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1. Relation between power spectrum and light momentum trap calibration with temperature 

In previous work16, we showed the validity of interpreting, under certain strict conditions, back focal plane (BFP) 
interferometry signals as measurements of light momentum changes; that is, as direct readings of the trapping force. 
The most significant requirements for such an interpretation are: 1) the use of a high-NA, aplanatic collecting lens 
that captures all the light from the optical traps; and 2) to track the light intensity distribution at the BFP of the 
collecting lens with a position sensitive detector (PSD). The usual approach to measuring forces in optical tweezers 
consists of calibrating the trap stiffness κ (pN/µm), in accordance with: F = -κ·x, and the position sensitivity β 
(µm/V), such that: x = β·Sx (where Sx is the sensor positional voltage signal). In particular, we proved that if the 
aforementioned conditions hold, the product αtrap = κ ·β (pN/V) is invariant and equal to the constant and permanent 
momentum calibration of the sensor, αdetector = RD/ψf’c, where RD is the detector radius, f’ and ψ (V/W) are the focal 
length and the responsivity of the instrument, respectively, and c the speed of light: 
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In contrast to αtrap, which must be calibrated, for example using the power spectrum method (Supplementary Ref. 

1), αdetector is obtained from first principles and is determined by the optical parameters of the beam detection system 
alone. This suggests that, if the required instrument design conditions are fulfilled, no new in situ trap calibration is 
necessary when the experiment changes15,16 and force can be directly obtained as: Fx,y = -αdetector·Sx,y. The 
momentum calibration of the force sensor, αdetector, is independent of the geometry of the trapped object and of the 
structure of the trapping beam17; moreover, and importantly for the purpose of this paper, it is not dependent on laser 
power or chamber temperature. 

 

 
Figure	S1	|	Discrepancies	between	αdetector	and	αtrap=κ·β,	obtained	from	the	power	
spectrum	 analysis,	 provide	 evidence	 of	 change	 in	 the	 sample	 when	 the	 laser	
power	 is	 increased.	When	 the	 temperature	 increase	 is	 considered	 in	 the	power	
spectrum	(PS)	 fitting	 (Supplementary	ref.	1),	 the	calibration	 is	compensated	and	
αtrap	is	constant. 

 
In Fig. S1, we used the discrepancy between the two schemes to determine changes in sample temperature. A 

close look at the results for αtrap = κ ·β reveals that the equivalence αtrap = αdetector starts to fail when the laser power is 
increased, with αtrap deviating from the constant value RD/ψf’c. This is indicative of a local temperature increase due 
to laser absorption (of 4 ºC/100 mW in Fig. S1), which leads to incorrect κ and β calibration if overlooked. As 
discussed by Peterman et al.9, temperature affects the power spectra of optically trapped microspheres, both as a 
thermal variable governing Brownian motion and through the viscosity of the solvent, which importantly is 
dependent on it. 
 



2. Generation of controlled, precise drag forces with a piezoelectric stage 
 
The piezoelectric stage was moved with constant velocity, v = dxpiezo/dt, producing steps at –6πηRbv and +6πηRbv of 
constant drag force (Fig. S2). The mean force was obtained by averaging the signal (with fsampling = 50 kHz) over n ~ 
20 steps, taking only ~10,000 points from each step, which corresponds, as we will discuss below, to the range 
where the velocity was indeed constant. For an accurate calculation of local viscosity from Eq. 1 (see Main Text), 
we need to know the velocity of the piezoelectric stage with high precision. 

  
Figure S2 | Constant force on trapped samples. Top – Typical triangular trajectory 
drawn by the piezo-stage (black) and it’s derivative (grey), i.e. the velocity of the 
surrounding medium. Bottom – force signal from a trapped sample, which is proportional 
to the velocity of the piezo-stage. In black, the point series considered for averaging the 
force measurement. 

 
We studied the transfer function of the control electronics and found that, even at low frequencies (1-10 Hz), the 

amplitude of the output voltage sent to the stage differed by ~10%-20% from the input signal (see Fig. S3a). The 
ratio of the two values was quite independent of the amplitude, but decreased with frequency following a single-
pole-like function with a roll-off frequency of 20 Hz. The stage velocity therefore had to be corrected to take into 
account the deformation introduced in the triangular signals by the low-pass filtering of the electronics (see Fig. 
S3b).  

 
Figure S3 | (a) Amplitude transfer function of the piezoelectric platform. (b) Output signal monitored through an NI-
DAQ interface (blue line) showing certain deviation from the desired oscillation (black line). In the inset: deviation of 
the actual constant velocities (obtained from linear fits over the grey areas in b), for oscillation frequencies from 1 to 7 
Hz. Every colour corresponds to a different oscillating frequency. 

 
To do this, we correlated the monitored output voltage with the triangular input signal and we found that only in 

a region of 40%-80% of the semi-period (shadowed area) was the velocity of the stage constant. Moreover, the 



actual velocity was larger than the theoretical value and it depended on the amplitude, A, and frequency, f, of the 
signal (see Fig. S3b (inset) and Table S1). All measurements were kept below 6 - 7 Hz to ensure a constant velocity 
time frame. In Eq. 1 (see Main Text), we used this calibrated velocity value for the calculation of the viscosity 
change.  

