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ABSTRACT Membrane lipid composition varies greatly within submembrane compartments, different organelle membranes,
and also between cells of different cell stage, cell and tissue types, and organisms. Environmental factors (such as diet) also
influence membrane composition. The membrane lipid composition is tightly regulated by the cell, maintaining a homeostasis
that, if disrupted, can impair cell function and lead to disease. This is especially pronounced in the brain, where defects in lipid
regulation are linked to various neurological diseases. The tightly regulated diversity raises questions on how complex changes
in composition affect overall bilayer properties, dynamics, and lipid organization of cellular membranes. Here, we utilize recent
advances in computational power and molecular dynamics force fields to develop and test a realistically complex human brain
plasma membrane (PM) lipid model and extend previous work on an idealized, ‘‘average’’ mammalian PM. The PMs showed
both striking similarities, despite significantly different lipid composition, and interesting differences. The main differences
in composition (higher cholesterol concentration and increased tail unsaturation in brain PM) appear to have opposite, yet
complementary, influences on many bilayer properties. Both mixtures exhibit a range of dynamic lipid lateral inhomogeneities
(‘‘domains’’). The domains can be small and transient or larger and more persistent and can correlate between the leaflets
depending on lipid mixture, Brain or Average, as well as on the extent of bilayer undulations.
INTRODUCTION
Cellular membranes are complex assemblies of lipids and
proteins that separate cellular compartments, as well as
the cell interior from the outside environment. A typical
plasma membrane (PM) contains hundreds of different lipid
species that are actively regulated by the cell (1,2). The
diverse set of lipids can regulate protein function through
specific lipid-protein interactions and through general
bilayer-protein interaction (i.e., changes in bilayer proper-
ties) (3–5). Additionally, lipids are non-uniformly distrib-
uted within the membrane plane (6,7) and are thought to
reside close to a critical point (8), where large fluctuations
in regions (domains) of locally increased/depleted lipid
content are to be expected. The lipid segregation can further
modulate membrane proteins, affecting local concentra-
tions, aggregation, and trafficking (9,10). On one hand, lipid
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compositions vary significantly within a cell between the
membranes of its different organelles and submembrane
compartments (1,11–13), and between different cells, PM
lipid composition differs by organism, cell stage, environ-
mental factors, and cell and tissue types (14–18). On
the other hand, altered lipid composition is linked to
many diseases, e.g., cancers, HIV, diabetes, atherosclerosis,
cardiovascular disease, and Alzheimer’s disease (9,19,20).

The brain, in particular, appears to be especially suscepti-
ble to disease states that are enhanced or accelerated by lipid
composition (21–23). For instance, specific phosphatidylino-
sitolphosphate (PIP) lipids are involved in regulation of
aspects of neuronal cell function, and PIP lipid imbalances
have been linked to a number of major neurological diseases
(23). Indeed, PIPs themselves can modulate ion flux through
PM ion channels (24,25) by direct interaction with the ion
channels or by modulating membrane charge. Moreover,
these neuronal membrane lipids can influence both the
function and localization of proteins within the PM of the
neuron and, in effect, regulate synaptic throughput (22).

These lipid differences raise questions as to how
complex changes in composition affect overall bilayer
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properties, dynamics, and lipid organization of cellular
membranes. Studying lipid structural heterogeneity is
challenging because of the lack of experimental methods
suitable for measuring nanoscale assemblies of soft
bilayers and living cells in the required spatiotemporal
resolution. Computational modeling has emerged as a
powerful alternative method and has become indispensable
for exploring dynamic biomembranes and lipids at
the molecular level (26). The use of coarse-grained (CG)
molecular dynamics simulations has increased the
accessible length- and timescales (27) compared to all-
atom simulations. At the CG resolution, a number of atoms
are combined into functional groups, decreasing the
number of particles in the system and smoothing the
energy landscape. The smoother energy landscape allows
for larger integration time steps and often leads to faster
effective dynamics. CG methods neglect some of the
atomistic degrees of freedom, losing accuracy, and are
therefore not applicable to all problems. Currently at the
CG resolution, multi-component membranes can be
modeled that approach the complexity of realistic cell
membranes (28–36).

Here, we developed a realistically complex model of a hu-
man ‘‘brain-like’’ PM and extend previous work on the ideal-
ized, ‘‘average’’ mammalian PM (28). Our results show both
striking similarities and differences between the Brain and
Average PM mixtures. Despite significant changes in lipid
composition, the biggest contributors—increased cholesterol
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concentration and increased tail unsaturation in the brain—
appear to act complementary to each other. The differences
effectively influence the membrane in opposite directions,
yet with similar magnitudes, leading to many overall bilayer
properties being comparable. Both mixtures exhibit a range
of lipid lateral in homogeneities, or domains. The domains
are dynamic, and sizes fluctuate, and their size and correlation
across the leaflets differ in the Average PM compared to the
Brain and with the level of bilayer undulations.
MATERIALS AND METHODS

Neuronal PM composition

The Brain composition represents an idealized lipid composition of

human brain tissue or, more specifically, a ‘‘typical’’ human neuronal

PM mixture. Although several different membrane compositions exist

for specific cells and cell regions within the brain (12–14), the relative

dearth of available data made it more prudent to construct a model that

possessed the general properties of membranes found within the brain.

To capture a typical Brain PM composition, we derived a consensus

from a number of studies that performed lipidomic measurements of

neurons and brain tissue (37–49). Using the idealized mammalian

PM mixture (28) as a reference, we adjusted percentages of lipid head-

group types and tail distributions based on the overall trends reported

for brain tissue extractions and PM isolations that differed from the

idealized mammalian PM (see Supporting Materials and Methods for

details). An overview of the Brain and the Average compositions is

given in Fig. 1, and the specific lipid types used, their ratio in the

outer/inner leaflets, and the lipid counts in the simulations are listed

in Table S1.
e

10 nm

FIGURE 1 PM lipid distributions. Pie charts with

the overall distribution of the main lipid headgroups

and level of tail unsaturation in the outer/inner

leaflet, as well as snapshots of the outer/inner leaflet

of the simulations after 80 ms, are shown for the

Average (A) and Brain membranes (B). The lipids

in the snapshots are colored as follows: PC, blue;

PE, cyan; SM, gray; PS, green; glycolipids (Glyco),

red; PI, pink; PA, white; PIPs, magenta; CER, ice

blue; Lyso, orange; DAG, brown; and cholesterol,

yellow.
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Force field

The simulations were performed using the Martini CG model (50,51). Most

of the lipid force fields used were described in Ingólfsson et al. (28),

including the PIP and ganglioside (GM) parameters, originally described

in López et al. (52), and the improved cholesterol model (53). Control

simulations using GMs with newly optimized clustering behavior (54)

were also performed. Parameters for new Martini lipids were constructed

according to the standard Martini 2.0 lipid building blocks and rules

(50,51), as previously described (28,55). The details of the lipid force fields

used are given in the Supporting Materials and Methods; all the lipid force

fields, including the ones generated for this study, can be found at the

Martini portal: http://www.cgmartini.nl.
TABLE 1 Membrane Properties

Average Brain

Outer Inner Outer Inner

Average number of

unsaturations per tail

0.77 1.32 0.90 1.63

Cholesterol fraction 0.54 0.46 0.51 0.49

Average area per

lipid (nm2)a
0.513 0.553 0.460 0.485

Average sn-1 tail orderb 0.435 0.430 0.487 0.444

Average sn-2 tail orderb 0.374 0.301 0.391 0.224

Average pos#3 tail orderb 0.412 0.349 0.445 0.301

Average diffusion

ratesc (10�7 cm2/s)

3.1 5 0.3 4.3 5 0.3 1.6 5 0.2 2.8 5 0.2

Average bilayer normal

deviationsd
13.07 5 0.01 23.36 5 0.09

Bilayer thickness (nm) 4.109 5 0.001 4.057 5 0.002

Flip-flop ratese (106 s�1)

CHOL 7.290 5 0.018 4.820 5 0.004

DAG 7.662 5 0.049 2.800 5 0.074

CER 0.027 5 0.006 0.015 5 0.005

aThe average area per lipid (Al) for the outer/inner leaflets was estimated in

separate symmetrical simulations. SE values for Al are �0.001 nm2.
bLipid tail order was evaluated using the lipid tail order parameter (S). Flip-
Simulations

All the simulations were run using the GROMACS 4.6 simulation package

(56), following the same setup described in Ingólfsson et al. (28). In short, a

time step of 20 fs was used for all production runs with the standard Martini

cutoffs, the same parameter set as denoted ‘‘common’’ in de Jong et al. (57).

Each simulation contains �20,000 lipids (or �6000 for smaller control

simulations) with >15 CG waters per lipid (one CG water representing

four water molecules), counterions, and 150 mM NaCl; the exact lipid

composition in each simulation is listed in Table S1. Membranes were

constructed using the bilayer builder insane (55). For each bilayer mixture,

the number of lipids in the inner/outer leaflet was adjusted based on an

independent bilayer simulation with symmetrical composition of each

leaflet (both leaflets being outer or inner). This process was iterated with

changes in the cholesterol outer/inner leaflet distribution until the initial

cholesterol distribution did not drift with time; i.e., the cholesterol distribu-

tion was allowed to adjust to its chemical potential in each leaflet, as

detailed in the Supporting Materials and Methods and in Ingólfsson et al.

(28). For the main simulations, large membrane undulations were restricted

using weak position restraints on selected lipids in the outer leaflet (see

Supporting Materials and Methods). Additional simulations with 10-fold

weaker restraints and no restraints were also run. The temperature and

pressure were controlled using the velocity rescaling thermostat (58)

(at 310 K, with tT ¼ 1.0 ps) and the Parrinello-Rahman barostat (59)

(1 bar semi-isotropic pressure, with tp ¼ 5.0 ps). Each membrane was

simulated for 80 ms, corresponding to 320 ms of effective time, if accounting

for the �4-fold faster diffusion at the Martini CG level (51). All analysis

was done either with respect to time or averaging over the last 2–10 ms

of each simulation, as indicated. The analysis was carried out partly using

tools provided in the GROMACS package and partly by custom tools

written in Python and Cþþ, to perform bilayer surface construction and

topological analysis (60,61), as well as using the MDAnalysis package

(62) and lipid-flow analysis methods (63), as described in the Supporting

Materials and Methods.
flopping lipids were excluded and averages weighted based on lipid counts

in the respective leaflets. Either all bonds in the sn-1/sn-2 tails were aver-

aged or the tail bond at position 3 was averaged between the tails. The

weighted SE �0.002. Tail order parameters for each lipid class are

reported in Table S3.
cThe weighted average of the lipid lateral diffusion coefficients (D) for all

lipids that don’t flip-flop. Note that lipid diffusion coefficients are reported

as is, and no correction is applied for overestimates due to the larger

effective simulation speed of CG simulations (51) or underestimates due

to the periodically bound finite system sizes (79). All diffusion values are

reported in Table S2.
dAverage bilayer normal deviations are the average angle between the

bilayer normal and the z-axis for each lipid (from the fitted bilayer surfaces)

to the z-axes. Average over all lipids and the last 2 ms of the simulations

(5 SE, estimated using block averaging).
eFlip-flop rates (5 SE) were measured as described in (28). For details on

all calculated properties, see Supporting Materials and Methods.
RESULTS AND DISCUSSION

