partial-correlation; BF₀₁-Reg., Bayes Factor in favour of the null hypothesis (i.e., absence of correlation) for Bayes linear regression models predicting FSIQ values by the respective whole-brain measure of modular network organization or whole-brain proportions of node types while controlling for effects of age, sex, and handedness.

Brain Region BA Hem k X у Z t_{max} A: Weighted *participation coefficient* p_{iw} (between-module connectivity) positive association 47, 13 R 4.03 58 anterior insula* 36 33 -6 cuneus 30, 23 L -9 -72 6 3.36 32 L -93 -3 130 middle occipital gyrus 17, 18 -18 3.65 negative association superior frontal gyrus* 10 R/L 3 63 12 -2.62 61 39 inferior parietal lobule 40 L -42 -39 -2.60 28 temporo-parietal junction* 39, 40 L -48 -66 30 -2.60 136 B: Weighted *within-module degree* z_{iw} (within-module connectivity) positive association R/L superior frontal gyrus* 10,9 -15 54 36 3.97 300 8 L -12 33 51 31 superior frontal gyrus 3.23 9,8 L middle frontal gyrus -45 21 42 3.94 61 inferior precentral gyrus / 22, 44 L -54 0 6 3.49 34 superior temporal gyrus inferior frontal gyrus / inferior 44, 13 R 45 3 21 3.43 40 precentral gyrus 69 superior parietal lobule 5,7 L -27 -48 3.04 35 temporo-parietal junction* 39 L -51 -66 27 4.35 217 39 57 temporo-parietal junction R -63 33 4.28 67 negative association anterior insula* 47, 13 R 36 30 -3 -2.56 75 superior precentral gyrus 4, 3 L -15 -18 63 -2.59 80 superior precentral gyrus / 6,4 R 39 -18 54 -2.61 139 supplementary motor area

Supplementary Table S5. Intelligence-related effects in weighted within-module and between-module connectivity.

hippocampus	L	-33	-27	-12	-2.60	73
hippocampus	R	27	-15	-9	-2.60	36
caudate nucleus	L	-9	27	0	-2.65	52

C: Conjunction between weighted participation coefficient p_{iw} and weighted within-module degree z_{iw}

superior frontal gyrus	10	R/L	3	63	12	61
anterior insula	47, 13	R	33	27	-9	41
temporo-parietal junction	39, 40	L	-57	-69	21	98

BA, approximate Brodmann's area; Hem, hemisphere; L, left; R, right; regions with intelligence-related effects in both measures (between-module and within-module connectivity) are marked with an asterisk and separately listed in (C); coordinates refer to the Montreal Neurological Institute template brain (MNI); t_{max} , maximum t statistic in the cluster; k, cluster size in voxels of size 3x3x3mm.

Supplementary Figure 1. Clusters of nodes where intelligence (WASI FSIQ) was significantly associated with between-module or within-module connectivity for each of 5 different graph threshold.

positive association between intelligence and between-module connectivity

negative association between intelligence and between-module connectivity

positive association between intelligence and within-module connectivity

x = 34

Between-module connectivity was operationalized by *participation coefficient* p_i , within-module connectivity by *within-module degree* z_i (see Methods for details). Statistic parametric maps for both measures are shown at a voxel-level threshold of p < .005, uncorrected, and a cluster-level threshold of k > 26 voxels, corresponding to an overall threshold of p < .05, family-wise corrected for multiple comparisons (see Methods). SFG, superior frontal gyrus; AI, anterior insula; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; HC, Hippocampus; iPre, inferior precentral gyrus; sPre, superior precentral gyrus; STG, superior temporal gyrus; TPJ, temporo-parietal junction; SPL, superior parietal lobule; IPL, inferior parietal lobule; MOG, middle occipital gyrus. The *x*-, *y*- and *z*-coordinates represent coordinates of the Montreal Neurological Institute template brain (MNI152).

z = -6