Furthermore, we analysed the variability of the measured viscosity with the stage velocity and found no 
significant change, which indicated that the dissipation of heat was faster than the motion of the fluid, so the 
temperature “experienced” by the particle was constant (Fig. S4).  

 
 

Figure S4 | Water viscosity measured with a 0.61-µm bead at different flow velocities. The 
vertical dashed red line indicates the velocity of 320 µm/s applied for this kind of beads in 
our study (Table S1). The solid red line and the grey shadow are the mean and standard 
deviation of the quotient η/η0. 

 
The oscillation parameters were chosen so that they produced similar drag forces on the microspheres used, 

which had different radii and were given by their corresponding manufacturers (Table S1). The diameter of the 
smallest microspheres (0.61 µm) was also confirmed using dynamic light scattering (DLS).  

 

Bead (µm) 
Velocity in water 

Force at 
25ºC (pN) 

Velocity in 
glycerol 
(µm/s) 

Force at 
25ºC (pN) A (µm) f (Hz) target 

(µm/s) 
actual 
(µm/s) 

0.610 ± 0.014 (PS) 40 2 320 323.1 1.68 0.4 2.14 
1.16 ± 0.04 (PS) 40 1 160 160.6 1.62 0.2 2.05 
1.87 (PS) 25 1 100 100.8 1.67 - - 
2.19 ± 0.05 (MR) 21 1 84 84.7 1.66 0.16 3.15 
2.32 (Si) 20 1 80 80.7 1.68 - - 
3.00 ± 0.07 (PS) 16 1 64 64.6 1.78 0.12 3.27 

Table S1 | Actual flow velocities applied to the different microspheres used in our drag experiments, measured via the 
piezoelectric stage output reading, and theoretical Stokes drag forces applied. 

 
Finally, we checked the long-term stability of our fibre laser output power. We observed large oscillations (10%-

20%) for long periods of time (see Fig. S5), whose origin was the fluctuation in polarization of the beam. These 
oscillations vanished when no polarizing elements were introduced along the optical path, or by orientating the beam 
polarization parallel to the transmission axis of the polarizing beam splitter.  

 
 



 
Figure S5 | Laser power fluctuations under different polarization states: 
free of polarizing elements (blue), linearly polarized parallel to the beam splitter 
(BS) transmitting direction (green), and at 45º (black) and 70º (red) with respect 
to that direction.  

 
 

3. Laser heating measurements in assorted optical tweezers laboratories  
 
A large number of studies have been carried out to assess the phenomenon of sample warming due to infrared laser 
absorption in optical tweezers. In Fig. S6 and Table S2, we indicate some of the reported results that represent the 
state of the art in this matter. It is of special significance that the strategies undertaken are based on a wide variety of 
principles.  
 

 
Figure S6 | Compilation of sample heating measurements in the literature obtained via a number of different 
methods. The black (orange) line corresponds to the FDTD simulations in water (glycerol) discussed in 
Results (see Main Text). 
 

First, several heating studies have been based on the temperature dependence of the buffer viscosity (either water 
or glycerol), which can be determined with a microsphere trapped in the optical trap through direct drag force 
measurements based on the trapping light momentum12, power spectrum calibration9 or active-passive calibration11. 
Second, one can find studies consisting of sample thermometry through thermally-dependent fluorescence 



performed on different optically-trapped samples2,3,4. Thirdly, experiments on empty traps based on different 
approaches have also been undertaken5,6,7,8.  
 

Author 
 

Technique λ trap 
(nm) Target 

B measurements 
(ºC/100 mW) 

B value at 
λ=1064 

nm H2O Glyc 

Català 

 

Light momentum 
& Stokes drag 1064 

 
0.61 µm PS 
1.16 µm PS 
1.87 µm PS 
2.19 µm MR 
2.32 µm Si 
3.00 µm PS 

NA1.2 
2.59 
2.06 
1.81 
1.93 
1.90 
1.56 

NA1.3 
3.77 
2.59 
2.00 

-- 
--    

1.67 

NA1.2 
5.41  
5.27 

-- 
4.68 

-- 
4.14 

-- 

Peterman9 

 

Power spectrum 
& Stokes drag 1064 

0.444	µm	Si 
0.500	µm	Si 
0.502	µm	PS 
0.840	µm	PS 
2.200 µm PS 

0.81 
0.77  

-- 
-- 
-- 

-- 
-- 

4.22 
4.38 
3.42 

-- 

Mao12 
 Light momentum 

& Stokes drag 975 2 µm Si 5.6 -- 1.69 

Jun11 
 

Active-Passive 980 490 nm PS 
642 nm Si 

7.8 
3.8 -- 2.37 

1.17 

Haro-
González4 

 
Quantum dot 
luminescence 
thermometry 

750 
808 
920 
980 

1090 

3 µm PS 

0 
0 
5 

9.9 
4.9 

-- 

0 
0 

8.26 
3.01 
4.30 

Liu2,3 

 Temperature-
dependent 
luminescence 
(Laurdan) 