An idealized neuronal PM mixture was constructed
(Brain; see Materials and Methods) and compared to the
average mammalian PM mixture from Ingólfsson et al.
(28) (Average). To compare the physical properties of the
different PM lipid mixtures, large lipid patches (�20,000
lipids) of both lipid mixtures were simulated for 80 ms using
the Martini CG force field (50,51) and their properties were
analyzed. Note that bilayer undulations were suppressed in
these systems to facilitate the analysis and to be representa-
tive of real membranes that are constrained by both the cyto-
skeletal network and the presence of membrane proteins.
Fig. 1 shows an overview of the main lipid headgroup and
tail saturation distributions for both mixtures, as well as snap-
shots of the outer and inner leaflets after 80 ms. More detailed
snapshots of the headgroups and tails are shown in Fig. S1
and a time-lapse sequence of the headgroups in Movie S1.
Global membrane properties; similar but different

Common properties of the two mixtures are listed in Table 1.
Comparing the lipid composition of the two PM mixtures
(Fig. 1 A and Table S1), the biggest differences are the
significantly higher cholesterol content in the Brain,
44.5% compared to 30% in the Average PM, and the
increased amount of polyunsaturated tails in Brain (on
average, each lipid tail in the Brain has 1.27 double bonds
compared to 1.05 in the Average PM). Because cholesterol
is known to flip-flop between the leaflets within the time
frame of the simulations, the cholesterol in both mixtures
Biophysical Journal 113, 2271–2280, November 21, 2017 2273
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was allowed to redistribute between the leaflets based on its
chemical potential (see Supporting Material for details). In
both mixtures, cholesterol preferentially localizes in the
outer leaflet, but the emerging cholesterol asymmetry is
much lower in the Brain (�1%) than in the Average PM
(�5%). The bilayer average thickness (phosphate to phos-
phate distance) is comparable between the PMs (4.11 nm
for the Average and 4.06 nm for the Brain, with SE
<0.002). The density profiles along the box z-direction
(Fig. 2) show similar peak locations. The Brain PM, despite
having the same type of restraints on large-scale undula-
tions, undulates more locally, leading to broader density dis-
tributions. Fitting the bilayer surfaces and measuring the
average bilayer normal (all lipids over the last 2 ms) devia-
tion from the z-axes, the Brain mixture deviates�80% more
than the Average mixture (Table 1). Additionally, the Brain
PM has more cholesterol in the middle of the bilayer
(Fig. 2), consistent with previous simulations and experi-
ments showing higher preference for cholesterol in the
bilayer center in more polyunsaturated bilayers (64). How
much more depends somewhat on how you define being
in the bilayer middle. Considering cholesterols within
S
ca

le
d 

de
ns

ity
 (x

* 
kg

 m
-3
)

Lipid heads
Lipid linkers

Water

Lipid tails
Cholesterol 
head

Z-position / nm

inner

inner

outer

outer

Na+

Cl-

x2
x2
x1
x5
x1
x10
x10

B

A

0

250

500

750

1000

-2 0 2

Average

Brain

S
ca

le
d 

de
ns

ity
 (x

* 
kg

 m
-3
)

0

250

500

750

1000

FIGURE 2 Membrane density profile. The density profile of the two

different PM mixtures Average (A) and Brain (B) is shown across the

Z-dimension, averaged from 78 to 80 ms. The Z-dimension is a reasonable

approximation of the bilayer normal for these membranes as their

undulations have been restricted. The density of the smaller groups is scaled

for clarity, as indicated on the figure key.
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0.8 nm of the bilayer center as in the middle, the Brain
PM has 13% of the cholesterols in the middle compared
to 7% in the Average, or �75% more.

Tail order was evaluated for all lipid types (Table S2).
The tail order varies considerably due to their different
headgroup and tail characteristics, but also based on the
lipid location in the outer/inner leaflet or in the Average
or Brain mixtures. In combination with the higher
cholesterol content, the outer leaflets of both PMs contain
lipids with somewhat longer and more saturated tails
(Table S1), leading to higher tail order in the outer than
in the inner leaflets (Table 1). For the Brain PM, the
higher cholesterol content acts to increase the overall
tail order, whereas the higher level of tail unsaturation
acts to decrease the tail order. These two effects mostly
balance out, with the overall tail order nearly the same
in the Brain and the Average PMs (with an average tail or-
der of 0.385 in the Average mixture and 0.386 in the
Brain). However, if we look at the tail order in the outer
and inner leaflets separately, there is a significant differ-
ence (Table 1). The Brain outer leaflet is more ordered
than the Average outer leaflet, whereas the inner leaflet
of the Brain is less ordered than the inner leaflet in the
Average mixture. The increased tail order in the outer
leaflet with respect to the inner leaflet is 11% for the
Average and 31% for the Brain. Note that cholesterols
influence the packing of other lipids but are not included
in the tail order calculations themselves, as they do not
contain fatty acid tails; cholesterol is mostly rigid, and
given its significantly higher concentration in the Brain
PM, the hydrocarbon core of the Brain PM is more
‘‘ordered’’ than that of the Average PM.

Lipid diffusion was also evaluated for each lipid type
(Table S3). Just as with the tail order, lipid diffusion rates
vary between the different lipid species, as well as their
locations in the outer/inner leaflet and membrane type.
Lipids in the more ordered outer leaflets diffuse slower
than in the less ordered inner leaflets (Table 1), and the
difference between the outer/inner leaflet diffusion rates
is higher in the Brain than in the Average, in line with
the larger difference in tail order. The overall lipid
diffusion is �40% slower in the Brain compared to the
Average, even though the combined tail order is similar.
This is presumably due to the higher cholesterol content
in the Brain.

At the timescale of these simulations, cholesterol, diacyl-
glycerol (DAG), and ceramide (CER) lipids flip-flop be-
tween the leaflets. The flip-flop rates are shown in Table 1,
and similar to the lipid diffusion, lipid flip-flop is somewhat
slower in the Brain. Previous simulation work showed a
steep reduction in cholesterol flip-flop rate with increased
cholesterol content and an increase in polyunsaturated
bilayers (65). The effects of the �15% increase in choles-
terol content between the Brain and Average appear to be
mostly compensated with an increase in the level of tail
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unsaturation, resulting in only a modest reduction in flip-
flop rates, �35% for cholesterol.
FIGURE 3 Lipid domains. In-plane lateral redistribution of cholesterol

was used to track lipid patches of increased/decreased order for the outer/in-

ner leaflets in both the Average and Brain mixtures. (A) Cholesterol density

was mapped for each snapshot using a Gaussian filter and colored based on

regions of increased (red) or decreased (blue) average density. Thresholds

for high-density regions (black contour lines) and low-density regions (white

contour lines) were determined as the values that maximized the number of

domains in that layer (Fig. S4, A and B). (B) Histograms of domain ‘‘size,’’

in number of cholesterols for the high-density regions of the outer leaflet;

Fig. S4 C shows the same histograms for all other regions. (C) Cross correla-

tion between the cholesterol densities of the PM’s outer and inner leaflets,

shown for every 5 ns (dimmer lines) and averaged over 500 ns (bold lines).
Lipid mixing and domain sizes

In both the Average and the Brain PMs, the different lipid
species are not homogeneously mixed in the bilayer plane.
Based on their mutual interactions, lipids preferentially
associate with other lipid species. At the ends of simulation
(80 ms) snapshots (Figs. 1 and S1), glycolipid domains
(red) can be seen in both PM mixtures; otherwise at that
resolution, the mixture appears random. The snapshots of
the lipid tails in Fig. S1 show preferential co-localization
of polyunsaturated tails in both membranes, with more
clusters of polyunsaturated tails in the Brain mixture,
though of a somewhat smaller size. This is consistent with
both mixtures having a significant fraction of polyunsatu-
rated tails, but with more unsaturation in the Brain than
the Average (Fig. 1; Table S1). In both mixtures, most of
the polyunsaturated tails are on lipids where the other tail
is saturated. The Brain mixture has a fraction where the
other tail is monounsaturated (�5% of total lipids), but
the Average mixture has a small fraction of lipids (�1.5%
of total lipids) with both tails polyunsaturated.

To quantify preferential lipid-lipid interactions, we calcu-
lated the enrichment/depletion of the different lipid head-
groups and linker types in their immediate neighborhood
(defined as <1.5 nm) (Fig. S2). The lipid-lipid interaction
profile for the Brain is very similar to the Average mixture,
which is described in Ingólfsson et al. (28); the main features
are domains of glycolipids in the outer leaflet and increased
self-association of PIPs in the inner leaflet. The glycolipid
domains can also be clearly seen by looking at the local lipid
mobility or variations in the bilayer thickness (Fig. S3).

Cholesterol density is used to define bilayer domains that
are enriched/depleted in cholesterol. Fig. 3 A shows the
cholesterol density of the outer and inner leaflets of the
last frame of the main Brain and Average PM simulations.
Regions of high density (red) and low density (blue) are
marked with contour lines (high density, black lines; low
density, white lines). As the absolute cholesterol concentra-
tion varies between the PMs and their leaflets, we selected
thresholds to define the high/low-density regions in each
layer that maximize the number of domains in that layer
(Fig. S4 A). Fig. S4 B shows the cumulative distribution
function (CDF) of domain sizes with varying thresholds,
demonstrating their sensitivity. Fig. 3 B shows domain
size histograms of outer-leaflet high-density regions in the
Brain and the Average mixtures. Histograms for the inner
leaflets and low-density regions are shown in Fig. S4 C.
Local cholesterol density fluctuates significantly in all
layers. In main simulations (2 kJ mol�1 nm�2 undulation
restraints), the Brain mixture has small and transient
cholesterol domains and the Average mixture has larger,
more persistent domains. Note that at this patch size
(�20,000 lipids), the buildup of larger domains in the
Average mixtures takes tens of microseconds (Fig. S4 D).
The size fluctuations are consistent with mixtures close to
Biophysical Journal 113, 2271–2280, November 21, 2017 2275
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a critical point (66,67), and the smaller domain sizes in the
Brain mixture agree with the reduced phase separation
observed with increased cholesterol content in giant PM
vesicles (GPMVs) (68).

As seen in Fig. 3 A, the cholesterol density in the Average
mixture is highly correlated between the leaflets, whereas
the Brain mixture does not show such correlations.
Fig. 3 C better depicts this, showing the cross correlation be-
tween the leaflets with time. In the Average mixture, the
leaflet correlation builds up at about the same timescale as
the larger domains form (Fig. S4 D), whereas in the Brain
mixture, the leaflet correlation stays somewhat anti-corre-
lated throughout the simulation. Averaging over the bilayer
area and the last 10 ms of the simulations, the cross correla-
tion is 0.45 5 0.01 and �0.14 5 0.01 in the Average and
Brain mixtures, respectively. Numerous mechanisms have
been proposed to drive leaflet coupling and domain registra-
tion, involving domain boundary line tension, inter-leaflet
surface tension, cholesterol flip-flopping, bilayer undulation,
local bilayer curvature, lipid curvature, and domain thickness
mismatch (69–72). Any speculation in complex lipid mix-
tures like these, where the local domain composition varies
and the boundaries are ill defined, is therefore troublesome;
but notably, more local undulations are observed in the Brain
mixture, where the asymmetry between leaflets (e.g., order,
diffusion, tail unsaturation) is higher.

To analyze the lateral velocities of lipid regions, we
used the lipid Flows methodology (63) (Fig. S5). As is to
be expected, with both the Brain and Average mixtures,
the regions of slower lateral lipid movement corresponded
to the higher-cholesterol-concentration domains, whereas
the faster-moving lipids were found in areas of lower
cholesterol concentration. The overall rates of lipid lateral
displacement (Fig. S5 A) were slower in the Brain mixture
than in the Average mixture. Again, this is consistent with
the fact that the Brain mixture contains significantly more
cholesterol. Furthermore, when calculating the leaflet corre-
lation function (the degree to which the lipid motions are
correlated between the leaflets, see Supporting Materials
and Methods), the Average mixture displays a very strong
correlation between both leaflets (Fig. S5 A, left images).
In contrast, the Brain mixture does not indicate a high
correlation of lipid motions between the leaflets. This is in
agreement with the previous cholesterol-density cross corre-
lation. Interestingly, when the smoothing of the trajectory is
averaged over a shorter temporal range (<20 ns), smaller
pockets of correlated lipid regions become apparent for the
Brain mixture (Fig. S5 B). These short-term correlated lipid
motions reiterate the presence of small, transient cholesterol
domains in the undulation-controlled Brain mixture.

Although bilayer undulations in cells are restricted due
to the presence of the underlying cytoskeleton network as
well as the high fraction of membrane proteins, it is of
interest to study how bilayer undulations couple to the lipid
organization and domain formation. As an initial explora-
2276 Biophysical Journal 113, 2271–2280, November 21, 2017
tion of the effects of undulations, additional simulations
with either weaker or no restraints on undulations (0.2
and 0 kJ mol�1 nm�2 compared to 2 kJ mol�1 nm�2 in
the main simulations) were performed. These simulations
were started from the main Brain and Average PM simula-
tions at 75 ms and simulated for 5 ms. Fig. 4 A shows a side
view of the last frame of each simulation, demonstrating
the undulation amplitude. We quantified the undulations
by plotting the bilayer normal angle deviations with
respect to the membrane normal, averaged over the entire
membrane surface (Fig. 4 B). As expected, with weaker
or no undulation restraints the bilayer undulations increase.
At each level of restraint, the Brain mixture undulates more
than the Average, pointing toward a lower bending modulus
for the Brain membrane. Overall, the average bulk bilayer
properties are similar for the different levels of undulations,
e.g., the number of neighboring lipids showed no obvious
deviation in the weaker and no-restraints simulations
(see Fig. S2 for results on the main simulations and
Fig. S6 C for the undulating case). All lipid neighbor
enrichments/depletions changed by no more than 5%, i.e.,
no trends were observed with increasing curvature. The
longer-scale lipid domain behavior, however, does change
with different levels of undulations. Fig. 4 C shows the
size histogram of cholesterol-enriched domains in the outer
leaflet for the last 2 ms of each simulation (see Fig. S6 B) for
results on different parts of the simulations. (Note that in
Fig. 4 C, we plotted the cholesterol domain size and not
the number of cholesterols as in Fig. 3 B. The shape of
both curves is similar, compare Figs. 3 B and 4 C, black
and red curves. Remarkably, with increased undulations,
the domain sizes decrease in the Average mixture while
they increase in the Brain. The reason for this behavior is
unclear and requires more simulations at extended time-
scales to fully sample the coupling between domain sizes
and undulatory modes. A clear coupling can be appreciated
in the case of the glycolipids, which prefer regions of
high negative curvature of the outer membrane leaflet
(Fig. S6), consistent with previous simulation results (29).
Notably, the bilayers tend to bend at glycolipid domain
boundaries (Fig. S6 A), which may explain the growth of
the cholesterol domains observed in the Brain membrane
given the preferential co-localization of glycolipids and
cholesterol (Fig. S2).

Additionally, after the Average PM model was published
(28), a few small updates to Martini lipid parameters were
made, as well as alternative parameters for the GM1 and
GM3 lipids (54) (see Supporting Materials and Methods),
and the effects of these changes were explored in smaller
control simulations for both mixtures (Fig. S7). The average
bilayer properties of the smaller alternative-parameter sys-
tems are very similar to those of the larger main simulations.
The biggest difference is in the reduced ganglioside clus-
tering using the recently modified version of the Martini
GM1 and GM3 ganglioside lipid parameters, optimized
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FIGURE 4 Effects of bilayer undulations. Start-

ing from the main Brain and Average PM simula-

tions at 75 ms, simulations with 10-fold weaker

and no restraints on bilayer undulations (0.2 and

0 kJ mol�1 nm�2, respectively) were run for 5 ms.

(A) Side-view snapshots of the final structure of

each simulation. The lipids are colored according

to the same scheme as in Fig. 1. (B) The average

bilayer undulations with time are shown as the

average angle between the bilayer normal of each

lipid (from the fitted bilayer surfaces) and the

z-axis. (C) Size histograms of cholesterol-enriched

domains in the outer leaflet of each simulation.

Brain Plasma Membrane
to better match the size of ganglioside clusters seen in atom-
istic simulations (54). As the smaller systems are not much
larger than the largest cholesterol domains above, analyzing
the cholesterol density using the same method was not
very informative, but qualitative comparison of spatial
two-dimensional cholesterol density maps averaged over
the last 200 ns of the simulations (Fig. S7 B) show larger,
more connected densities in Average PM than in the Brain
at this undulation level (2 kJ mol�1 nm�2 restraints).
CONCLUSIONS

We assembled a realistically complex lipid model of a
human neuronal PM (Brain), and despite significant differ-
ences in lipid composition (Fig. 1; Table S1), the overall
bilayer properties show striking similarities to the recently
published idealized mammalian plasma membrane
(Average) (28). The higher cholesterol content of the Brain
is balanced by more tail unsaturation, resulting in some
average bilayer properties being comparable to those of
the Average PM (see values for bilayer thickness and lipid
tail order, diffusion, flip-flop, and average neighbors in
Figs. 2 and S3; Tables 1, S2, and S3. Looking more closely,
there are marked differences; the cholesterol asymmetry
between the outer/inner leaflets is less pronounced in the
Brain (Table 1), presumably due to saturation of preferred
cholesterol lipid interactions; lipids in the Brain mixture
diffuse and flip-flop more slowly (Tables 1 and S2), and
the difference in properties between the outer and inner
leaflets is greater in the Brain. Possible future work could
involve exploring modulation of the cholesterol concentra-
tion or lipid tail unsaturation components independently.

Both mixtures are inhomogeneous and show significant
fluctuation in local lipid concentrations. Defining domains
as regions of high or low cholesterol density, we mapped
the size and leaflet correlations of these domains. In
the undulation-restrained simulations (2 kJ mol�1 nm�2

restraints), the Brain mixture has more cholesterol domains,
but they are smaller and transient, whereas in the Average
mixture, after considerable simulation time, larger persistent
domains emerge (Figs. 3 and4; Figs. S4 andS6). Interestingly,
on the same timescale as the emergence of larger cholesterol
Biophysical Journal 113, 2271–2280, November 21, 2017 2277
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domains in the Average PM, the registration between the leaf-
lets goes up, whereas in the Brain, the leaflets rapidly become
somewhat anti-registered (Fig. 3; Fig. S5). However, the
domain size distribution turned out to be very sensitive to
the level of bilayer undulation (Fig. 4; Fig. S6). In particular,
for the Brain membrane, high-amplitude undulatory modes
are easily accessed, leading to coalescence of domains.

There are many interesting questions raised by the
marked differences and similarities between the PMs.
What is the acceptable range of changes in bilayer proper-
ties before cellular function is impaired? Are PM proteins
such as ion channels and neuroreceptors sensitive to the
presence of smaller, more transient, deregistered membrane
domains? Is the only function of high cholesterol content in
neurons to make the bilayers less permeable to ions, or are
there additional benefits? Despite huge leaps forward in the
fields of computational membrane studies, it is clear that in
terms of understanding the full complexity and adaptability
of cell-specific PMs, we have barely scratched the (highly
complicated!) surface.
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Supplementary Methods 

Lipid compositions 

For the composition of the Average plasma membrane (PM) we used the idealized	mammalian 
PM mixture described in (1). The Average mixture is composed of 63 different Martini lipid 
types asymmetrically distributed between the outer and inner membrane leaflets (Figure 1A). 
Different regions within the brain, and different cell types can have diverse membrane 
compositions (2-4). However, properly isolating large numbers of specific cell types can be 
extremely difficult. Thus, given the type of neural lipidomic data available, it was more sensible 
to construct a model that possessed the general properties of membranes found within the brain. 
The Brain composition represents the lipid composition of human brain tissue or more 
specifically a typical human neuronal PM mixture. The lipid compositions between different 
tissue types can vary greatly (5, 6) but specific numbers are hard to determine as a cell 
membrane lipid compositions can vary with cell type, age, diet, environment and disease state (5, 
7-12). To capture a Brain PM composition, we did not base our composition on a single brain 
lipidomic study but a consensus from a number of studies (6, 13-24), and how those vary 
compared to the Average mixture. An overview of the Brain and the Average compositions is 
given in Figure 1. The specific lipid types used, their ratio in the outer/inner leaflets, and the lipid 
counts in the simulations are listed in Table S1. The average percentages of the main headgroup 
types were adjusted to match average consensus values from (13, 14, 16, 17, 21-24). The main 
differences being that the Brain has a significantly higher cholesterol content. The Brain 
mixture also has less PC and more PE. The Brain has less SM but includes cerebrosides that are 
not present in the Average model. PIPs and PI lipids can be hard to resolve in lipidomic studies 
(25, 26) and were kept at similar concentration as in the Average mixture. Additionally, the tail 
length distributions and tail saturation was adjusted based on reported distribution of PC, PE and 
SM lipids in (6, 18, 20, 21) as well as overall saturated, monounsaturated, and polyunsaturated 
distributions from (6, 20). 
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Force fields 
The Martini coarse-grain (CG) model (27, 28) was used for all simulations and all the lipid force 
fields used can be found at the Martini portal (www.cgmartini.nl). The newest available lipid 
model was used in all cases except where indicated. New lipid parameters were constructed 
according to the standard Martini 2.0 lipid building blocks and rules (27, 28) as detailed in (1, 
29) using the lipid-martini-itp-v06.py; available at the at the Martini portal. The names as well as 
the Martini CG tail bead composition of all the lipids used in the average mammalian plasma 
membrane (Average) and average neuronal plasma membrane (Brain) can be found in Table S1. 
The Martini O tail, representing oleic acid or palmitoleic acid, was recently updated to CDCC 
(29) instead of the CCDC used in (1). The Average mixture is used unmodified from (1) and 
therefore has the old arrangement, but the new arrangement was tested for the Average mixture 
in the control simulation Average new all. The linker for the lyso lipids has also been updated 
and, similarly, the old arrangement was kept in in the Average mixture but the new one used for 
the Brain mixture and the Average new all control simulation. The Martini diacylglycerol 
(DAG) lipids have recently been updated; the GL1 bead type changed from Nda to P1 to better 
represent the polarity of the glycerol. This change affects the flip-flop rate of the DAG lipids. For 
direct comparison of the flip-flop rates the old DAG parameters were used in the main 
simulations but a control simulation with the new parameters was done (Average new all). A 
modified version of the Martini GM1 and GM3 parameters were recently published that better 
match the size of ganglioside clusters seen with the GROMOS atomistic force field (30). The 
original GM1/GM3 parameters (1, 31) were used in the main simulations but the modified 
parameters were tested in a few control simulations (Average new all, Average new GM, and 
Brain new GM). The cerebroside lipids in the average neuronal plasma membrane (Brain) are 
modeled by the Martini GS headgroup, a general model for glucosylceramide and 
galactosylceramide (31). 