1064 

sperm cells 
CHO cells (10 

µm) 
liposomes (10 µm) 

1 
1.15 
1.45 

-- -- 

Celliers8 
 

Refractive index 985 -- 4 K/55 mW -- 2.27 

Kuo7 
 

Wax melting 1064 -- 1.7 -- -- 

Ebert5 

 Temperature-
dependent 

luminescence 
(Rhodamine B & 

110) 

1064 -- 1.3 -- -- 

Wetzel6 

 Temperature-
dependent 

luminescence 
(Rhodamine B & 

110) 

1064 -- 2.3 --  -- 

 
Table S2 | Assorted studies of laser heating in optical traps. From left to right, we indicate: the first author of the publications 
reporting the results, the symbol used in Fig. S6, the method used to assess trap temperature, the laser wavelength used, the 
sample trapped (size and material), the values reported (subsections NA = 1.2 and NA = 1.3 for the present study, and 
measurements in glycerol buffer as well for measurements by Peterman et al.). In the last column, we indicate the equivalent B 
factor obtained by applying the Beer-Lambert law13 with spectral attenuation α(λ) reported by Kedenburg et al20. Values 
represented in Fig. S6 are in bold typography. PS: polystyrene, MR: melamine resin, Si: silica, CHO: Chinese hamster ovary. 
 
 
 



4. Heat transport simulations 
 
We made use of the MathWorks Partial Differential Equation (PDE) Toolbox to simulate the heating of the sample 
due to a laser trap. Given that the geometry we used exhibits cylindrical symmetry, we adapted the heat equation to 
include the Jacobian along the radial component and solved the problem on a 2D surface. 

As mentioned in the Main Text, the modelling adopted by Peterman et al. of B(z)9, which was conceived in 
spherical geometry in which the trap is created at r = 0 and the ΔT = 0 condition is fixed at r = z, exhibits a non-
stopping increase (Fig. S7a). In contrast, the choice of cylindrical symmetry and the Dirichlet boundary conditions at 
two parallel surfaces corresponding to the coverslips yields a constant B value after an abrupt rise over the first 10 
µm (Fig. S7b). This is especially evident in the real sink case with thermal conductivity Kglass (Fig. S7c), due to the 
coverslip only being capable of cooling the sample sufficiently when the trap is placed very close to the interface. 

 

 	
Figure S7 | Heat transport simulations. (a) The model of Peterman et al.9 of B(z) simulated in spherical coordinates 
(red dashed line). (b) ΔT(z) distributions in cylindrical geometry with ΔT = 0 at z = 0 and 80 µm (solid lines correspond 
to ΔT(z) curves and circles are estimations of B for a 1.16-µm microbead). (c) Real sink at z = 0 and ΔT = 0 at z = 80 µm. 
In a-c, the other two curves are superimposed in a light colour for comparison. (d) Models in refs. 9 (grey), 8 (black) and 
12 (red) simulated in our cylindrical geometry. Solid (dashed) lines are simulations with NA = 1.2 (NA = 1.3). (e) 
Simulation of the dependence of B on the NA for the three models as in d, for 3.00-µm microbeads. 

 
In Fig. S7d and Table S3, we show two models in the literature that describe the radial temperature profile with 

similar accuracy. The model of Celliers et al.8 was simulated in the same cylindrical geometry and coincided closely 
with our simulations, with a slightly greater temperature increase, ΔT(ρ), for the NA = 1.3 objective than for the NA 
= 1.2 objective. The analytical expression provided by Mao et al.12 also coincides with our measurements and 
exhibits an even greater difference between the two objectives.  
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Table S3 | Laser heating models and geometries. Different geometries and mathematical models have been used for laser 
heating simulations. 

 
Finally, we simulated the effect of reducing the effective NA of the trap (Fig. 2d and Fig. S7e). Although 

expressed in terms of the trap power, the heating rate, B (ºC/100 mW), is more related to the local irradiance, which 
eventually explains the observed variation. Irradiance is contained in the shape of the heating source, q(r), in models 
of Peterman et al.9 and Celliers et al.8, as well in the R factor in that of Mao et al12. 

Models in refs. 8 and 12 seem to capture the main behaviour of the heating dependence on NAeff for the 3.00-µm 
beads. As compared with the experimental measurements, they reveal an ascending pattern that can be directly 
connected to the wider light cone illuminated, i.e. wider heat source. For the smaller, 0.61-µm beads, one could 
think of the smaller beam waist created with higher NAeff to conclude that the therefore higher irradiance leads to 
greater heating as well. However, as mentioned in Results (see Main Text), the optical field at the bead-medium 
interface is here bound to a number of aberrations and deviates from an ideal Gaussian shape, which leads to the 
measurements notably deviating from the simulations. Besides, our reducing NAeff by means of a diaphragm at the 
back of the trapping objective leads to a different overfilling, thereby producing higher variations in the local optical 
field. 
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