 

Detailed simulation set up 

The simulations were run using the GROMACS 4.6.7 simulation package (32) using the standard 
Martini parameters set; called common in (33). The simulations were set up following the same 
protocol as described in (1). In short, the initial configuration of each membrane was set up using 
the bilayer builder insane (29). Each system was energy-minimized (steepest descent, 1500 
steps) and simulated for 0.5 ns using a short time step of 10 fs, followed by production runs 
using a time step of 20 fs. In the production runs large membrane undulations were restricted 
using weak position restraints (2 kJ mol-1 nm-2) on the PO4 bead Z-direction of DPPC, POPC 
and PIPC lipids in the outer leaflet; see Ingólfsson et al. (1) supplementary information for 
control simulations exploring the effects of these restraints. To explore the effects of undulations 
simulations with no restraints and weaker restraints (0.2 kJ mol-1 nm-2) were also run. The 
number of lipids in the outer/inner leaflet of each bilayer mixture was adjusted based on 
independent 1 µs long simulation with symmetrical composition of each leaflet. In these 
simulations bilayer undulations were suppressed to get better estimates of the average area per 
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lipid without undulations; this was done by imposing the same Z-directional position restraints as 
above but with a force constant of 100 kJ mol-1 nm-2. The cholesterol distribution between the 
outer/inner leaflet was equilibrated using the same protocol as described in (1). The initial 
mixture was started with 50/50 cholesterol distribution: average area per lipid was measured in a 
pair of symmetrical outer/inner mixture simulations; asymmetrical simulations setup with 
adjusted number of lipids in either leaflet; the cholesterol distribution was allowed to equilibrate 
for a few µs; cholesterol leaflet distribution was measured and used as the new initial values for 
the next round of simulations. This process was iterated until the initial cholesterol concentration 
was stable. 

The final lipid numbers for the large (~20,000 lipids) Average and Brain simulations are 
listed in Table S1. The smaller (~6,000 lipids) control simulations have the same relative lipid 
ratios as the larger simulations. Additionally, the simulations include counter ions, 150 mM 
NaCl, and ~300,000 Martini water molecules for the larger simulations and ~100,000 for the 
smaller. The simulations were run at 310 K, with τT = 1.0 ps, controlled with the velocity 
rescaling thermostat (34) and at 1 bar semi-isotropic pressure, with τp = 5.0 ps, controlled using 
the Parrinello-Rahman barostat (35). The larger simulations were run for 80 µs and the smaller 
control simulations for 50 µs. Additionally, simulations with no or weaker undulation restraints 
were run for 5 µs starting from the larger simulations at 75 µs.  

All simulation times reported are actual times simulated and were not scaled. CG models 
have less degrees of freedom compared to their atomistic counterparts and therefore normally 
less friction which leads to overall faster dynamics. The effective speedup varies depending on 
the molecule and system in question but for Martini the speedup is often pegged at around 4-fold 
(28). 

 

Analysis 

The average area per lipid (Al) of the outer and inner leaflet of the Average and Brain lipid 
mixtures were estimated individually in simulations of symmetric bilayers containing 6,000-
7,000 lipids of the outer or the inner lipid mixtures. The simulations were kept flat using strong 
position restraints, force constant 100 kJ mol-1 nm-2 (see above) and simulated for 1 µs. The Al 
was estimated as the average box area of the last 100 ns divided by the number of lipids in each 
leaflet; resulting in outer/inner Al of 0.513 / 0.553 and 0.460 / 0.485 nm2 for the Average and 
Brain, respectively, with standard error ~0.001 nm2. 

A lipid flip-flop is defined when a lipid moves from one leaflet to another and flip-flop 
rates were measured as described in (1). The Brain membrane thickness fluctuates somewhat 
more than the Average membrane, therefore, we extended the cutoff length for what is 
considered within a leaflet to 1.1 nm removing spurious flip-flop event. Lipid flip-flop rates were 
calculated for all lipid classes and averaged over the last 10 µs of the simulations. During the 
simulations, only the CHOL, DAG and ceramide (CER) lipid types flip-flopped. The measured 
flip-flop rates per molecule are: CHOL 7.290±0.018 x 106 s-1, DAG 7.662±0.049 x 106 s-1, and 
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CER 2.7±0.6 x 104 s-1 and CHOL 4.820±0.004 x 106 s-1, DAG 2.800±0.074 x 106 s-1, and CER 
1.5±0.5 x 104 s-1 for the Average and Brain membranes, respectively. The error is estimated as 
the standard error of the mean when the last 10 µs of the simulations were split in three equally 
sized blocks and analyzed separately. Flip-flop rates for the alternative parameter control 
simulations are given in the legend of Figure S7. 

Cholesterol fraction in the bilayer middle was determined by counting the number of 
cholesterols whose ROH bead was within 0.8 nm of the bilayer center averaged over the last 10 
µs of the simulations. 

In order to explore undulation in lipid bilayers, we project the headgroups on an 
approximate surface representing the bilayer membrane, and compute properties, such as area 
per lipid, curvature, and normals on these projections. In particular, given the positions of the 
headgroups, 𝑃", the undulations in bilayers can be captured using the following steps:  
1. The lipid bilayer leaflets were defined using the MDAnalysis leaflet finder (36). The top 

headgroup bead was used for all lipids, except for the Glyco, PI and PIP lipids; where the 
GM1 and C1 beads were used. Initially, the outer and inner leaflets were defined from all 
non-flip-flopping lipids, then for each simulation frame the flip-flopping lipids with 
headgroup beads within 1.2 nm of either leaflet were included in those leaflets. 

2. Surface fitting requires consistently oriented normal vectors 𝑛" for each 𝑃". Normals are 
computed using the principal component analysis (PCA) in the local neighborhood around 
𝑃", and oriented consistently through a depth-first traversal of the distance-based minimum 
spanning tree of 𝑃" (37). Finally, using the Poisson reconstruction method (38) on 𝑃", 𝑛" , an 
approximate surface, Ψ, is obtained as a representative of the bilayer membrane. The Poisson 
reconstruction is a global solution, and is chosen because it provides a natural way to smooth 
noisy fluctuations in the given points, while maintaining the overall shape of the surface. 

3. The obtained surface, Ψ, is then projected onto the 2D Euclidean plane, giving Ψ° using 
discrete harmonic mapping (39), which allows keeping the angular distortion to a minimum. 
The given positions of the headgroups, 𝑃", are then projected on Ψ, giving 𝑃"'. Using the 
surface projection obtained above, these points are then projected to the 2D plane, giving 𝑃"°. 
Using two projections, i.e., 𝑃" 	→ 𝑃"' → 	𝑃"° allows minimizing distortion to the curvature and 
area per lipid, and thus, provides better approximation of the said properties, as compared to 
directly projecting the points onto the 2D plane. 

4. A periodic 2D Delaunay triangulation is then performed on 𝑃"°, which establishes a 
neighborhood graph, 𝒯 between 𝑃"°, and hence, 𝑃". Given the connectivity 𝒯 on the original 
points 𝑃"', we compute bilayer normals, 𝑁". Note that, using the triangulation enables a more 
accurate estimation of bilayer normals as compared to those computed in Step 2. Finally, we 
quantify the undulations in bilayers as the angle between the bilayer normal 𝑁" and upward z-
axis, i.e., 𝑏" = cos12( 𝑁"4 ). 
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Lipid tail order was evaluated using the lipid tail order parameter (S), defined as: 
S = 2

7
(3 (cos θ	)7 − 1). 

where θ is the angle between the vector along a particular lipid tail bond and the bilayer normal 
at the given lipid. The bilayer normal, 𝑁", is defined from the bilayer surface as described above. 
Tail order was evaluated for each lipid tail of each lipid type separately for the outer and inner 
leaflets, except for DAG and CER lipids that flip-flop between the leaflets. The absolute average 
order parameter of a particular lipid tail up to the lipids linker (AM or GL beads) was used for 
comparing the different tails overall order/flexibility, see Table S2. The weighted average order 
parameters (excluding lipids that flip-flop) are: Average [0.435,0.374] / [0.430,0.301] and Brain 
[0.487,0.391] / [0.444,0.224], respectively for the [sn-1, sn-2] tails in the outer/inner leaflet. For 
both the Average and Brain membranes the inner leaflet tails are less ordered than the outer 
leaflet but the difference is significantly greater in the Brain membrane. The increased tail order 
(excluding DAG and CER lipids) in the outer with respect to the inner is 11% for the Average 
and 31% for the Brain. The lipid tail lengths vary between the different lipid types, therefore, we 
also evaluated the tail order using S at pos3 (between beads 2 and 3, present in all non-sterol 
lipids). Combining the lipid tails and calculating the weighted average between all lipids at pos3 
the order in the outer/inner leaflet is: Average 0.412/0.349 and Brain 0.445/0.301, with a 
weighted error of ~0.001 or less. That is an increase of 18% and 48% for the outer over the inner 
leaflet of the Average and Brain membranes, respectively. 

The lipid lateral diffusion coefficients (D) were calculated from the mean square 
displacement (MSD) of the molecules in each membrane plane. The GROMACS g_msd tool was 
used over the last 10 µs of the simulations to obtain the diffusion coefficients and errors. The 
MSD curves, excluding the first and last 10% of each curve, were fitted to 𝑦 = 4𝐷𝑡 + 𝑐, to 
obtain D. For each lipid type the GL1, AM1 or ROH bead was used for the glycerol, ceramide or 
cholesterol lipids, respectively. All diffusion values are reported in Table S3. Note, lipid 
diffusion coefficients are reported as is and no correction is applied for overestimates due to the 
larger effective simulation speed of CG simulations (28) or underestimates due to the 
periodically bound finite system sizes (40). 

Lipid neighbor counting was used to evaluate non-ideal lipid mixing, Figure S2. Lipids in 
the same leaflet and within a 1.5 nm radius XY plane cut-off were considered as neighbors, 
values were averaged over the last 10 µs of the simulations and their relative 
enrichment/depletion compared to random mixing, see detailed description of method in (1). 

For an indicator of overall lipid mobility lipid root mean square fluctuations (RMSF) 
over the last 2 µs were used (Figure S3A and B). RMSF were calculated for all non-flip-flopping 
lipids based on their GL1 or AM1 beads using the GROMACS g_rmsf tool and plotted onto of 
their corresponding beads at 80 µs. 	

Bilayer thickness plots were created by calculating the local average distance in the Z-
direction between the phosphate beads (PO4) and the first headgroup bead of the glycolipids 
(GM1 or C1) in the two leaflets, averaged over the last 2 µs the simulations, and plotted using 
the tool g_thickness (41). The plot was subsequently drawn using bins of 1.42 x 1.42 nm and a 
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color scale varying from 3.6 to 4.4 nm (Figure S3C). Average bilayer thickness was determined 
in five blocks over the last 10 µs the simulations resulting in 4.109±0.001 nm for the Average 
and 4.057±0.002 for the Brain. 

Lipid flow analysis was carried out on the last 2 µs of the simulations using the 
methodology described by Chavent et al. (42). The trajectories were firstly pre-processed to 
remove the center of mass motion and subjected to low-pass filtering to remove high frequency 
noise using the GROMACS g_filter function. The filtering of the systems was carried out over a 
time scale of 200 ns. The leaflet correlation function, Cl(t), at time t, as taken from Chavent et al. 
(42), defined as: 

CC D = 2
E

F𝑖(H)	∙		J𝑖(H)
F𝑖(H) J𝑖(H)

K
"L2 . 

The system is divided into a grid of cells, where N is the number of non-empty cells in the grid, 
and · denotes the scalar product of vectors ui(t) and vi(t) as defined as the distance between the 
center of mass of the constituent lipids at time t+dt and at time t. ui(t) and vi(t) are the lower and 
upper leaflet vectors.  

Lipid clustering based on cholesterol density. To define lipid domains a kernel density 
estimator was used to define a cholesterol density. After several experiments with different 
kernel bandwidths a Gaussian kernel K(x,y) = exp(-||x-y|| / s2) with s = 3 nm was chosen as a 
good balance between smoothing local variations and detecting small, transient domains. Given 
the density value at each cholesterol a periodic Delaunay triangulation was computed using the 
CGAL library (Computational Geometry Algorithms Library, www.cgal.org). Finally, domains 
for high/low cholesterol were defined using density thresholds. More specifically, regions of 
high cholesterol were defined as connected components of the Delaunay triangulation above a 
given threshold and regions of low cholesterol symmetrically as connected components below a 
given threshold. To efficiently explore the impact of different threshold choices the topological 
analysis framework described in (43, 44) was used to encode all domains for all possible 
thresholds in form of a so called merge-/split-tree. This is equivalent to a traditional isosurface 
extraction but computationally more efficient. Domain size was defined as the number of 
cholesterols part of each lipid domain.  

The cross-correlations between the cholesterol density of the outer/inner leaflet was 
calculated for every 5 ns of the simulations. The cholesterol densities were resampled to a 
128x128 pixel grid and the Pearson correlation calculated between the leaflets, Figure 3C. 
Average values over the last 10 µs of the simulations are 0.45±0.01 and -0.14±0.01 for the 
Average and Brain mixtures, respectively, where the error was estimated by splitting the last 10 
µs into four equal parts and calculating the standard error between the averages of the parts. 

Density maps were calculated in the bilayer XY-plane, with a bin size of ~2 nm. One bead 
per lipid was used, as indicated, and averaged over the last 2 µs of the simulations. 
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Figure S1. Lipid headgroup and tail configuration. Snapshots of the outer/inner leaflets of the 
Average (A) and Brain (B) mixtures after 80 µs of simulation. The snapshots are shown with 
the headgroups and without to illustrating the tails; the color scheme for the lipid headgroups and 
tails is the same as used in Fig. 1. The lipids are colored by type (PC, blue; SM, gray; PE, cyan; 
Glyco, red; PIPs, magenta; PI, pink; PS, green; PA, white; CE, ice blue; DG, brown; LPC, 
orange; CHOL, yellow,) and tails by number of saturations (0, white; 1, light gray; 2, dark gray; 
3-6, black) and cholesterol shown in yellow. 
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Figure S2. Non-ideal lipid mixing. Number of neighboring lipids (within 1.5 nm) grouped by 
headgroup type (A) and linker type (B); where Sphin. are sphingolipids and Glycer. are 
glycerolipids. Values are averaged over the last 10 µs of the simulation and normalized to the 
weighted average number of neighbors of each type to highlight the relative 
enrichment/depletion of those lipids. Standard errors for all counts are <0.03. 
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Figure S3. Membrane domain properties. (A) PM lipid root mean square fluctuations (RMSF) 
are shown to indicate differences in lipid mobility. RMSF values were calculated for the GL1 
and AM1 linker beads of all non-flip-flopping lipids over the last 2 µs of the simulations and 
plotted onto the bead positions at 80 µs. Note, the dark red clusters in the outer leaflets of both 
the Average and Brain corresponds to clusters of glycolipids. (B) 2D PM thickness plots, 
calculated between all PO4 beads in either leaflets. The average thickness is similar between the 
PMs (4.11 nm for the Average and 4.06 nm for the Brain). (C) Representative zoomed in 
snapshots for the Average and Brain PM side and outer leaflet. The lipids are colored in the 
same way as in Fig. 1. Somewhat tighter packing and more local undulations can be seen in the 
Brain mixture, despite same method for reducing large undulations. 
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Figure S4. Cholesterol density cluster parameter sensitivity. (A) For the outer (solid lines) and 
inner (dotted lines) leaflets of the Average (black) and Brain (red) membranes the average 
number of domains per frame were computed over the last 10 µs for a range of possible 
thresholds. The top panel is numbers with higher density than specified (high-density regions) 
and the bottom panels is lower density than specified (low-density regions). (B) The cumulative 
distribution function (CDF) of domain “sizes” (number of cholesterols) for a range of thresholds. 
The selected threshold (max of A) is shown in red: [18.1 , 13.6] / [14.0, 9.4] and [27.4, 23.0] / 
[23.7, 19.4] for the Average and Brain [high, low] outer/inner, respectively. Additionally, x8 
lower thresholds in blue and x8 higher thresholds in black are shown; deviating from the selected 
threshold in 0.5 increments. (C) Histograms of the domain sizes (in number of cholesterols) at 
the selected threshold. (A-C) Are averaged over the last 10 µs of the simulations. (D) Size (in 
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number of cholesterols) of the largest high-density domain in each frame of the Average and 
Brain simulations. Shown for every 5 ns (dimmed lines) and average over 500 ns (bold lines). 
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Figure S5. Lipid flow analysis. (A) Using sampling over the final 200 ns of each PM simulation, 
the mean-squared displacement for each lipid leaflet is calculated and tracked using the flow 
methodology (see SI Methods). The average displacement is shown for both the outer (red scale) 
and inner (blue scale) leaflets separately in the smaller images, and are overlaid together in the 
larger images to highlight correlations in regions of similar displacement. (B) The inter-leaflet 
lipid flow correlation is shown as a function temporal smoothing window (ns) to illustrate that 
the lipid flow of the Average PM mixture is highly correlated but the Brain mixture not so 
much, especially over longer timescales. 
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Figure S6A-B 
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Figure S6C 
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Figure S6. Bilayer undulation simulations. Starting from the main Brain and Average PM 
simulations at 75 µs, simulations were run for 5 µs with either tenfold weaker, or no restraints on 
bilayer undulations (0.2 and 0.0 kJ mol-1 nm-2, respectively), see also Fig. 4. (A) Outer leaflet top 
view snapshots of the final structure of each simulation are shown. The lipids are colored in the 
same way as in Fig. 1 and S1. The deviations of the bilayer normal away from the box z-axes 
(white to red in degrees) are shown on top of the fitted bilayer surfaces. (B) Size histograms of 
cholesterol enriched domains in the outer leaflet of each simulation, using the threshold that 
maximizes the number of domains. The histograms were made from 2 µs simulation blocks 
ranging from the beginning to the end the simulations (75 – 80 µs for the main simulations). (C) 
Number of neighboring lipids (within 1.5 nm) grouped by headgroup type (top) and linker type 
(bottom); where Sphin. are sphingolipids and Glycer. are glycerolipids. Values are averaged over 
the last 2 µs of the simulation and normalized to the weighted average number of neighbors of 
each type to highlight the relative enrichment/depletion of those lipids. Standard errors for all 
counts are <0.03. Value for the main simulations, with 2.0 kJ mol-1 nm-2 undulation restraints are 
in Fig. S2. 
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Figure S7. Alternative lipid parameters. Smaller repeat simulations (~6,000 lipids) were run for 
50 µs with the recently published alternative parameters for GM1 and GM3 (30) (Avg. new GM 
and Brain new GM) as well as an Average PM mixture with the all the most up-to-date Martini 
parameters (Avg. new All), see Supplementary Methods. (A) Snapshots of the outer/inner leaflet 
of the simulations after 50 µs are shown using the same color scheme as in Fig. 1. (B) 2D density 
maps averaged over the last 200 ns are shown for cholesterol’s ROH beads in the inner/outer 
leaflet of each simulations. Average properties including lipid flip-flop rates were also calculated 
for these control simulations and were similar as their corresponding Average or Brain larger 
simulations. Only CHOL, DAG, and CER lipids flip-flopped and their rates are: CHOL 
7.30±0.07 x 106 s-1, DAG 6.2±0.2 x 106 s-1, and CER 1.5±0.4 x 104 s-1 (Avg. new GM); CHOL 
7.79±0.07 x 106 s-1, DAG 3.5±0.1 x 106 s-1, and CER 1.5±0.4 x 104 s-1 (Avg. new All); and 
CHOL 4.84±0.02 x 106 s-1, DAG 2.8±0.1 x 106 s-1, and CER 2±1 x 104 s-1 (Brain new GM). 
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Table S1  Lipid compositiona 
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              Phosphatidylcholine - PC 
 

outer/inner ratio 0.69 0.31 
   

0.65 0.35 

 
CCCC CCCC DPPC 

     
531 0.053 284 0.030 

 
CCCC CDCC POPC 1205 0.122 550 0.059 

 
868 0.087 463 0.049 

 
CDCC CDCC DOPC 106 0.011 49 0.005 

 
221 0.022 118 0.012 

 
CCCC CDDC PIPC 

 
1772 0.179 810 0.087 

     
 

CCCC CDDD PFPC 
     

59 0.006 32 0.003 

 
CCCC CDDCC PEPC 71 0.007 32 0.003 

     
 

CCCC DDDDC PAPC 283 0.029 129 0.014 
 

463 0.046 247 0.026 

 
DDDDC DDDDC DAPC 35 0.004 16 0.002 

     
 

CCCC DDDDDC PUPC 71 0.007 32 0.003 
 

169 0.017 90 0.010 

 
CDCC CDDC OIPC 

      
59 0.006 32 0.003 

 
CDCC DDDDDC OUPC 

     
42 0.004 22 0.002 

   
Total: 3543 0.357 1618 0.173 

 
2412 0.242 1288 0.136 

Phosphatidylethanolamine - PE outer/inner ratio 0.19 0.81 
   

0.35 0.65 

 
CCCC CCDC POPE 135 0.014 569 0.061 

 
127 0.013 234 0.025 

 
CDCC CDCC DOPE 44 0.004 190 0.020 

     
 

CCCC CDDC PIPE 
 

90 0.009 380 0.041 
     

 
CCCC CDDDC PQPE 22 0.002 95 0.010 

     
 

CCCC DDDDC PAPE 124 0.013 522 0.056 
 

312 0.031 574 0.061 

 
DDDDC DDDDC DAPE 78 0.008 332 0.036 

     
 

CCCC DDDDDC PUPE 44 0.004 190 0.020 
 

500 0.050 922 0.097 

 
DDDDDC DDDDDC DUPE 22 0.002 95 0.010 

     
 

CDCC CDDC OIPE 
      

14 0.001 27 0.003 

 
CDCC DDDDC OAPE 

     
68 0.007 127 0.013 

 
CDCC DDDDDC OUPE 

     
72 0.007 133 0.014 

   
Total: 559 0.056 2373 0.254 

 
1093 0.110 2017 0.213 

Sphingomyelin - SM 
  

outer/inner ratio 0.69 0.31 
  

0.80 
 

0.20 

 
TCC CCCC DPSM 611 0.062 279 0.030 

 
581 0.058 143 0.015 

 
TCCC CCCCC DBSM 133 0.013 61 0.007 

     
 

TCCCC CCCCCC DXSM 247 0.025 113 0.012 
     

 
TCC CDCC POSM 38 0.004 17 0.002 

 
71 0.007 17 0.002 

 
TCC CCDCC PGSM 38 0.004 17 0.002 

     
 

TCC CCCDCC PNSM 381 0.038 174 0.019 
 

132 0.013 32 0.003 

 
TCC CCCCC PBSM 

     
108 0.011 27 0.003 

 
TCCC CCCDCC BNSM 191 0.019 86 0.009 

     
 

TCCCC CCCDCC XNSM 267 0.027 121 0.013 
     

   
Total: 1906 0.192 868 0.093 

 
892 0.089 219 0.023 

Phosphatidylserine - PS 
 

outer/inner ratio 0.00 1.00 
   

0.00 1.00 

 
CCCC CCCC DPPS 

       
46 0.005 

 
CCCC CDCC POPS 

  
200 0.021 

   
232 0.025 
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CCCC CDDC PIPS 

   
79 0.008 

     
 

CCCC CDDDC PQPS 
  

39 0.004 
     

 
CCCC DDDDC PAPS 

  
461 0.049 

   
261 0.028 

 
DDDDC DDDDC DAPS 

  
20 0.002 

     
 

CCCC DDDDDC PUPS 
  

180 0.019 
   

326 0.034 

 
DDDDDC DDDDDC DUPS 

  
20 0.002 

     
 

CDCC DDDDDC OUPS 
       

65 0.007 

   
Total: 

  
999 0.107 

   
930 0.098 

Glycolipid - GM1 
  

outer/inner ratio 1.00 0.00 
   

1.00 0.00 

 
TCC CCCC DPG1 89 0.009 

   
89 0.009 

  
 

TCCC CCCCC DBG1 
     

16 0.002 
  

 
TCCCC CCCCCC DXG1 51 0.005 

       
 

TCC CDCC POG1 
     

10 0.001 
  

 
TCC CCCDCC PNG1 64 0.006 

   
20 0.002 

  
 

TCCCC CCCDCC XNG1 51 0.005 
       

   
Total: 255 0.026 

   
135 0.014 

  Glycolipid - GM3 
  

outer/inner ratio 1.00 0.00 
   

1.00 0.00 

 
TCC CCCC DPG3 89 0.009 

   
89 0.009 

  
 

TCCC CCCCC DBG3 
     

16 0.002 
  

 
TCCCC CCCCCC DXG3 51 0.005 

       
 

TCC CDCC POG3 
     

10 0.001 
  

 
TCC CCCDCC PNG3 64 0.006 

   
20 0.002 

  
 

TCCCC CCCDCC XNG3 51 0.005 
       

   
Total: 255 0.026 

   
135 0.014 

  Cerebrosides 
  

outer/inner ratio 
   

1.00 0.00 

 
TCC CCCC DPGS 

     
484 0.049 

  
 

TCCC CCCCC DBGS 
     

90 0.009 
  

 
TCC CDCC POGS 

     
59 0.006 

  
 

TCC CCCDCC PNGS 
     

109 0.011 
  

   
Total: 

     
742 0.074 

  Phosphatidylinositol - PI 
 

outer/inner ratio 0.00 1.00 
   

0.00 1.00 

 
CCCC CDCC POPI 

   
137 0.015 

   
121 0.013 

 
CCCC CDDC PIPI 

   
120 0.013 

   
48 0.005 

 
CCCC DDDDC PAPI 

   
120 0.013 

   
121 0.013 

 
CCCC DDDDDC PUPI 

   
51 0.005 

   
194 0.020 

   
Total: 

  
428 0.046 

   
484 0.051 

Phosphatidic acid - PA 
 

outer/inner ratio 0.00 1.00 
   

0.00 1.00 

 
CCCC CDCC POPA 

  
46 0.005 

   
13 0.001 

 
CCCC CDDC PIPA 

   
39 0.004 

     
 

CCCC DDDDC PAPA 
  

39 0.004 
   

25 0.003 

 
CCCC DDDDDC PUPA 

  
17 0.002 

     
   

Total: 
  

141 0.015 
   

38 0.004 
Phosphatidylinositol phosphates - PIPs outer/inner ratio 0.00 1.00 

   
0.00 1.00 

 
CCCC CDCC POP1 

  
48 0.005 

   
15 0.002 

 
CCCC DDDDC PAP1 

       
29 0.003 

 
CCCC CDCC POP2 

  
48 0.005 

   
15 0.002 

 
CCCC DDDDC PAP2 

       
29 0.003 

 
CCCC CDCC POP3 

  
48 0.005 

   
15 0.002 

 
CCCC DDDDC PAP3 

       
29 0.003 

   
Total: 

  
144 0.015 

   
132 0.014 

Ceramide - CER 
  

outer/inner ratio 0.65 0.35 
   

0.50 0.50 
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TCC CCCC DPCE 30 0.003 16 0.002 

 
38 0.004 37 0.004 

 
TCCC CCCCC DBCE 

     
6 0.001 6 0.001 

 
TCCCC CCCCCC DXCE 17 0.002 9 0.001 

     
 

TCC CCCDCC PNCE 20 0.002 12 0.001 
 

8 0.001 8 0.001 

 
TCC CDCC POCE 

     
4 0.000 4 0.000 

 
TCCCC CCCDCC XNCE 17 0.002 9 0.001 

     
   

Total: 84 0.008 46 0.005 
 

56 0.006 55 0.006 
Lysophosphatidylcholine - LPC outer/inner ratio 1.00 0.00 

   
0.67 0.33 

 
CCCC 

 
PPC 

 
64 0.006 

   
20 0.002 10 0.001 

 
CDCC 

 
OPC 

 
20 0.002 

       
 

CDDC 
 

IPC 
 

18 0.002 
   

10 0.001 5 0.001 

 
DDDDC 

 
APC 

 
18 0.002 

       
 

DDDDDC UPC 
 

7 0.001 
       

   
Total: 127 0.013 

   
30 0.003 15 0.002 

Lysophosphatidylethanolamine – LPE outer/inner ratio 
   

0.33 0.67 

 
CCCC 

 
PPE 

      
5 0.001 10 0.001 

 
CDDC 

 
IPE 

      
10 0.001 20 0.002 

   
Total: 

     
15 0.002 30 0.003 

Diacylglycerol - DAG 
  

outer/inner ratio 0.60 0.40 
   

0.50 0.50 

 
CCCC CDCC PODG 25 0.003 17 0.002 

 
13 0.001 13 0.001 

 
CCCC CDDC PIDG 23 0.002 15 0.002 

     
 

CCCC DDDDC PADG 23 0.002 15 0.002 
 

25 0.003 25 0.003 

 
CCCC DDDDDC PUDG 9 0.001 6 0.001 

     
   

Total: 80 0.008 53 0.006 
 

38 0.004 38 0.004 

Cholesterol - CHOL 
  

outer/inner ratio 0.54 0.46 
   

0.51 0.49 

   
CHOL 3104 0.313 2656 0.285 

 
4431 0.444 4222 0.446 

              Total all lipids 
  

9913 1.000 9326 1.000 
 

9979 1.000 9468 1.000 
 
aRelative abundance of the different lipid species in the plasma membrane leaflets as well as the 
ratio between the leaflets. On the microsecond time scale lipids with a “proper” hydrated 
headgroups do not flip-flop between the leaflets and their number in each leaflet is constant. In 
contrast cholesterols (CHOL), ceramides (CER) and diacylglycerols (DAG) do flip-flop; 
therefore, their average numbers fluctuate somewhat over the simulations. The numbers reported 
here are initial values. Averaged over the last 10 µs of the simulations the total outer/inner leaflet 
counts are: CHOL 3152/2608, CER 83/47, DAG 83/50 in the Average and CHOL 4412/4241, 
CER 53/58, DAG 29/47 in the Brain. The Martini beads for each lipid tail are listed: C beads 
represent a saturated carbon chain, D beads have 1-2 cis double bonds, and T beads are below 
the AM1 sphingosine linker with the trans double bound. Note, the Martini O tail (representing 
oleic acid or palmitoleic acid) used to be CCDC but now is CDCC. The old arrangement is used 
in the Average mixture for consistency with (1). 
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Table S2  Lipid average order parametera 
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Phosphatidylcholine - PC              
 CCCC CCCC DPPC        284 0.482 0.506 531 0.536 0.553 
 CCCC CDCC POPC 550 0.475 0.440 1205 0.478 0.444  463 0.458 0.408 868 0.511 0.447 
 CDCC CDCC DOPC 49 0.417 0.434 106 0.415 0.434  118 0.371 0.395 221 0.412 0.429 
 CCCC CDDC PIPC  810 0.459 0.260 1772 0.458 0.253        
 CCCC CDDD PFPC        32 0.459 0.183 59 0.499 0.167 
 CCCC CDDCC PEPC 32 0.463 0.283 71 0.458 0.274        
 CCCC DDDDC PAPC 129 0.455 0.131 283 0.454 0.119  247 0.448 0.139 463 0.497 0.136 
 DDDDC DDDDC DAPC 16 0.123 0.153 35 0.108 0.137        
 CCCC DDDDDC PUPC 32 0.455 0.112 71 0.444 0.103  90 0.456 0.076 169 0.495 0.063 
 CDCC CDDC OIPC         32 0.368 0.269 59 0.407 0.272 
 CDCC DDDDDC OUPC        22 0.370 0.075 42 0.398 0.058 
Phosphatidylethanolamine - PE            
 CCCC CCDC POPE 569 0.471 0.439 135 0.471 0.441  234 0.448 0.403 127 0.505 0.445 
 CDCC CDCC DOPE 190 0.412 0.431 44 0.415 0.434        
 CCCC CDDC PIPE  380 0.452 0.267 90 0.454 0.261        
 CCCC CDDDC PQPE 95 0.446 0.209 22 0.458 0.213        
 CCCC DDDDC PAPE 522 0.449 0.130 124 0.446 0.121  574 0.442 0.136 312 0.491 0.135 
 DDDDC DDDDC DAPE 332 0.123 0.150 78 0.110 0.138        
 CCCC DDDDDC PUPE 190 0.445 0.110 44 0.442 0.104  922 0.443 0.075 500 0.490 0.063 
 DDDDDC DDDDDC DUPE 95 0.105 0.127 22 0.091 0.117        
 CDCC CDDC OIPE         27 0.369 0.271 14 0.401 0.277 
 CDCC DDDDC OAPE        127 0.359 0.133 68 0.394 0.132 
 CDCC DDDDDC OUPE        133 0.362 0.075 72 0.393 0.066 
Sphingomyelin - SM               
 TCC CCCC DPSM 279 0.522 0.552 611 0.529 0.564  143 0.515 0.574 581 0.565 0.611 
 TCCC CCCCC DBSM 61 0.464 0.536 133 0.470 0.545        
 TCCCC CCCCCC DXSM 113 0.393 0.483 247 0.397 0.490        
 TCC CDCC POSM 17 0.451 0.544 38 0.453 0.547  17 0.426 0.555 71 0.457 0.581 
 TCC CCDCC PGSM 17 0.390 0.533 38 0.404 0.557        
 TCC CCCDCC PNSM 174 0.355 0.553 381 0.358 0.559  32 0.341 0.571 132 0.385 0.605 
 TCC CCCCC PBSM        27 0.443 0.576 108 0.497 0.610 
 TCCC CCCDCC BNSM 86 0.354 0.530 191 0.357 0.536        
 TCCCC CCCDCC XNSM 121 0.360 0.478 267 0.363 0.483        
Phosphatidylserine - PS               
 CCCC CCCC DPPS        46 0.488 0.507    
 CCCC CDCC POPS 200 0.474 0.442     232 0.458 0.410    
 CCCC CDDC PIPS  79 0.461 0.265           
 CCCC CDDDC PQPS 39 0.462 0.214           
 CCCC DDDDC PAPS 461 0.455 0.133     261 0.451 0.140    
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 DDDDC DDDDC DAPS 20 0.124 0.151           
 CCCC DDDDDC PUPS 180 0.452 0.114     326 0.452 0.077    
 DDDDDC DDDDDC DUPS 20 0.105 0.129           
 CDCC DDDDDC OUPS        65 0.371 0.075    
Glycolipid - GM1                
 TCC CCCC DPG1    89 0.427 0.320     89 0.488 0.494 
 TCCC CCCCC DBG1           16 0.438 0.387 
 TCCCC CCCCCC DXG1    51 0.340 0.361        
 TCC CDCC POG1           10 0.385 0.567 
 TCC CCCDCC PNG1    64 0.300 0.329     20 0.325 0.524 
 TCCCC CCCDCC XNG1    51 0.288 0.366        
Glycolipid - GM3                
 TCC CCCC DPG3    89 0.410 0.354     89 0.475 0.480 
 TCCC CCCCC DBG3           16 0.428 0.473 
 TCCCC CCCCCC DXG3    51 0.323 0.378        
 TCC CDCC POG3           10 0.352 0.498 
 TCC CCCDCC PNG3    64 0.294 0.345     20 0.323 0.467 
 TCCCC CCCDCC XNG3    51 0.288 0.380        
Cerebrosides                
 TCC CCCC DPGS           484 0.470 0.563 
 TCCC CCCCC DBGS           90 0.433 0.533 
 TCC CDCC POGS           59 0.363 0.549 
 TCC CCCDCC PNGS           109 0.324 0.567 
Phosphatidylinositol - PI              
 CCCC CDCC POPI  137 0.485 0.432     121 0.464 0.400    
 CCCC CDDC PIPI  120 0.465 0.240     48 0.458 0.259    
 CCCC DDDDC PAPI  120 0.454 0.098     121 0.453 0.112    
 CCCC DDDDDC PUPI  51 0.460 0.085     194 0.454 0.047    
Phosphatidic acid - PA               
 CCCC CDCC POPA 46 0.493 0.462     13 0.469 0.428    
 CCCC CDDC PIPA  39 0.466 0.283           
 CCCC DDDDC PAPA 39 0.465 0.138     25 0.458 0.147    
 CCCC DDDDDC PUPA 17 0.460 0.120           
Phosphatidylinositol phosphates - PIPs           
 CCCC CDCC POP1 48 0.482 0.431     15 0.463 0.404    
 CCCC DDDDC PAP1        29 0.451 0.116    
 CCCC CDCC POP2 48 0.487 0.436     15 0.468 0.404    
 CCCC DDDDC PAP2        29 0.454 0.116    
 CCCC CDCC POP3 48 0.501 0.448     15 0.475 0.410    
 CCCC DDDDC PAP3        29 0.459 0.122    
Ceramide - CER                
 TCC CCCC DPCE 16 0.497 0.530 30 0.497 0.530  37 0.524 0.579 38 0.524 0.579 
 TCCC CCCCC DBCE        6 0.466 0.526 6 0.466 0.526 
 TCCCC CCCCCC DXCE 9 0.366 0.434 17 0.366 0.434        
 TCC CCCDCC PNCE 12 0.339 0.535 20 0.339 0.535  8 0.354 0.581 8 0.354 0.581 
 TCC CDCC POCE        4 0.421 0.545 4 0.421 0.545 
 TCCCC CCCDCC XNCE 9 0.335 0.427 17 0.335 0.427        
Lysophosphatidylcholine - LPC             
 CCCC  PPC     64 0.520   10 0.499  20 0.549  

 CDCC  OPC     20 0.451         
 CDDC  IPC     18 0.279   5 0.295  10 0.304  
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 DDDDC  APC     18 0.150         
 DDDDDC UPC     7 0.121         
Lysophosphatidylethanolamine – LPE           
 CCCC  PPE         10 0.487  5 0.544  

 CDDC  IPE         20 0.289  10 0.304  
Diacylglycerol - DAG               
 CCCC CDCC PODG 17 0.435 0.390 25 0.435 0.390  13 0.456 0.385 13 0.456 0.385 
 CCCC CDDC PIDG 15 0.412 0.215 23 0.412 0.215        
 CCCC DDDDC PADG 15 0.401 0.091 23 0.401 0.091  25 0.438 0.105 25 0.438 0.105 
 CCCC DDDDDC PUDG 6 0.414 0.073 9 0.414 0.073        
 

aLipid tail order parameters (S) were calculated for each lipid type as explained in the SI 
methods. Here we show the absolute average order parameter per tail in each leaflet. bDAG and 
CER lipids flip-flop between the leaflets, therefore, their tail order was determined jointly in both 
leaflets. Standard errors were calculated using block averaging; they were typically ~0.003 and 
all were less than 0.015, therefore, skipped for brevity. The weighted average tail order over all 
lipid types (excluding lipids that flip-flop) are: Average [0.435,0.374] / [0.430,0.301] and Brain 
[0.487,0.391] / [0.444,0.224], respectively for the [sn-1, sn-2] tails in the outer/inner leaflet. 
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Table S3  Lipid diffusion ratesa 
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             Phosphatidylcholine - PC 
          

 
DPPC 

       
531 1.48 0.27 284 2.59 0.15 

 
POPC 1205 3.41 0.24 550 4.42 0.25 

 
868 1.76 0.07 463 2.96 0.17 

 
DOPC 106 3.46 0.43 49 3.62 0.16 

 
221 1.79 0.17 118 2.61 0.22 

 
PIPC 

 
1772 3.63 0.23 810 4.58 0.11 

       
 

PFPC 
       

59 2.26 0.19 32 3.53 0.06 

 
PEPC 71 2.89 0.69 32 4.31 0.96 

       
 

PAPC 283 3.21 0.11 129 5.25 0.34 
 

463 1.98 0.17 247 2.65 0.41 

 
DAPC 35 3.06 0.21 16 4.44 2.60 

       
 

PUPC 71 3.22 0.79 32 3.93 0.25 
 

169 2.27 0.06 90 3.02 0.62 

 
OIPC 

        
59 1.81 0.01 32 2.42 0.14 

 
OUPC 

       
42 2.31 0.44 22 1.98 1.67 

Phosphatidylethanolamine - PE 
         

 
POPE 135 2.64 0.25 569 4.05 0.02 

 
127 1.54 0.18 234 2.31 0.02 

 
DOPE 44 2.80 0.67 190 4.10 0.48 

       
 

PIPE 
 

90 3.35 0.19 380 4.20 0.16 
       

 
PQPE 22 2.70 0.46 95 4.60 0.57 

       
 

PAPE 124 3.24 0.06 522 4.42 0.21 
 

312 1.96 0.23 574 2.97 0.01 

 
DAPE 78 3.74 0.07 332 5.02 0.03 

       
 

PUPE 44 3.83 0.68 190 4.57 0.73 
 

500 1.88 0.11 922 2.80 0.04 

 
DUPE 22 4.35 0.98 95 4.39 0.24 

       
 

OIPE 
        

14 1.40 0.10 27 2.74 0.55 

 
OAPE 

       
68 2.39 0.01 127 2.81 0.25 

 
OUPE 

       
72 2.25 0.53 133 3.34 0.04 

Sphingomyelin - SM 
           

 
DPSM 611 3.33 0.18 279 4.24 0.59 

 
581 1.62 0.02 143 2.48 0.04 

 
DBSM 133 2.33 0.54 61 4.42 0.97 

       
 

DXSM 247 2.44 0.11 113 3.62 0.17 
       

 
POSM 38 3.80 0.99 17 2.49 0.27 

 
71 1.61 0.12 17 1.88 0.80 

 
PGSM 38 3.81 0.60 17 6.94 2.31 

       
 

PNSM 381 2.92 0.05 174 3.81 0.09 
 

132 1.53 0.04 32 2.19 0.35 

 
PBSM 

       
108 1.53 0.66 27 1.32 0.89 

 
BNSM 191 2.83 0.08 86 4.03 0.62 

       
 

XNSM 267 2.98 0.16 121 3.73 0.03 
       Phosphatidylserine - PS 

          
 

DPPS 
          

46 2.44 0.26 

 
POPS 

   
200 4.47 0.12 

    
232 2.76 0.09 

 
PIPS 

    
79 5.13 0.54 

       
 

PQPS 
   

39 4.06 0.23 
       

 
PAPS 

   
461 4.53 0.33 

    
261 3.19 0.13 
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DAPS 

   
20 3.74 0.23 

       
 

PUPS 
   

180 4.21 0.53 
    

326 2.98 0.06 

 
DUPS 

   
20 2.62 0.14 

       
 

OUPS 
          

65 2.87 0.09 
Glycolipid - GM1 

           
 

DPG1 89 1.34 0.27 
    

89 0.74 0.05 
   

 
DBG1 

       
16 0.49 0.19 

   
 

DXG1 51 1.10 0.20 
          

 
POG1 

       
10 0.78 0.12 

   
 

PNG1 64 1.11 0.45 
    

20 0.81 0.35 
   

 
XNG1 51 1.04 0.22 

          Glycolipid - GM3 
           

 
DPG3 89 1.86 0.74 

    
89 0.88 0.06 

   
 

DBG3 
       

16 0.56 0.02 
   

 
DXG3 51 1.45 0.05 

          
 

POG3 
       

10 0.42 0.38 
   

 
PNG3 64 2.10 0.70 

    
20 1.20 0.46 

   
 

XNG3 51 2.04 0.85 
          Cerebrosides 

            
 

DPGS 
       

484 0.98 0.13 
   

 
DBGS 

       
90 0.94 0.28 

   
 

POGS 
       

59 0.79 0.35 
   

 
PNGS 

       
109 1.06 0.01 

   Phosphatidylinositol - PI 
          

 
POPI 

    
137 4.40 0.29 

    
121 2.59 0.08 

 
PIPI 

    
120 4.54 0.65 

    
48 3.34 0.82 

 
PAPI 

    
120 5.08 0.28 

    
121 2.98 0.09 

 
PUPI 

    
51 4.08 1.37 

    
194 2.80 0.74 

Phosphatidic acid - PA 
          

 
POPA 

   
46 4.06 0.35 

    
13 2.65 1.18 

 
PIPA 

    
39 3.93 0.39 

       
 

PAPA 
   

39 2.97 0.51 
    

25 1.75 1.84 

 
PUPA 

   
17 3.27 2.06 

       Phosphatidylinositol phosphates - PIPs 
       

 
POP1 

   
48 3.82 0.09 

    
15 2.52 0.73 

 
PAP1 

          
29 2.95 0.66 

 
POP2 

   
48 4.26 0.31 

    
15 2.09 0.02 

 
PAP2 

          
29 2.00 0.17 

 
POP3 

   
48 3.36 0.64 

    
15 1.67 0.50 

 
PAP3 

          
29 2.56 0.29 

Ceramide - CERb 
            

 
DPCE 30 5.78 1.47 16 5.78 1.47 

 
38 2.35 0.16 37 2.35 0.16 

 
DBCE 

       
6 2.06 0.77 6 2.06 0.77 

 
DXCE 17 4.13 0.50 9 4.13 0.50 

       
 

PNCE 20 4.44 1.24 12 4.44 1.24 
 

8 1.69 0.35 8 1.69 0.35 

 
POCE 

       
4 4.63 1.15 4 4.63 1.15 

 
XNCE 17 2.15 0.05 9 2.15 0.05 

       Lysophosphatidylcholine - LPC 
         

 
PPC 

 
64 

      
20 1.87 0.68 10 6.67 0.46 

 
OPC 

 
20 

            
 

IPC 
 

18 
      

10 2.37 1.28 5 4.67 3.68 
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APC 

 
18 

            
 

UPC 
 

7 
            Lysophosphatidylethanolamine – LPE 

        
 

PPE 
        

5 1.29 0.17 10 2.98 0.91 

 
IPE 

        
10 1.64 0.77 20 4.52 0.02 

Diacylglycerol - DAGb 
           

 
PODG 25 5.65 2.28 17 5.65 2.28 

 
13 2.18 0.05 13 2.18 0.05 

 
PIDG 23 6.54 1.55 15 6.54 1.55 

       
 

PADG 23 5.86 1.10 15 5.86 1.10 
 

25 3.89 0.76 25 3.89 0.76 

 
PUDG 9 4.05 0.06 6 4.05 0.06 

       Cholesterol - CHOLb  
            

 
CHOL 3104 4.99 0.11 2656 4.99 0.11 

 
4431 3.02 0.12 4222 3.02 0.12 

 

aLipid lateral diffusion was evaluated for each lipid type from the lipids' MSD in the membrane 
plane, see SI methods. bCHOL, DAG, and CER lipids flip-flop between the leaflets, therefore, 
their diffusion was determined jointly in both leaflets. The weighted average diffusion rates in 
the outer/inner leaflet (excluding lipids that flip-flop) are: Average 3.1±0.3 / 4.3±0.3 and Brain 
1.6±0.2 / 2.8±0.2 in 10-7 cm2/s. 
  



  page S27 

 

Supporting References: 

1. Ingólfsson, H.I., M.N. Melo, F.J. van Eerden, C. Arnarez, C.A. Lopez, T.A. Wassenaar, 
X. Periole, A.H. De Vries, D.P. Tieleman, and S.J. Marrink. 2014. Lipid Organization of 
the Plasma Membrane. J. Am. Chem. Soc. 136: 14554–14559. 

2. O'Brien, J.S., and E.L. Sampson. 1965. Lipid composition of the normal human brain: 
gray matter, white matter, and myelin. J. Lipid Res. 6: 537–544. 

3. Kishimoto, Y., B.W. Agranoff, N.S. Radin, and R.M. Burton. 1969. Comparison of the 
fatty acids of lipids of subcellular brain fractions. Journal of Neurochemistry. 16: 397–
404. 

4. Breckenridge, W.C., G. Gombos, and I.G. Morgan. 1972. The lipid composition of adult 
rat brain synaptosomal plasma membranes. BBA - Biomembranes. 266: 695–707. 

5. Christie, W.W. 1985. Rapid separation and quantification of lipid classes by high 
performance liquid chromatography and mass (light-scattering) detection. J. Lipid Res. 
26: 507–512. 

6. Abbott, S.K., P.L. Else, T.A. Atkins, and A.J. Hulbert. 2012. Fatty acid composition of 
membrane bilayers: Importance of diet polyunsaturated fat balance. BBA - 
Biomembranes. 1818: 1309–1317. 

7. Atilla-Gokcumen, G.E., E. Muro, J. Relat-Goberna, S. Sasse, A. Bedigian, M.L. Coughlin, 
S. Garcia-Manyes, and U.S. Eggert. 2014. Dividing Cells Regulate Their Lipid 
Composition and Localization. Cell. 156: 428–439. 

8. Levental, K.R., J.H. Lorent, X. Lin, A.D. Skinkle, M.A. Surma, E.A. Stockenbojer, A.A. 
Gorfe, and I. Levental. 2016. Polyunsaturated Lipids Regulate Membrane Domain 
Stability by Tuning Membrane Order. Biophys. J. 110: 1800–1810. 

9. Tulodziecka, K., B.B. Diaz-Rohrer, M.M. Farley, R.B. Chan, G. Di Paolo, K.R. Levental, 
M.N. Waxham, and I. Levental. 2016. Remodeling of the postsynaptic plasma membrane 
during neural development. Mol. Biol. Cell. 27: 3480–3489. 

10. van Meer, G. 2005. Cellular lipidomics. EMBO J. 24: 3159–3165. 

11. Fernandez, C., M. Sandin, J.L. Sampaio, P. Almgren, K. Narkiewicz, M. Hoffmann, T. 
Hedner, B. Wahlstrand, K. Simons, A. Shevchenko, P. James, and O. Melander. 2013. 
Plasma Lipid Composition and Risk of Developing Cardiovascular Disease. PLoS ONE. 
8: e71846. 

12. Holthuis, J.C.M., and A.K. Menon. 2014. Lipid landscapes and pipelines in membrane 
homeostasis. Nature. 510: 48–57. 

13. Wells, M.A., and J.C. Dittmer. 1967. A comprehensive study of the postnatal changes in 
the concentration of the lipids of developing rat brain. Biochemistry. 6: 3169–3175. 



  page S28 

 

14. Lutzke, B.S., and J.M. Braughler. 1990. An Improved Method for the Identification and 
Quantitation of Biological Lipids by Hplc Using Laser Light-Scattering Detection. J. 
Lipid Res. 31: 2127–2130. 

15. Kracun, I., H. Rosner, V. Drnovsek, M. Heffer-Lauc, C. Cosović, and G. Lauc. 1991. 
Human brain gangliosides in development, aging and disease. Int. J. Dev. Biol. 35: 289–
295. 

16. Diagne, A., J. Fauvel, M. Record, H. Chap, and L. Douste-Blazy. 1984. Studies on ether 
phospholipids. II. Comparative composition of various tissues from human, rat and guinea 
pig. Biochim. Biophys. Acta. 793: 221–231. 

17. Homan, R., and M.K. Anderson. 1998. Rapid separation and quantitation of combined 
neutral and polar lipid classes by high-performance liquid chromatography and 
evaporative light-scattering mass detection. J. Chromatogr. B Biomed. Sci. Appl. 708: 21–
26. 

18. Han, X., D.M. Holtzman, and D.W. McKeel. 2001. Plasmalogen deficiency in early 
Alzheimer's disease subjects and in animal models: molecular characterization using 
electrospray ionization mass spectrometry. J. Neurochem. 77: 1168–1180. 

19. Han, X., and R.W. Gross. 2005. Shotgun lipidomics: Electrospray ionization mass 
spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts 
of biological samples. Mass Spectrom. Rev. 24: 367–412. 

20. Sharon, R., I. Bar-Joseph, G.E. Mirick, C.N. Serhan, and D.J. Selkoe. 2003. Altered Fatty 
Acid Composition of Dopaminergic Neurons Expressing  -Synuclein and Human Brains 
with  -Synucleinopathies. J. Biol. Chem. 278: 49874–49881. 

21. Chan, R.B., T.G. Oliveira, E.P. Cortes, L.S. Honig, K.E. Duff, S.A. Small, M.R. Wenk, G. 
Shui, and G. Di Paolo. 2012. Comparative lipidomic analysis of mouse and human brain 
with Alzheimer disease. J. Biol. Chem. 287: 2678–2688. 

22. Lam, S.M., Y. Wang, X. Duan, M.R. Wenk, R.N. Kalaria, C.P. Chen, M.K.P. Lai, and G. 
Shui. 2014. The brain lipidomes of subcortical ischemic vascular dementia and mixed 
dementia. Neurobiol. Aging. 35: 2369–2381. 

23. Arai, Y., J.L. Sampaio, M. Wilsch-Bräuninger, A.W. Ettinger, C. Haffner, and W.B. 
Huttner. 2015. Lipidome of midbody released from neural stem and progenitor cells 
during mammalian cortical neurogenesis. Front. Cell. Neurosci. 9: 428–411. 

24. Oliveira, T.G., R.B. Chan, F.V. Bravo, A. Miranda, R.R. Silva, B. Zhou, F. Marques, V. 
Pinto, J.J. Cerqueira, G. Di Paolo, and N. Sousa. 2015. The impact of chronic stress on the 
rat brain lipidome. Mol. Psychiatry. 21: 80–88. 

25. Shevchenko, A., and K. Simons. 2010. Lipidomics: coming to grips with lipid diversity. 
Nat. Rev. Mol. Cell Biol. 11: 593–598. 

26. Clark, J., K.E. Anderson, V. Juvin, T.S. Smith, F. Karpe, M.J.O. Wakelam, L.R. Stephens, 



  page S29 

 

and P.T. Hawkins. 2011. Quantification of PtdInsP3 molecular species in cells and tissues 
by mass spectrometry. Nat. Meth. 8: 267–272. 

27. Marrink, S.J., A.H. De Vries, and A.E. Mark. 2004. Coarse grained model for 
semiquantitative lipid simulations. J. Phys. Chem. B. 108: 750–760. 

28. Marrink, S.J., H.J. Risselada, S. Yefimov, D.P. Tieleman, and A.H. De Vries. 2007. The 
MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. 
B. 111: 7812–7824. 

29. Wassenaar, T.A., H.I. Ingólfsson, R.A. Böckmann, D.P. Tieleman, and S.J. Marrink. 
2015. Computational Lipidomics with insane: A Versatile Tool for Generating Custom 
Membranes for Molecular Simulations. J. Chem. Theory Comput. 11: 2144–2155. 

30. Gu, R.-X., H.I. Ingólfsson, A.H. De Vries, S.J. Marrink, and D.P. Tieleman. 2017. 
Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and 
Atomistic Molecular Dynamics Simulations. J. Phys. Chem. B. 121: 3262–3275. 

31. Lopez, C.A., Z. Sovova, F.J. van Eerden, A.H. De Vries, and S.J. Marrink. 2013. Martini 
force field parameters for glycolipids. J. Chem. Theory Comput. 9: 1694–1708. 

32. Pronk, S., S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. 
Smith, P.M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl. 2013. GROMACS 4.5: a 
high-throughput and highly parallel open source molecular simulation toolkit. 
Bioinformatics. 29: 845–854. 

33. de Jong, D.H., S. Baoukina, H.I. Ingólfsson, and S.J. Marrink. 2016. Martini straight: 
Boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 199: 1–
7. 

34. Bussi, G., D. Donadio, and M. Parrinello. 2007. Canonical sampling through velocity 
rescaling. J. Chem. Phys. 126: 014101. 

35. Parrinello, M., and A. Rahman. 1981. Polymorphic transitions in single crystals: A new 
molecular dynamics method. J. Appl. Phys. 52: 7182–7190. 

36. Michaud-Agrawal, N., E.J. Denning, T.B. Woolf, and O. Beckstein. 2011. MDAnalysis: A 
toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32: 2319–
2327. 

37. Xie, H., K.T. McDonnell, and H. Qin. 2004. Surface Reconstruction of Noisy and 
Defective Data Sets. Washington, DC, USA: IEEE Computer Society. pp. 259–266. 

38. Kazhdan, M., M. Bolitho, and H. Hoppe. 2006. Poisson Surface Reconstruction. Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association. pp. 61–70. 

39. Floater, M.S., and K. Hormann. 2005. Surface Parameterization: a Tutorial and Survey. 
In: Dodgson NA, MS Floater, MA Sabin, editors. Advances in Multiresolution for 
Geometric Modelling. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 157–186. 



  page S30 

 

40. Venable, R.M., H.I. Ingólfsson, M.G. Lerner, B.S. Perrin, B.A. Camley, S.J. Marrink, 
F.L.H. Brown, and R.W. Pastor. 2017. Lipid and Peptide Diffusion in Bilayers: The 
Saffman-Delbrück Model and Periodic Boundary Conditions. J. Phys. Chem. B. 121: 
3443–3457. 

41. Castillo, N., L. Monticelli, J. Barnoud, and D.P. Tieleman. 2013. Free energy of WALP23 
dimer association in DMPC, DPPC, and DOPC bilayers. Chem. Phys. Lipids. 169: 95–
105. 

42. Chavent, M., T. Reddy, J. Goose, A.C.E. Dahl, J.E. Stone, B. Jobard, and M.S.P. Sansom. 
2014. Methodologies for the analysis of instantaneous lipid diffusion in md simulations of 
large membrane systems. Faraday Discuss. 169: 455–475. 

43. Bremer, P.-T., G.H. Weber, V. Pascucci, M. Day, and J.B. Bell. 2010. Analyzing and 
tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. 
Graph. 16: 248–260. 

44. Bennett, J.C., V. Krishnamoorthy, S. Liu, R.W. Grout, E.R. Hawkes, J.H. Chen, J. 
Shepherd, V. Pascucci, and P.-T. Bremer. 2011. Feature-based statistical analysis of 
combustion simulation data. IEEE Trans. Vis. Comput. Graph. 17: 1822–1831. 

 


	Computational Lipidomics of the Neuronal Plasma Membrane
	Introduction
	Materials and Methods
	Neuronal PM composition
	Force field
	Simulations

	Results and Discussion
	Global membrane properties; similar but different
	Lipid mixing and domain sizes

	Conclusions
	Supporting Material
	Author Contributions
	Acknowledgments
	Supporting Citations
	References


